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A perturbation technique useful for computing many-time thermal averages of classical quantities
is developed. The canonical distribution function for the system is shown to evolve isothermally from
that for a free-particle system as the interaction is switched on slowly. This permits convenient use
of an interaction picture in which to perform thermal averaging. The technique is applied to the
calculation of the time-dependent pair correlation function in position for a uniform gas. The corre-
lation function is shown to be a sum of two components, one the solution of a kinetic equation and
essentially a generalization of the autocorrelation in equilibrium, the other a generalization of the
mutual correlation function in equilibrium. The equations arise as sums over diagrams. The equations
resulting from the random phase approximation, valid for the short-time behavior, are solved exactly.
It is shown directly that the generalized dielectric function given in terms of the correlation function
is identical with that found by solution of the kinetic equation in the random phase approximation

for all frequencies.

I. INTRODUCTION

T has been shown by many authors' ™ that trans-
port coefficients can be given in terms of time-
dependent pair correlation functions determined in
equilibrium. More generally, the two-particle cor-
relation functions describe a large number of macro-
scopic properties and serve as links between the
microscopic and maecroscopic worlds.

This paper desecribes a perturbation approach to
the calculation of time- and space-dependent pair
correlation functions in equilibrium. We consider
classical systems with velocity-independent pair in-
teractions. The basic formalism is introduced in
Sec. I1.

Since we are interested in two-time (or more gener-

t M. 8. Green, J. Chem. Phys. 22, 398 (1954).

2 R. Kubo, in Lectures in Theoretical Physics, edited by
W. E. Brittin e al. (Interscience Publishers, Inc., New York,
1960) Vol. I; J. Phys. Soc. Japan 12, 570 (1957).

3 P. Mazur, in Fundamental Problems in Statistical Me-
chanics, edited by E. G. D. Cohen (Interscience Publishers,
Inc., New York, 1962).
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ally, many-time) averages, we do not wish to give
any particular emphasis to time zero. For that reason
we consider in Sec. III the motion of the system
in purely dynamical terms. All correlations including
those initially present in the actual system are re-
garded as resulting from an initial free-particle dis-
tribution when the interactions are turned on slowly.
The point of view corresponds to that of an inter-
action picture.

The resulting expression for the pair correlation
function can be pictured in terms of the diagrams
introduced by Prigogine.* It turns out that in the
thermodynamic limit as the volume and the number
of particles go to infinity, with the density remaining
finite, only two types of diagrams contribute. The
correlation functions are found in terms of the solu-
tions of the corresponding integral equations. These
equations are obtained in Sec. IV.

In Sec. V the equations are solved in the random

41. Prigogine, Non-Equilibrium Statistical Mechanics,
(Interscience Publishers, Inc., New York, 1962).
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phase approximation (RPA).® The well-known re-
sult that in the RPA the generalized dielectric fune-
tion® obtained from the kinetic equation is the same
as that found by a response function method for
all frequencies’ is domonstrated directly for classical
systems.

The relation of the time-dependent theory to the
equilibrium theory is discussed in Seec. VI.

II. BASIC FORMALISM

Consider a classical system of N particles with
Hamiltonian H. The Liouville equation for the dis-
tribution function ¢g can be written*

1 dps(1)/3t = Les(1), 2.1)
where the Liouville operator L is defined as
N N
L=—i2 0H-V.+1i> V.H-3. (22

i=1 i=1

Here 9, is the gradient with respect to the momen-
tum of the ¢th particle. In terms of the Poisson
bracket { },

Ly = i{H, ¢}. 2.3)

We will be concerned with averages over the dis-
tribution function of functions of the positions and
momenta of the N particles. If f(I') = f({r.}, {p:})
is such a function, its average at time ¢ is

) = [ dr (e,

where ¢5(t) is a solution of (2.1).° Here I' represents
a point in phase space.

Since L is Hermitian, as can be shown quite
easily, (2.1) is similar in form to the Schrédinger
equation, which is why we have used the subseript
S. The major difference is that L is not positive-
definite, but its eigenvalues appear in pairs =A\,.
The solution to (2.1) can be written

os(t) = ¢ o4(0). (2.5)

The equilibrium distribution is stationary, so it is
given by

(2.4)

LQDS = O. (2-6)

§D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951);
Phys. Rev. 85, 338 (1952).

¢ That is, with the Coulomb potential replaced by an
arbitrary potential (r).

7 D. Pines, J. Nucl. Energy 2, Part C, 5 (1961).

8 The expectation value {(f(f)) given by (2.4) can be put
in symmetric form to resemble a quantum mechanical ex-
pectation value. Since ¢, is positive-definite, we may define
Yo(t) = [ (0% Then (f(1)) = (¥ut)] f |¥s(t)). The form

(2.4), though, seems more useful.
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On the other hand we can introduce a “Heisen-
berg” picture too. A function fg(f) = f[T'(¢)] changes
in time with the motion of the system. Since
ofu(t)/0t = 0,

with the solution
) = 67 ™. @8

The factor exp (—iLf) is inserted after f because
f(t) will be used in expressions multiplied by some-
thing on the right and the exponential factor is
supposed to act on f only. Here f = f(0) = fs = fa(0).
We identify also ¢g = ¢s(0) = ¢(0). In terms
of fu(t), the average at time ¢ is given by

GO = [ dr fu(t)en.

By virtue of (2.5), (2.8), and the easily verifiable
fact that

2.9)

fdl‘ LF =0 (2.10)
for any function F of interest (assuming periodic
boundary conditions in configuration space) and
for any Hamiltonian, the average (2.9) gives a
result identical to (2.4). We have equivalent “Schré-
dinger”’ and “Heisenberg” pictures. The latter is,
however, more useful because it enables us to
define many-time averages. Thus

(fl(tx) te fn(tn»n

= [ dr fmt) - fntde0).  @.10)

It is important to note that by (2.7) any constant
of the motion is a solution of (2.6). In most quantum
mechanical problems the ground state is assumed
nondegenerate. Here the ‘“‘ground state,” given by
L = 0, is highly degenerate.

For our purposes it is most convenient to work
in an interaction picture.” Interaction picture var-
iables will be written without subscripts. We break
the Hamiltonian into an unperturbed part H, and
a perturbation H’. Correspondingly, we have L =
Ly + L’. We define

f(t) = exp (Lot)f exp (—Lot). 2.12)
L’ is also assumed to develop in time according to
¢ See, for instance, S. Schweber, An Introduction o Rela-

tivistic Quantum Field Theory (Row, Peterson and Company,
Evanston, Illinois, 1961), Chap. 11.
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(2.12). The Liouville equation becomes

1(de(f)/0t) = L'(t)e(?). (2.13)
The solution can be written
o) = UG, t)e(t), (2.14)

where U(¢, ) is the unitary time-development
operator

Ua, v) = |:exp (—zf () dt”)l.

The symbol [ ], will be used to indicate that non-
commuting factors in the bracket are to be ordered
from right to left according to increasing time of
their arguments. Then the average {f(¢)) is given by

(2.15)

) = [ dr o). (2.16)

Since (2.10) holds for both L, and L' and
[exp (—iLet)]U(t, 0) = exp (—iLt),

Eq. (2.16) gives the same result as (2.4) and (2.9).
The unitarity of U follows also; that is, for any F
of interest,

[arve oF = [arr. @

In particular,
g, t)y) = 1. (2.18)

The unperturbed motion is just the free-particle
motion of the system, so H, is the kinetic energy.
Then

N
Ly = ~1 Zvi'Va

i=1

(2.19)

and
1® = f({r; + v}, {p:}D),

where v, is the velocity of the 7th particle.

(2.20)

II1. DEVELOPMENT OF THE DISTRIBUTION
FUNCTION AS PERTURBATION IS TURNED ON

The two-particle correlation functions are av-
erages of the form (2.11). The equilibrium distribu-
tion ¢ = ¢(0) is canonical. Then

Ht)a = [ar s,
X exp (iL(t — W */@r ™),  (3.)

where 8 = 1/kgT. The correlations at time ¢, are
included in e™*#/(dTe™*"), and the subsequent mo-
tion of the system is described by the propagator
exp[—iL{t, — t,)].
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In order to avoid this rather awkward singling
out of time zero (or £;), we want to adopt the
quantum mechanical procedure of turning on the
perturbation slowly, starting from a free-particle
system, and taking interaction picture averages.
It is not a priori clear that the procedure can be
carried out with the Liouville operator. It requires,
first, that there exists a stationary solution of the
free-particle Liouville equation that develops into
the canonical distribution over which we wish to
average as the interaction is turned on; and second,
that this solution can be written down explicitly
out of the infinity of stationary solutions of the
Liouville equation. It will be shown that this pro-
cedure is in fact possible for perturbations which
depend on position only.

In order to point up the differences from the
usual quantum mechanical situation, we will pro-
ceed in the standard way.’ Let ¢, be an arbitrary
stationary distribution for the unperturbed system.

Then
Lyp, = 0. (3 .2)

The interaction part of the Hamiltonian is written
as H' exp(—¢e) with ¢ > 0. The expansion of U
from (2.15) gives

U0, —w) =14 3 (=i f dy - f at,

n=1
X exp [e(t, + -+ 4+ L)IL(L) -+ - L(t.). (3.3
Let us define
g =1lim Q== _ o, _ ), (3.4

€—0

[ ar v, - =)

where U(0, — =) = lim,,, U.(0, — ). The last
equality in (3.4) follows from (2.17)."° Then the
adiabatic theorem of Gell-Mann and Low states
that ¢ is an eigenfunction of the total Liouville
operator L with eigenvalue zero. Thus ¢ too is
stationary. The theorem does not say which sta-
tionary state is obtained. One expects, of course,
that the result of such a long, slow process will be a
canonical distribution, but that does not say yet
how ¢ and ¢, are related.

Assume that ¢, is a canonical distribution at some
temperature T' = 1/k3B8 (kz = Boltzmann’s constant)
for free particles, i.e, a Maxwellian. Then the
process described by (3.4) is reversible in the thermo-
dynamic sense. The question is then what kind of

10 In distinction to the usual quantum mechanical case,

the denominator in (3.4) does not give an infinite phase
factor.



592 RAPHAEL
process is being described. It is shown in Appendix A
that Eq. (3.4) is a dynamical description of an
isothermal process. The final canonical distribution
is appropriate to the same temperature as the
initial one. That is,

¢ = o(B) = U0, — «)eoB), (3.5)

where ¢, is Maxwellian and ¢(8) is the canonical
distribution function for the actual system at the
temperature given by 8. The normalization of ¢
implied by (3.4) is automatically correct, so that
the partition function need not be computed.

The result is true in a perturbative sense. That is,
the equality (3.5) holds term-by-term in the expan-
sion in G(H’ — (H’)) where H’ is a velocity-in-
dependent perturbation. Equation (3.5) is ultimately
used in computing reduced distributions. For these,
each term in the perturbation series gives a perfectly
finite result for any number of particles, no matter
how large, so long as the density is finite.

The question of the convergence of the perturba-
tion series for the reduced distributions is not
answered. The starting point is a gas of noninter-
acting particles. We do not expect convergence if
the isothermal process described by (3.4) takes the
system through a phase transition. Thus, the per-
turbation procedure, when valid, holds for gases
and in general may not describe a liquid phase.

Henin, Résibois, and Andrews'' and Andrews'’
have obtained an expression for a uniform medium
that is identiecal to (3.5) with ¢ given by (3.4). The
interpretation is different from ours and does not
make clear the difficulties in applying the perturba-
tion expansion to liquids. Their calculation has an
error,’® which can be rectified, however, by the
arguments of Appendix A, and their final result
is correct. They did not consider external fields.

We have, finally, using (3.4)

([fl(tl) tee fn(tn)]+>n

= ([h(t) -+ flt)U(, —=)]s).  (3.6)

The right-hand side of (3.6) is evaluated in the
interaction picture. By virtue of (2.17), U(eo, — =)
can be replaced by U(t’, — =), where ¢’ is the largest
of the t;. We will be concerned from here on with
expressions such as (3.6). All correlations on the
right-hand side are taken into account by the dynam-

u F, Henin, P. Résibois, and F. Andrews, J. Math, Phys. 2,
68 (1961).

12 F. Andrews, Physica 27, 1054 (1961).

13 Henin, Résibois, and Andrews (Ref. 11) and Andrews
(Ref. 12) assumed in effect that lim,.o (Lo — 7€)"1Ly = 1.
See also I. Prigogine, Ref. 4, Chap. 12. The correct expression
is lime.o (Lo — 2€)"1Lg = 1 — P,. (See Appendix A.)
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ical operator U. The average is over the distribution
for free particles, so L, is given by (2.19). The
interaction Liouville operator is

L' =14 V.H-d, (3.7
where H’ is assumed to depend on the relative par-
ticle coordinates only.

Having established this general result, we now
specialize to uniform systems of N identical par-
ticles.

IV. THE TWO-PARTICLE CORRELATION
FUNCTION

Consider a homogeneous system of N identical
particles in a volume Q. The particle density is

o(r, ) = 2 o — r:()] (4.1)
and the mean density of the system is
n = N/Q = {p(r, D)a. 4.2)

We are concerned with the two-particle correlation
function S which describes correlations of density
fluctuations. In a uniform medium, S can depend
only on differences in position and time, so it is
given by

Sx—r,t—1)

= (lp(r, &) — n)lp(r’, ¥') — nl)n. (4.3)
Using the Fourier expansion
F@r) = }k_‘, Fk)e*" 4.4)

to transform to the more convenient wavenumber
space, Eq. (4.3) becomes

Sk, 1) = @ (px(t)p-x(0))m
= 9_1<Pke—iup—k>n for k#0,
=0 for k=0, (4.5)
using (2.10). Here
Px = Z exp (—1k-r,) (4.6)

is the Fourier expansion coefficient obtained from
(4.1). 8 is symmetric in both k and ¢.

Applying (3.6) to (4.5) givesfork ¢ Oand ¢ > 0
(which we shall assume from now on)

Sk, &) = @ X[px(®)p-O)U(E, — =)].).

We have made use of the fact that U(w, ) can
be removed from the time-ordered product (3.6)
without changing the result, because of (2.17). Ex-

4.7
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panding U, we obtain

g S__‘a (— f dt, - f "

X (lox()p-x(O)L'(t) - -+ L'(t)]).  (4.8)

The unperturbed state is a free-particle state. The
perturbation is assumed due to two-body interac-
tions, so the Hamiltonian is

H= 2@2/27") +3 Z (e — 1)),

The prime indicates that the term ¢ = j is missing.
In wavenumber space,

Ly = m™ 3 peky,
—1/29) ; v(k)
X 2 exp [k (r; —

Sk, ) =

4.9

LI

r;)lk-(3; — 9,). (4.10)

Eq. (4.8) can be represented diagrammatically by
the method of Prigogine,* summarized in Appendix
B. A vertex describing the transfer of wavenumber
k from particle 8 to particle « is associated with a
factor™

—1L.(k) = Q@ vk (3. — 3), (4.11)

where v(k) is the transform of »(r) and is not to
be confused with a velocity v,. A free propagator
line for a particle o with wavenumber k between
times ¢ and ¢’ (¢ > ') corresponds to a factor

T.k, t — t') = exp [—ik-v,(t — t)]. 4.12)

Because of (3.4), only connected diagrams con-
tribute to S(k, {). Each term exp -—ik.r;() in
px(f) corresponds to the addition of a wavenumber
k to the propagator for particle 7 at time ¢ and can
be represented by a directed vertical line carrying
wavenumber k. Each such vertical line can be
regarded as an end of the diagram. The vertical
line can be omitted if either just before or just
after the transfer of wavenumber k, particle ¢ has
zero wavenumber. In that case the diagram ev-
idently ends with a free propagator. Thus S(k, £)
is represented by the sum of all connected diagrams
with two ends a time ¢ apart.

It is convenient to define an irreducible correlation
part (ICP) of a diagram as a part all of whose
vertices are at least doubly connected to each other.
They are equivalent to the irreducible clusters dis-
cussed by Weinstock.'®

U Note that the factor 3 in (4.10) does not appear in
(4.11) because a and 8 are fixed.
18 J, Weinstock, Phys. Rev. 132, 454 (1963).
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Fre. 1. Schematic reduced diagram for a two-particle cor-
relation function.

The most general diagram contributing to S con-
sists of a number of ICP’s (or possibly none) al-
ternating with free propagators of wavenumber k
to form a linear (i.e., nonbranching) chain with
two ends. One end of the chain is at a time = and the
other end at a time £ 4+ 7. We can, in all generality,
put + = 0. The other vertices may be arranged
in any temporal order, though as we show, most
of these arrangements give no contribution. A typical
diagram for S is shown in Fig. 1. The ICP’s are
represented by numbered circles. Each linking prop-
agator bears wavenumber k because conservation
of wave number at every vertex implies conservation
of k in the large. A vector k going backward in
time is equivalent to —k going forward in time.
The ordering is important because the vertices rep-
resent operators in momentum space.

An ICP is characterized by the particle labels
associated with the two free propagators attached
to it; by k; by the time difference ¢, — ¢; of the two
vertices at which the free propagators are attached;
and, of course, by its internal structure.

The significance of the reduction is that ICP’s
are local in space and time, at least for short-range
forces. The times are short because typical wave-
numbers k’ transferred in an interaction are of the
order of ry?, the reciprocal of the range of the inter-
action. The free-particle propagator between two
successive vertices in the ICP behaves something
like exp (—1k’-v;At). The exponent oscillates rapidly
to produce cancellation for time intervals much
larger than about (&'v)™' ~ re™', which is the
collision time. For times of the order of the collision
time, the particles involved must all be in a region
whose dimensions are of the order r, if they are
to interact in any manner except sequentially.'®

18 We pass over the potentially troublesome question of the
extent to which ICP’s of infinite order in A, as for instance
when the individual vertices are replaced by binary collision
vertices (see Sec. VI), are still short-time quantities.
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We will be concerned with the limit N, @ — o
with n = N/Q finite. The diagrams which con-
tribute in this limit can be inferred from the following
rules which give the order of magnitude of the
diagrams.

(1) Every vertex contributes a factor \/Q, where
A is a measure of the interaction strength.

(2) Every closed loop gives a factor 2 because
it involves a sum over k’, and D> . — (2/87°) [ dk’
when @ — .

(3) If there are r different particle indices there
is a factor NI/(N — r)! ~ N when N is large.

(4) Thus, if there are n vertices, m closed loops,
and r particle indices, the diagram goes as A"N"/Q"™™.

(56) Consider particle indices being assigned to
lines in a diagram according to decreasing time,
that is, in going from left to right in the diagram.
No new indices can be assigned at a creation vertex.

(6) Two new indices cannot be assigned at a des-
truction vertex. Such a vertex corresponds to an
operator L,;, the Liouville operator describing an
interaction between the new particles 7 and j. An
expression involving L;; vanishes on being averaged
if 7 and j are new particles, so such a diagram gives
no contribution.

(7) Thus at most one new index can be assigned
at any vertex. It follows that r < n — m. Therefore
in the thermodynamic limit there are no infinite
terms in the expansion of a statistical average.

(8) In the limit the only nonvanishing diagrams
are those with »r = n — m. Thus, in assigning
particle indices, one must assign a new index when-
ever possible.

(9) It follows that no particle can appear in two
disjoint particle lines, with the possible exception
of semiconnected parts (defined in Appendix C).
In particular, the only particle that two ICP’s can
have in common is the particle linking them.

(10) Any diagram with a destruction vertex (ex-
cept possibly in a semiconnected part) vanishes.
This follows from Rules 6 and 9.

(11) This eliminates all ICP’s of form III in Fig. 1,
in which both connecting propagators go out toward
the right.

(12) It also implies that the leftmost (latest)

Fia. 2. Diagram for M;;(k, t).
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t=t

F1a. 3. Diagram for C,(k, t).

vertex of an ICP must have a free propagation
line attached to it.

(13) Diagrams with semiconnected parts give no
contribution, as shown in Appendix C.

With these rules'” it is easy to show the general
diagrammatic structure of S(k, f). By Rule 12,
each diagram must end in a free propagator at
time ¢. Let the end of ¢ = 0 be a free propagator
going to the left. Then the only allowable type of
structure is of the form shown in Fig. 2, with ICP’s
of type I (one propagator going out to the right,
one to the left) only. If the propagator starts out
from ¢ = 0 by going to the right, the only allowable
type of structure is of the form shown in Fig. 3, with
one ICP of type II (both propagators going out to
the left). These results follow from Rule 11, which
prohibits zig-zag structures.

A third possibility is that the end at ¢ = 0 is
not a free propagator, but a vertical line attached
to the rightmost ICP. The corresponding diagrams
are in all other respects of the form shown in Fig. 2.

Note that while by Rule 12, the latest vertex
of an ICP must have a free propagation line at-

17 Rules 10, 11, and 12 depend on the direction of time
and not alone on the topology of the diagrams, They depend
on our definition of a thermal average as

(@) = [ dT fa(D)e = [ dT f(OU(t, — =)en,

with the distribution function written on the right. This
corresponds to the purely mechanical development of the
system from a system of noninteracting particles in the re-
mote past, where, however, an assumption of molecular chaos
has been used at ¢ = — . An initial molecular-chaos assump-
tion accords with the usual way of thinking about statistical
mechanics. However, the same numerical values for thermal
averages can equally well be computed from

(J@) = [ dT ofa(t) = [ dT @U(=, Of(t)
in which the interaction is slowly turned off in the future and
molecular chaos assumed at ¢ = -+ . In that case, Rules
10, 11, and 12 would refer to creation vertices, ICP’s of the
second form, and the rightmost vertex, respectively. If we
had chosen a symmetric description such as is used in quantum
mechanics, i.e.,

() = [ dT eMfu(t)et = [ dT (@MU(», — =)f(t)]. (v},

then the three rules would not hold in any form.
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tached, the other free propagator is not necessarily
attached at the earliest vertex, which may in fact
go back in time to — .

The integral equations corresponding to the three
types of structure can be written down immediately.
Corresponding to Fig. 2 we have the operator
M”(k, t) with

M.','(k, t) = I‘,’(k, t)a,','
& VT, Y,
+ [ [ av g -0

X ;R,-,(k, v — M,k ). (4.13)
Here R;:(k, {) is the sum of all ICP’s of type I
(Fig. 1) characterized by a vertex involving particle
t at the left with the other external vertex occurring
a time ¢ earlier and involving particle I. The wave
number k is associated with every part of the
diagram. Corresponding to Fig. 3 plus the case with
a vertical line at ¢ = 0, we have the operator C;;(k, t),
with

Colle, ) = 3 f_ At Mook, t — ¢
0
A% [ v b, )
B8 -0

X Toall, ¢! — ¢7) + 2a;(k, z')}- (4.19)

Here T,5(k, t) is the sum of all ICP’s of type II
[Fig. 3] characterized by one external vertex in-
volving particle « at ¢ and one involving particle
g at t”. X,;k, t') is the sum of all ICP’s with a
vertex involving particle « at ¢’ and one correspond-
ing to addition of wavenumber k to particle j at
time zero. The latter vertex does not involve the
interaction, and other than changing the wave-
number of particle j, has no effect on the contribu-
tion of the ICP. It should be noted that X ,;(k, {)=0
fort < 0.
In terms of M and C, the correlation function is

Sk, f) = 7' 2 (MK, 1) + Ciik, ),  (4.15)
where the average is over the free particle dis-
tribution.

M;;(k, t) takes into account correlations of par-
ticles ¢ and j between 0 and ¢, although correlations
between other particles that affect the motion of
1 and j indirectly may be involved into the remote
past. C,;(k, ¢) takes the correlations of 7 and j into
account in the past, although modifications of the
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motion ¢ at times between zero and ¢ are included.'®

Because (4.13) and (4.14) are convolutions, it is

convenient to work with the frequency transforms.

We define the two-sided transforms by the typical
relation

Sk, @) = f ¢ S(k, 1) dt (4.16)

and one-sided transforms, identified by a bar, by
the typical relation

Sk, ) = f TeoSk, )t (417)
The transforms of (4.13) and (4.14) are
Mn‘(k: w) = Tk, ),
+ ; Fe(k, w)R.—:(k, w)]l—l,,-(k, w), (4-18)
Cii(k) w) = Ea_‘, M.-a(k, w)
X AL MH, T oalle, o) + Zailly @)} (4.19)

The symmetry properties can be seen from the
fact that
Tk, o, {p:}) = Ti(—k,w, —{p:})
= F’f(—k, —w, {P.}) (420)
and
Ll’:’(k) D p:) = Lii('—k) —Ps, _p:)
= —Ln‘('—kf Ps, pi)'
It follows that B.;, Ts;, M;;, and C;; have the same
symmetry properties in k, w, and {p,} as T';. These
properties are given by (4.20). Since the averaging
is symmetrie in {p;},

(4.21)

<M,'i(k, w)) = 2 Re <M.’i(k, O))). (4.22)
Symbolically, (4.18) can be written
M = r + IRM, (4.23)

where T is diagonal. Equation (4.23) has the solution
M=(d- IrR™r, (4.24)
with I the unit operator.
By Rule 9, if j = 7in (4.18), then ! = 7. We define
the diagonal matrix G by

G: = Mh’ = f‘.- + PiRiiGi) (4-25)

18 This decomposition resembles that used by Prigogine
(Ref. 4, Chap. 11), in which a Fourier component p, of the
distribution function at time ¢ is decomposed into two classes.
However, two-time quantities are being considered here and
the two decompositions, while related, are not identical.
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so that
G.=(Q - T.R)'T, (4.26)
Defining
ﬁn’ = (1 - 5-':')Rn' (4-27)

and using (4.26) in (4.23), we get the matrix equation

M = G + GRM, (4.28)
with the solution
M =d - GR)G. (4.29)

If (T;) describes the free-particle motion, then
(Z,- M ;) describes motion in the actual system
and may be identified with a quasiparticle. This
identification becomes clearer in the context of the
RPA discussed in the next section.

V. THE RANDOM PHASE APPROXIMATION

To solve the equations for M and C, one chooses
some subclass of ICP’s with which to approximate
R on the basis of some argument as to why these
ICP’s are important. The simplest possible choice
in which interactions are taken into account is to
pick out those ICP’s that consist of a single vertex,
that is,

Bk, ) = Tulk, t) = L;;K)&H.  (5.1)

One way of looking at the approximation is to
observe that in each R;; terms proportional to n\®
are neglected for ¢ > 1 relative to terms proportional
to nA. Since the application of an R,; operator is
associated with a time integral in (4.13), the result
is a function of n\t and is valid for times such that
the n)\’ contributions are small. The relaxation time
is proportional to (n\*)™!, so the approximation is
valid for times short compared to the relaxation
time, as pointed out by Balescu.'®

With (5.1) and (4.11), Egs. (4.18) and (4.19)
become

M.k, o) = Dk, w)s,;
+ 207 (k) Ty (k, w) ;k-(a; — WMk, ), (5.2

C.ills, @) = 397 (k)

X 2 Mio(k, o) Mk, k-3, — ).  (5.3)
af

Evidently, (5.1) is the (RPA),® since there is no

coupling between different k values in (5.2) and

(5.3). In this approximation, the term in (4.14)

involving X ,; vanishes.

19 R, Balescu, Statistical Mechanics of Charged Particles
(Interscience Publishers, Inc., New York, 1963).
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When (5.2) is summed on j, multiplied by I},
and averaged over the momentum of particle [, it
becomes identical in form to the Fourier-transformed
linearized Vlasov equation'® for a one-component
plasma with a uniform neutralizing background. The
function (3., M;;) is to be interpreted as a single-
particle density. This result illustrates for a classical
system the well-known result that the RPA and
the self-consistent field approximation are equiv-
alent.*

It is also well-known that the solution of the
linearized Vlasov equation gives the same result for
the dielectric function as does the response function
method®®®" in the RPA."** The equivalence has
been shown for quantum mechanical plasmas and
the classical result follows by a limiting argument.
It is nevertheless of interest to demonstrate the
equivalence by a completely classical argument. The
result is important, because it points out explicitly
one approximation which can be carried out con-
sistently, so that a kinetic equation and a correlation
function method give the same results for a transport
coefficient, not only in the static case, but for all
frequencies.

The evaluation of the dielectric function either
way involves taking thermal averages of (5.2) and
(5.3). The key observation is that the terms in-
volving the momentum gradients uncouple on being
thermally averaged. Thus

(Tk-(d; — 8)M,;) = (k-3 (M), (5.4
(MiaMi?k'(aa - aﬁ)) = (Mn'ak°aa><Miﬁ>*
— (M..XM;k-3g)*. (5.5

Averaging (5.2), using (5.4), and summing on %,
we find*

Z <Mt’i> = (f‘,-)/g(k, w): (5'6)

where
ek, w) = 1 — tno&)XTk-d.). 6.7

The interpretation of M and T given above leads
to the identification of e, as a generalized dielectric
function.®

From (4.11),

Tk, ) = —i(k-v; —w — 38,  (5.8)

where & is a positive infinitesimal. Inserting (5.8)

(19?5091)-1. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786
2 P, Noziéres and D. Pines, Nuovo Cimento 9, 470 (1958).
22 8, Ichimaru, Ann. Phys. (N.Y.) 20, 78 (1962).
2 Most of the results involving e, have been derived
directly from the Vlasov equation by Balescu (Ref. 19) and
by Ichimaru (Ref. 22).
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into (5.7), one sees immediately that e.(k, w) is
analytic for Im « > 0 and that lim,_; €, (k, o) = 1.

We find from (5.8)
(Pik’a.'> = —5(Fik've> = 18(1 + 'iw(f‘.-)), (5.9

and for real o,

}
(Ti(k, w)) = (’;’;‘f) exp [—mpw’ /2K

X {1 + i@[(—";—ﬁ)* %}} . (5.10)

where 7% is the error function of imaginary argu-
ment; that is

() = (2/ \/w) fo Tep @) d (.10
With (5.9) and (5.10), Eq. (5.7) becomes for real

ek, w) =1+ nﬁv(k){l - (”_’;l@y%

X exp (—mpu’/ 2’02)‘1’[<’n;£)} %]}

E
+ inﬁv(k)(7-r—?—6> 2 exp (—mps’/2K).  (5.12)
It can be shown that e,(k, «) has no zeros for
Im » > O for any distribution® including a Max-
wellian. More directly, inserting (5.9) into (5.7),
one sees that e, (k, ») = 0 implies Re (T;(k, w)) = 0.
But for @ = w, + %w,, With v, real and w, > 0,

Re (Di(k, 0) = w{[(k-v; — @) + w3] ). (5.13)

The average is certainly positive, so Re (T';) cannot
vanish in the finite plane for Im w > 0. It does
not vanish on the finite real axis either, by (5.10),
50 ¢, has no zeros in the upper-half plane. It follows
from (5.7), (5.8), and (5.9) that [e.(k, «]" — 1
approaches zero for w — « since it is analytic for
Im w > 0, it satisfies the Kramers-Kronig relation

Re [e.(k, )™ — 1
= (1/0)P f_ : Tm [e(k, )] "de’ /(! — «). (5.14)

Now multiplying (5.2) on the right by k-d; and
averaging, we find In the same way as for (5.6),

7.k = L)
2 kD) = )

It follows from (5.3), (5.6), (5.8), (5.15), (4.15),
and (4.22) that

(5.15)

# See, for instance, O. Penrose, Phys. Fluids 3, 258 (1960).
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S(k, &) = 2n Re éf—(*lf'—gg—)
+ 2noe) T D DTERDT (5 4

|€+(k: w) ‘2
Equation (5.16) can be simplified with the aid of
(5.7) to give

2n Re (Tik, w))
e, ) .10

It can be seen either by direct computation or
by putting v(k) = 0 into (5.7) that the correlation
function for free particles is

So(k, ) = 2n Re (T:(k, w))

Sk, w) =

= n(2rmB/k*)} exp (—mpw’/2k?), (5.18)
so that (5.17) can be written
Sk, w) = Sk, w)/|e.(k, w)[°. (5.19)

Eq. (5.19) is one expression of the conclusion of
Nozitres and Pines™ that in the RPA the dressed
particles can be regarded as having their strength
modified by a frequency and wavenumber depend-
ent factor [e.(K, »)]™', but otherwise behave like
free particles.

Inserting (5.9) into (5.7), taking the imaginary
part, and using (5.17), we find

Im fe.(k, 0)] 7 = —3o(k)wS(k, w).  (5.20)

But one can also compute a generalized dielectric
function e(k, w) by considering the linear response
to an external charge inserted into the system. One
finds®® that (5.14) and (5.20) are satisfied with e,
replaced by e. It follows that € and ¢, are identical.
Thus in the RPA the kinetic equation (in this
approach, the M equation) and the response func-
tion method give the same dielectric function for
all frequencies.

The absence of zeros of ¢, implies that the plasma
is stable. This is, of course, a necessary condition
for a response function approach to give meaningful
results.

V1. COMPARISON WITH EQUILIBRIUM
CORRELATIONS

The correlation function in equilibrium is just
Sk, ¢t = 0). From (4.15),

2% The quantum mechanical calculation of the dielectric
function by a response function method is given by Noziéres
and Pines, Ref. 21. The classical calculation can be done in
the same way, with the Hamiltonian H replaced by the
Liouville operator L. See P. Mazur, Ref. 3.
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Sk, 0) = @7 320 (M@, 0) + Ciilk, 0)).  (6.1)
From (4.13),

Q7 M.k, 0)) = (Tull, 0) =n.  (8.2)

This is just the Fourier transform of the autocor-
relation (a § function) in equilibrium.

On the other hand, Eq. (4.14) evaluated for ¢ = 0
says to sum all possible diagrams with two free
ends at ¢ = 0, and all other vertices at negative
times. But this is just the Fourier transform of the
expansion of U(0, — «). That is,

C.ik,0) = Q% f {dr.}

X exp (—ik-r,) exp (tk-r,)UQ0, — ). (6.3)

Since in C;; the particles 7 and j must be different,

2 3 (0t 0)
=0 3 [ dr exp [~k — £V, ~ @),

= Q! Z’ f dl exp [—ik(r; — 1))]e,
= Q! f dr dr’ exp [—ik-(r — 1')]

x T [ ar o — rysw = re. (6.0

But®
¥ [ dr o — ryae — r)e = nigc = 1), (6.9

where g is the radial distribution function.
From (6.2), (6.4), and (6.5), we find on trans-
forming back to coordinate space

8(r, 0) = né(r) + n’[g(r) — 1]. (6.6)

The term —n® comes from putting in the condition
Sk = 0, 0) = 0. Thus S(r, 0) is just the correlation
function in equilibrium.

The reduction of S in Sec. IV has an analog
in equilibrium statistical mechanics. An ICP cor-
responds to an irreducible equilibrium cluster,” >

26 See, for instance, T. L. Hill, Statistical Mechanics
él;’IcGraw—Hill Book Company, Inc., New York, 1956),
c. 29.

27 J, B. Mayer and M. G. Mayer, Statistical Mechanics
John Wiley & Sons, Inc., New York, 1940).

28 G, E. Uhlenbeck and G. W. Ford in Studies ¢n Statistical
Mechanics (North-Holland Publishing Company, Amsterdam,
1962), Vol. 1. .

29°(3, Stell in The Equilibrium Theory of Classical Fluids,
edited by H. L. Frisch and J. L. Lebowitz (W. A. Benjamin,
Inc., New York, 1964).
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with some essential (and some nonessential) dif-
ferences.

In order to make a comparison, we sum ladders,
i.e., diagrams with 1, 2, --- successive interactions
of each pair of interacting particles, the rest of the
diagram structure remaining the same. One can draw
new diagrams in which successive vertices cannot
occur between the same two particles; each vertex
is now interpreted as corresponding to —if;; (where
f:; is the binary collision operator) rather than to
—1L;;. The binary collision operator has been dis-
cussed in detail by Weinstock'® and we do not go
into it further here. It suffices to say that it is a
generalization of the Mayer f function for equilib~
rium, given by f;; = exp(—8V,;) — 1.

A Mayer diagram representing an irreducible
cluster is characterized by having neither nodal
points nor articulation points.*® The Prigogine dia-
grams differ from the Mayer diagrams mainly in
having interactions represented by points, and par-
ticles by lines, instead of the other way around.
In a sense one type of diagram is the image of the
other. Let us examine separately the ICP’s entering
into R,; which involve a single unidentifiable par-
ticle 7, and those entering into R,; for ¢ = j which
involve two identifiable particles. The second type
of ICP by definition corresponds to equilibrium
diagrams with no nodal points since the two de-
fining particles are at least doubly connected. The
first type of ICP just modifies the motion of par-
ticle 7 and, as we have pointed out, may be removed
by replacing I' by G. In a sense this corresponds
to an equilibrium expansion in density rather than
fugacity.*®"*

A Mayer diagram is said to have an articulation
point when the removal of one particle would cause
a certain group or cluster of particles to be com-
pletely disconnected from the main cluster.”” The
given cluster of particles may be regarded as hanging
on a single particle. That is, the particles in the
cluster interact only with each other and with the
one particle by which they are connected to the
main part of the diagram. We can speak of a hanging
cluster in nonequilibrium problems as well.

The replacement of T' by G removes certain hang-
ing clusters, but not all of them. As an example,
consider a situation in which a certain particle 1
interacts with particles 7 and jin an ICP contributing
to R;;. If there is a particle m which interacts twice
with particle ¢, the two (7, m) vertices straddling
the (s, [) vertex, then m cannot be removed from
explicit consideration by renormalization.

One may now ask: If all hanging clusters cannot
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be removed, why then do they not contribute to
the correlation function in equilibrium? The reason
is that an equilibrium diagram containing interac-
tions deseribed by the pairs «, 8, - -+ (which need
not all be different) corresponds to a sum of non-
equilibrium diagrams with the same interacting pairs
present, but taken over all possible time orderings,
that is, permuted in all possible ways. This is ap-
parent from the discussion in Appendix A in which
a term in the expansion of exp(—gH') involves L’
operators which are sums over all possible binary
interaction operators. At equilibrium, the interac-
tions in fact do take on all possible orderings, since
there is a complete symmetry in the instants at
which all the interactions are to take place, as
shown by the expansion (3.3) of U(0, — «). Away
from equilibrium there are restrictions on the pos-
sible time orderings. For instance, in the terms of
C.i(k, ¢) involving an ICP of the form T, no
interactions of particle j can oceur for positive times
since particle j is not present in the diagram then.
When there is symmetry in all the interaction times,
the sum of all the diagrams with hanging clusters
vanishes. The proof, given in Appendix C, is due
in outline to Andrews."?

VII. SUMMARY

Classical many-time thermal averages can be con-
veniently computed for a gas in an interaction
picture. The distribution over which the interaction
picture average is to be taken is the free-particle
distribution at the temperature of interest.

The diagrammatic representation of the operators
whose interaction average gives the time-dependent
two-particle correlation function is simply given for
a uniform medium. Two distinct types of diagrams
are seen to arise. One involves dynamical correla-
tions only. The other involves statistical correla-
tions in an intrinsic way. At equilibrium, the first
type reduces to the autocorrelation function, and
the second determines the radial distribution fune-
tion. Integral equations can be written down in
the time-dependent case for both types of diagrams.

The integral equations were solved in the random
phase approximation. The dielectric constant com-
puted from the kinetic equation (corresponding to
dynamical correlations only) is seen to be identical
to that found from the correlation function for all
values of the frequency.

Some of the quantities that appear in the equa-
tions and diagrams can be identified as generaliza-
tions of quantities of interest in equilibrium. It is
clear, however, that there are additional complica-
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tions away from equilibrium that for sometimes
subtle reasons disappear in the equilibrium limit.
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APPENDIX A.
Proof That U(0, — «) Induces an Isothermal Process

Let ¢, be the distribution function for a system
of free particles. We want to prove (3.5) under the
assumption that the perturbation depends on the
particle positions only. The perturbation can be due
to interactions or to external fields or both.

Applying (3.3) to ¢, and carrying out the time
integrations with the help of (3.2), we obtain the
expansion

Y = lim Z 90,.(6),

0 n=0

(A1)

with
¢n(6) = _(LO - z"ne)wl-L"Pn—l(e) (A2)

and

oo = exp (—pH) / [ ar exp (~pH). (A3
Using the definition (2.3) of L, we find
ei(e) = B(Lo — if)—l[L’y Hileo
= i8(L, — 2 ' {H’, H}o,, (A9)
where [A, B] is the commutator of A and B. Then
¢r = —Blim (Lo — i€) "L H’g,
€0
= _3(1 - Po)H'#’o, (A5)
where P, is the projection operator onto the space
spanned by the zero-eigenvalue eigenfunctions of L.
Since H’ depends on position only, Hamilton’s
equations give
G;H = B;HO =V, = %' (A6)
Consider the wavenumber representation of an
arbitrary function f of the particle positions:

f({r.}) = a7 ‘kZ” f({k:}) exp (tk;x), (A7)

where {k;} represents the 3N-dimensional vector
{k,, -+, k.}. From (2.19) and (A6),

Lofﬁao = [Ltn f]‘Po

= 07 F (k) T vk exp (kerden.  (AS)



600 RAPHAEL

The space defined by P, is characterized by
[Lo, f1 = 0, independent of the particle positions
and the form of f. That is, it is given by the condition

> poks = 0. (A9)

The phase space spanned by {p:} is a 3N-di-
mengional continuum in velocity. Consider a set
{k;} (0, ---, 0). Equation (A9) defines a hyper-
plane in p space. For finite volume, there is a finite
number of sets {k;} # 0. The union of all the planes
defined by (A9) is of measure zero in p space, so
gives no contribution to integrals over phase space.

The single point {k;} = 0 satisfies (A9) for all
{p:}. But this point corresponds to a spatial average,
which can be finite and must not be neglected. Thus

(1 = Pof(fr:Dee = [f({r:}) — ({res,  (A10)

since the spatial average equals the average over
the free-particle distribution.

When the volume becomes very large, the k space
becomes a 3N-dimensional continuum in the limit.
So long as the Fourier components of f({r;}) exist
for {k;} = 0, the corresponding part of the space
onto which P, projects is again of measure zero.
Ounly the {k;} = 0 component contributes some-
thing finite. If the Fourier components diverge for
{k:} — 0, the calculation must be carried through
for finite volume and the limit taken later. But
since f({r;}) will be a polynomial in the Hamil-
tonian, the limiting process could not be carried
out at this stage of the calculation in any case.
This occurs, for instance, for a Coulomb gas.

With (A10), Eq. (A5) becomes

¢, = —BXHyp,, (A11)
where
3 = H — (H". (A12)
We now proceed by induction. Assume
= (n)7(—8) lg a'nkgck‘PO) (A13)

where ¢, = lim.., ¢.(¢). Then in the same way
as for ¢, we find, using (A2), that

DA = P

sz—‘-l nk

It follows that ¢, is given by (A13) with @y = 1
and the remaining a,; determined by the recursion
relations

Pner =

JCk * lﬁﬂo (A14)
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O = 0/k)Cy—y -y for k>0, (A15)
G = —P, E a”ksck'

k=1

The direct expansion of ¢™#*/(¢™**) in powers of 8
gives

e(B) =

X >

( Bk+n,+ +n,
np=1

kln,! - n'<
Z( /3)" Z (_1)7

n=0 Pk ini)

3y ... (5c"'>5c"¢0

X ' (5c».> (5(:"’> gck‘PO ’ (Al 6)

n!
kln! -
where the inner summation in the last member is
over values of p, k, m, --+ , n, such that k + n, 4+
+ + n, = n. If we define «,; by

-3 1 n n
oB) = 2= (=) 2 e,  (AID)
n=Q fv. k=0
then
= 3 (1 e e (s
ok T Elngt -« n, '
(A18)
where the summation is such that n, 4+ --- +

n, = n — k. Stepping n and k by one gives the same
terms in n,, « -+, n,. It follows that

[((n + 1)/ 4+ D]otus-
Now multiply (A18) by 3¢*, sum on % from 1 to 7,

(A19)

Upt1,k+1 =

apply the operator P,, and write ¢ = p + 1 and
k = n,. Then
PO Z anksck
k=1
n! . o
=T aT ...nq!<:fc Yy eee (3", (A20)

where now n, + --- 4+ n, = n. Comparing with

(A17), we see that
O = —Py D it (A21)
k=1
Equations (A19) and (A21) are identical to (Al5).
Since ag = @9 = 1, the two expansions are identical,
50 (3.5) is proved.
One can proceed one step further. Suppose there

is no external field and the interaction Hamiltonian
is written



PAIR CORRELATION

H = 3 \H, (A22)
where « denotes a pair of particles and A is a strength
parameter for the interaction of the pair «. The
sum is over all the M pairs. Then the coefficients
of A\ .. \}¥ are the same in the two expansions,
(A1) and (Al6), since the N’s are arbitrary. The
equality can be written as

ﬁﬁwgﬂﬁwmm~umm

= Pla, -+ ;o0 (A23)

The «; need not be distinct pairs. The left-hand
side comes from the expansion of U(0, — «)¢,. On
the right, the projection operator Ple; «-- , a,)
picks out the coefficient of A, - - A,, in the expan-
sion of the full canonical distribution function, This
result is used in Appendix C.

We note finally that if

H =3 Z' o(r; — 1))

- 2% S ol) 7 exp [ik-(x: — 1], (A20)
then
=12 [v(r.- 1)~ 15 f o() df]
- 2%2 i o) 2 exp [ik+(r; — 1,)],  (A25)
so that
(se)y = 0. (A26)
APPENDIX B.

Diagrammatic Representation

We summarize here the rules for constructing
diagrams. A less condensed account can be found
elsewhere.*'** Every diagram corresponds to a wave-
number representation of some expression. Time
goes from right to left. Each vertex corresponds
to an operator —iL;; defined in (4.11). A line
labeled 7, corresponds to free propagation and gives
a factor I;(k, ¢ — ¢'), defined in (4.12). In general,
then, two lines converge at a vertex from the right
and two emerge to the left. Only two particles are
involved at a vertex and wavenumber is conserved.

Figure 4 shows the situation at a typical vertex.
Particle 7 enters with wavenumber k,, and particle j
with k,. Wavenumber k is transferred from j to ¢
at the vertex.

A line corresponding to k = 0 is omitted in
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601

I e
F1e. 4. Typical vertex.

drawing diagrams so if, for instance, k = k,, then
the jg,-x line is omitted. If in addition k; = —k,,
the 2x, 4, line is also omitted and we have a destruc-
tion vertex. If, on the other hand, k;, = k, = 0,
the two lines on the right are omitted and we have
a creation vertex. If k; = 0 and k = k,, the vertex
corresponds to the transfer of wavenumber k, from
j to <.
APPENDIX C

Proof That Semiconnected Parts and Certain Hanging
Clusters Do Not Contribute to Thermal Averages

We now prove that semiconnected parts and
certain hanging clusters do not contribute to thermal
averages. The proof involves a symmetry argument
due to Andrews'” who considered hanging clusters
in equilibrium. We prove the theorem first for the
simpler case of semiconnected parts, then extend
the proof to hanging clusters in equilibrium and
certain kinds of hanging cluster diagrams out of
equilibrium. Andrews’ argument is made complete
by supplementing it with the results of Appendix A.

A semiconnected part (SCP) is a part of a diagram
disconnected from the main part (the part with
external lines), but which has one or more particles
in common with it. It can be thought of as being
connected to the main diagram by a k = 0 line
of the common particles. In the limit N, @ — o
and N/ finite, Rule 8 of Sec. IV eliminates SCP’s
connected to the main diagram by more than a
single particle. Rule 6 implies that the common
particle is involved in the latest vertex of the SCP
and at some later time in the main part. It cannot
appear at an earlier time in the main part as well
or Rule 8 would be violated. It follows that the
interactions in the SCP precede all other inter-
actions of the connecting particle, but there is no
constraint on the earliest time involved.
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Consider diagrams involving vertices for the pairs
a, -, a,in an SCP, and B,, -+, B. in the re-
mainder of the diagram. By the argument just given,
one can write

(Lai(t) -+ Lao(t) Lo (8) - -+ Lga(tn)ls
= [Lg.(8) - -+ Lo (t)]4[La,(t) -+ - Lad(t)])+. (C1)

That is, the ordered product factorizes. Consider
all such diagrams in which ¢, is the latest time in
the semiconnected part. Then «, represents the
particle pair (7, j), where ¢ is the connecting particle
and j is some other particle in the SCP. The ordered
product is to be multiplied by functions of the
coordinates and momenta of particles in the main
part, integrated over the times, and averaged over
the entire phase space. The averaging over the
particles in the semiconnected part, except for par-
ticle 7, can be done directly on the last ordered
product in (C1). The integrations over the ¢, can
also be carried out. Thus one has to compute

f at - [ (L) - L]

- de‘a Li(t) fldt2 --~f‘dt,,

X [Lai(ta) -+ Lan(ta))stou- (C2)

Here ¢,. is the part of ¢, involving all particles
in the semiconnected part except 4, and dT', is an
element of the phase space of these particles. Now

exp (—L,t,) fh dt, - - f‘l dt,
X [Lau(t) + La(t)] 00
= ‘/:Ow dty - - f—om dt. [La:(tz) e La”(t")]+¢o. (03)

Inserting (C3) and (A23) into (C2), we find that

1.1% _/;: dty -+ f: dtn <[La.(tl) s Lan(tn):l+>a
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= [ dr. exp 9o VL) LoP(e, -+, adew, (€8
where ¢, is the part of ¢ involving only particles
in the SCP. Here exp(iv,-V,) is the only part
of exp(iL4t,) that remains after integration over T,,.
In terms of the interactions, P(ey, - - - , a,) involves
only H,,, -+, H., and the momentum distribution
function @g,.

We are dealing with interactions symmetric in

the two particles. Let
(C5)

for all particles ! in the SCP other than ¢. Both
sides of (C4) are invariant under the transformation
(C5) since the only position dependence is on r; —
n—or —r;forl 4 jandonr, —r, 51, —r,
for k £ 4, j, and the interactions are symmetric.
On the other hand, under (C5),

Ly = iV H/(x, — 1)+, — 9,)
b ——iV;H(I‘,- - r,‘)'(a.' - a,) = '—Lii- (06)

It follows that the integrand of the right-hand side
of (C4) is odd, so the integral vanishes. Thus semi-
connected parts cannot contribute to thermal
averages.

To extend the result to hanging clusters, assume
that the factorization (C1) holds in the more general
situation when the vertices involving particles in
the hanging cluster correspond to some, but not
necessarily all, of the «,. That is, the interacting
pairs in the hanging cluster form a subset of the ;.
Assume also that the time integrations over all the
t; in (C1) extend to some maximum time ¢, Then
the symmetry argument above holds and hanging
clusters which disappear before ¢, cannot contribute.

In equilibrium, ¢, = 0 and all the interacting pairs
are among the a;, so the result holds trivially. More
generally, the conditions mean that at any time
t; < to, the part of the diagram involving the «;
is detached from the main part. It is a component
of U(t}, — )¢, which is itself an equilibrium dis-
tribution.

r,—2r;, — 1,
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High-energy boundary conditions upon the basic Green’s functions which limit the types of diver-
gence arising in any approximational method of solution of a field theory are derived and shown to be

related to the recently defined stability criterion.

I. AN ANALYSIS OF THE STABILITY CRITERION

N order to solve a set of field equations in a
nonperturbative manner it is necessary to have
some criterion which may aid the choice of a par-
ticular method. Apart from using the general sym-
metries of the theory to in part determine an
approximate solution,’ the requirement that such
a solution be susceptible to renormalization may be
applied to impose further conditions. We establish
conditions, in the form of bounds on the asymptotic
behavior of certain products of the basic Green's
functions of the theory, which are sufficient to ensure
the above requirement. Given a theory having an
n-point vertex whose Green’s function in momentum
space is I'(py, +-- , p.) and whose attached prop-
agators are A(p,), (@ = 1, -+, n), then the relevant
product is

A*(pl) Tt Ai(pn)r(ph Tt pn)y

where summation over spin and internal indices is
implied. This product is the stability complex as-
sociated with the vertex. Using the concept of
asymptotic coefficients,” the limiting behavior of
such an expression may be strictly defined. Stated
roughly the derived conditions are

ap,) -+ ATy, -+, ) S 0Q/P™H) (LD

whenever all the momenta p, become large, while

A(p) -+ A p)T(py, -+ , P <O/P""™7) (1.2)

whenever m of them are held finite.

Specifieally, these conditions ensure that the num-
ber of types of divergence which occur in any
relevant multiple integral constructed from the basic
Green’s function is finite. This property implies that
the subtraction procedure formulated by Dyson® and

* Pregent address: Imperial College of Science and Tech-
nology, London.
1 This idea is the basis of the gauge method formulated
by Abdus Salam and R. Delbourgo, Phys. Rev. 135, B1398
1964).
( 2 S). Weinberg, Phys. Rev. 118, 838 (1960).
3 F. J. Dyson, Phys. Rev. 75, 1736 (1949).

Salam* is equivalent to a renormalization of the
masses and coupling constants of the theory.® It
is found that for the case of electrodynamics the
above conditions become identical with the stability
criterion® and hence, although based upon quite
different grounds, may be regarded as a general-
ization of it.

In Sec. II, the case of a single field, interacting
with itself via a three-point vertex, is used to
illustrate the meaning of the renormalizability con-
ditions, The general case of any number of fields
and any number of vertices is dealt with in Sec. III,
while the definition in terms of Weinberg’s asymp-
totic coefficients forms the content of the Appendix.

II. THE MEANING OF THE RENORMALIZABILITY
CONDITIONS

Consider & theory having one propagator A(g)
and a three-point vertex I'(q, r, s), momenta being
directed inwards. The perturbative approximations
to these quantities have evident asymptotic be-
haviors which allow the possible divergences of the
theory to be easily identified. We shall adopt the
inverse procedure by assuming power-law asymp-
totic behaviors and then determining how limiting
the divergences affects the powers. However, it is
preferable to consider the stability complex

AN QA ) AYs)T(g, 1, 3),

rather than the individual Green’s functions. Since
the amplitude corresponding to a general two-par-
ticle connected diagram having [ loops and F external
lines is expressible in the form

I= f d'p;y -+ dip (ARANAIT)POSD(TANANE, (2.1)
it is sufficient to consider the stability complex alone.

¢ Abdus Salam, Phys. Rev. 82, 217 (1951); Phys. Rev. 84,
426 (1951). .
( 5111?). T. Matthews and Abdus Salam, Phys. Rev. 94, 185
1954).
¢ See Ref. 1, Part 1, Sec. A.
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We assume that for all momenta large

A gAY A 9T (g, 7, 8) = O(L/P),  (2.2)
while if one is held finite
A QA A ST(g, r,8) = O1/p%). (2.3)

A precise definition of the meanings of these
equations is given in the Appendix. It follows
rigorously from them, and in an intuitive manner
directly from Egs. (2.2) and (2.3), that since any
internal line of a two-particle-connected diagram
carries at least one loop momentum the overall
degree of diverence’ is

D=4l — (N — E)f — Ea

where N is the number of vertices. An immediate
advantage of its expression in this form is the
avoidance of the overcounting of divergences when
the terms responsible for them cancel between the
propagators and the vertex, one example where this
occurs being vector electrodynamics.

=3 —E)+1, (2.4)
D=4—-B—29N~-2—-B8+aE. (25

The requirement that the degree of divergence
should not increase whenever the number of internal
vertices is increased implies

822,

Since

(2.6)

where the inequality corresponds to super-renormal-
izability. The additional condition for the degree
of divergence to decrease upon increasing the number
of external lines is

a >0, 2.7

These two equations constitute the renormal-
izability conditions. They exist on two different
levels which are characteristic of the general con-
ditions.

In order to exhibit the meaning of Eq. (2.6) we
consider a general two-particle-connected diagram
from which all external lines have been removed.
The result is a vacuum diagram having the same
internal structure as the original. Now it follows
from Eq. (2.4) that any single increase in the number
of its loops requires an insertion of two vertices.
This insertion between two of its lines must be of
one of the three forms shown in Fig. 1. But Eq. (2.6)
just ensures that such insertions do not increase the
overall degree of divergence of the diagram. This

7 The degree of divergence, obtained by a power count of
the integration momenta, was first employed in Sec. 5 of
Ref. 3.
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F1a. 1. Basic internal insertions.

implies by consistency, and it may be verified by
a detailed analysis, that when 8 = 2, the degree
of divergence of all such vacuum diagrams is four.
It means that if the theory is just renormalizable,
then the degree of divergence of any diagram may
be characterized by its external line structure. For
the general case 8 > 2, an upper bound on the
degree of divergence may be so characterized. This
is the necessary and sufficient condition for the
primitively divergent diagrams® to be sufficient to
characterize all the divergences of the theory.

The introduction of E external lines serves to
reduce the degree of divergence by oF. Hence, given
Eq. (2.6), the degree of divergence of any two-
particle connected diagram satisfies

D < 4 — oF. 2.8)

Thus Eq. (2.7) ensures that the number of prim-
itive divergents, and hence of types of divergence,
is finite. In general, however, since a may be small,
the number of primitive divergents may be very
large.

In brief, the first of the renormalizability con-
ditions ensures that the types of divergence con-
tained within the theory are exhibited by the
primitive divergents, while the second ensures that
the number of such primitive divergents is finite.

IIl. THE GENERAL RENORMALIZABILITY
CONDITIONS AND THEIR RELATION TO THE
STABILITY CRITERION

Consider a theory composed of propagators A,
(¢=1,---,%) and vertices T',, (a = 1, --+ , @),
the vertex T, having n; attached propagators of
type 7. The stability complex corresponding to this
vertex is

II a*r..
Let the asymptotic coefficient of this quantity when-
ever m' of the momenta of lines of type 1, m? of
type 2, etc., are held fixed and all the remaining

momenta tend independently to infinity be
a({m'}) = a(mlx mz; Tty mfﬂ.),

where



RENORMALIZABILITY OF FIELD PROPAGATORS

{mi} = (m17 ] m&)‘l).

Consider a two-particle connected diagram having
E external lines, with I internal lines, of which I;
are of type 7, and N vertices, of which N, are of
type a. Then

I=231, 1<i<9
N=>N, 1<e<aq;
21+ E = 3 2 niN,;

while the number [ of loops is given by
l=I-N+1,
=X B Xni-1-3E+1

3.1)

Since n, = ».; n! is the total number of lines
emanating from the vertex I,

%Zni—1>0

for three- and higher-point vertices.
Let there be Aa({m’}) vertices I', in the diagram
which have the set {m’} as external lines. Thence

E=X 3 (m+m'+ -+ mAlim)),

where D, signifies summation over all sets {m’}
which allow at least two lines of the vertex to be
internal, except the case of all m* zero, which occurs
when none of the lines is external. More compactly,

E=2 > mAJ(m 3.2

where
m= 2, m
%

and X, signifies summation over all partitions of
1 < n < n,— 2into sets {m’} having 9T elements.
The total degree of divergence of the diagram is

D=4~ ZZaa( NAL{m’})
- SaN.— T Adm),

where 8, = o,({m*}), m* = 0 for all 4, viz., —8,
is the asymptotic coefficient of the vertex whenever
all the momenta tend to infinity.

Utilizing Egs. (3.1) and (3.2)

D=4+ > [2n, — 4 — BN,

- = 3 i2m + al(m')) - BJALm). 3.3)
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If D is not to increase whenever the number of any
of the vertices increases

B. > 2n, — 4, (3.4
while, if the equality holds then
D=4- 3 3 [u(in)
— 2(n, — m) + 4]4.({m"}).  (3.5)

The additional condition for the number of primitive
divergents to be finite is

a({m’}) > 8, — 2m
ie., a({m'}) > 2(n, — m) — 4.

Equations (3.4) and (3.6) may be identified with
(1.1) and (1.2).

Their contents correspond exactly to those of
Egs. (2.6) and (2.7). They may be compared with
the renormalization condition derived by Bogoliubov
and Shirkov® by identifying the index of a vertex
having all lines internal «:**, with

ot =1 E(r,+2)—4—2n,,—/3¢—4

(3.6)

while

Zn (ri +2)
E E [aa

Equations (3.4) and (3.6) have wider applicability
since it has not been assumed that the asymptotic
behavior of the vertices may be incorporated with
the attached propagators, a restriction which makes
the Bogoliubov and Shirkov condition inapplicable
to the general case. They differ in that no positive-
definite conditions have been imposed on the spectral
functions, viz., r; > 0 implying w}** **. Upon
applying these additional conditions agreement is
reached in all cases where both are applicable.

In the case of spinor electrodynamics, for approx-
imations to which these conditions apply, Eq. (3.4)
implies Eq. (3.6). It may then be identified with
the stability criterion,® established as a necessary
condition for the stability of any approximational
method of solution of the Dyson-Schwinger equa-
tions. Due to the destructive interference which may
occur between the divergent parts of separate con-
tributions to an amplitude the conditions are in
general too stringent. No general method for de-

1+ 2m — BJAL({m]).

m;
= w;

8 N. N. Bogoliubov and D. V. Shirkov, Introduction to the
Theory of Quanitized Fields (Interscience Publishers, Inc.,
New York, 1959), Sec. 28.
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termining the allowed relaxation in response to a
given over-all symmetry is known.

CONCLUSION

Since it may be shown that an extension of the
Dyson—Salam subtraction procedure’ is applicable
to a general approximation scheme, the basic con-
dition of renormalizability, that the number of types
of divergence involved in the theory be finite, re-
mains unaltered. Sufficient conditions for this to be
satisfied are expressed by Eqgs. (3.4) and (3.6) in
the form of bounds upon the asymptotic behaviors
of the products of Green’s functions which form
the stability complexes of the theory. They then
have a form which is applicable to any approxima-
tional method of solution of any set of field equations
which is expressed in terms of the Green’s functions.
It is conjectured that they have sufficient content
as to be meaningful restrictions on the choice of
approximation procedures. It is intended to give
applications of them and to consider their con-
sistency with the gauge invariance of the theory.

APPENDIX

The validity of the degree of divergence as a
significant quantity is based upon Weinberg’s asymp-
totic theorem.? This requires the concept of a special
class of functions A defined as follows. A function
f(P) of n real variables (p,, :-- , p,) which are
united to form a vector P in the n-dimensional space
R is a member of the class of functions A4, if, given
any subspace S C R spanned by the m independent
vectors {L,, --- , L,} and finite region W, then

fLyns -+« 9 +Loma = 9w+ -+ + Logn + C)]
< Mma(l.;)(ln 771)ﬂ(lu) L ("7 )a((L;.---,Lml)

X (]n 7 )ﬂ(L:."'-Lm)

provided that »;, > by, -+ , 9w = bpoand C € W,
where by, -++, b,, and M are dependent only on
L,:--,L, and W.

a(S) = a({Ll) Ty Lm})

is the asymptotic coefficient which is characteristic
of the subspace S, while the purpose of the lower
bound conditions on the %’s is to ensure that such
characteristic behavior is indeed achieved.

Consider a general vertex I' to which N prop-

% It can be shown, and is to be published elsewhere, that
this procedure may be formulated in a manner which is
applicable to the case of general approximations to the Green’s
functions, and that Weinberg’s asymptotic theorem, upon
which the efficacy of the procedure 1s based, still applies.

J. F. BOYCE

agators having momenta (p,, -, py) may be
attached. Let (p,, --- , p.) be united to form a
vector P. If vectors V4 are defined such that

pi = PV,

then the V4 form a basis in a real 4N-dimensional
space, B. The conservation of momenta may be
expressed as

where
N
V= 3 Vi,
i=1

and all momenta have been directed inwards. Hence
P spans the space R’ obtained by projecting V,
the subspace spanned by the V* along R, viz,
R’ = A(V)R. The hypothesis that T(P) € A, -1,
implies a direct correspondence between the asymp-
totic coefficients «(S) and the limiting behavior of
T' whenever a subset of its momenta tends to in-
finity. The statement that

T(p,, -+ ,pn) = O@%) as (p, -+ ,p;) 2

means that a is the asymptotic coefficient associated
with S, the subspace spanned by {V,, --- , V;}.
This makes the statements concerning limits which
are made in the text perfectly definite.

It should be noted that the hypothesis that the
Green’s functions belong to one of the classes 4,
assumes that the contours of integration may be
rotated in the energy plane so as to obtain a definite
scalar product.

In order to state Weinberg’s theorem we require
several definitions. Any integral

1@ = [ [ape e api i, o o),

where (p;, --- , p;) is a subset of (p,, ---

) Pa)s
may be expressed in the form '

f f_:dyl -+ dyy {(P + Liys + -+ + Ly,

where (L{, -+ , L{) are the unit vectors which
correspond to the components of the set of four
vectors (pi, -+, po). If

f_w fdy <+ dys [f® + Ligs + -+ + Lig)|

is convergent, then the preceding integral is said
to exist, and it follows that

ey = [ _aP e+ P,
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where P & E = R A I, I being the subspace
spanned by {L{, ---, L{}. Upon defining the super-
ficial divergence associated with the subspace S by

D(S) = a(8) + dim 8§,

where dim S is the dimension of S, then the asymp-
totic theorem takes the following form.

Given the function f(P) € A, which is integrable
over any finite region of R, then the condition

max D(8) < 0

Scrl
implies that (a) f,(P) exists and & A,_;; and
(b) the asymptotic coefficient of f;(P) associated
with 8 C E is given by

a(S) =

max
A(I)B’'=8

D(S’) — dim S.

It may be shown that in the maximizing operations
it is sufficient to consider those subspaces of B which
are spanned by bases which correspond to subsets
of the external and loop momenta, providing that
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all such subsets are considered. Hence, if the integral
is superficially convergent with respect to all loop
integrations for all possible choices of loop momenta,
it is absolutely convergent. However, it is just these
conditions which the Dyson—Salam subtraction pro-
cedure is designed to provide. Thus the asymptotic
coefficients are meaningful in that they govern the
number of subtractions to be made corresponding
to a particular loop or set of loops and hence they
provide a valid method for the identification of the
divergences even in the general case.
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The pull tetrad notation of Newman and Penrose is used to investigate empty space-times of
embedding class two. Necessary conditions are found for algebraically special empty space—times to

have this property.

1. INTRODUCTION

NTEREST has been renewed recently in the
classical problem of embedding space-times in
pseudo-Euclidean space. The motivation for this
interest, together with several new results, is to be
found in a series of papers appearing under the gen-
eral title “Seminar on the Embedding problem’”*~°,
One of the few-known general results is that no
empty space-time is of embedding class one (the
embedding class of a space is the least number of
extra dimensions required to perform the embedding).
In this paper, empty space-times are considered
which can be embedded (locally and isometrically)
in a pseudo-Euclidean space of six dimensions. The
necessary and sufficient conditions for a space-time
to be of embedding class two are that there exist
two symmetric tensors a;;, b;;, and a vector s;
satisfying the following equations:’

Gauss equation:
R.',-;,z = el(ailcail e a’ilaik) + ez(bikbil - bnbik);
Codazzi equations:

Gisn — Gang = €(—8&bi; + 8;04),

bijie — buyy = —e(—sai; + s;04);

Ricei equation:
8iii — S gkl(akibzi = ;b)) = 0.

In the above, ¢** and R,;:; are the metric and cur-
vature tensors of the space—time, and e, and e, are
real constants of unit modulus.

Newman and Penrose® have introduced a formal-
ism based on a tetrad of complex null vectors [°,

1 A. Friedman, Rev. Mod. Phys. 37, 201 (1965).

2 J. Rosen, Rev. Mod. Phys. 37, 204 (1965).

3 R. Penrose, Rev. Mod. Phys. 37, 215 (1965).

4 C. Fronsdal, Rev. Mod. Phys. 37, 221 (1965).

5 D. W. Joseph, Rev. Mod. Phys. 37, 225 (1965).

¢ Y. Ne’eman, Rev, Mod. Phys. 37, 227 (1965).

7 L. P. Eisenhart, Riemannian Geomeiry (Princeton Uni-
versity Press, Princeton, New Jersey, 1925).

8 B.. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).

n’, m’, and ‘. Algebraic manipulation within this
formalism is comparable to manipulation in a local
Minkowski coordinate system and the curvature
tensor of an empty space—time is described concisely
by five complex scalars ¢o, ¢ - - , ¥4 It seems reason-
able, therefore, to expect the formalism to simplify,
at least, the Gauss equation. The following two
theorems are proved.

Theorem 1:

An empty space—time of embedding class two and
type II or III (ie., having a nondegenerate algebra-
ically special curvature tensor) must possess hyper-
surface orthogonal geodesic rays with zero shear and
divergence.

Theorem 2:

An empty space-time of embedding class two
and type N or D (ie., having a degenerate algebra-
ically special curvature tensor) must possess hyper-
surface orthogonal geodesic rays with zero shear.

2. THE GAUSS-CODAZZI-RICCI EQUATIONS IN
TETRAD NOTATION

All indices are now tetrad indices and v,,., are
the complex Ricci rotation coefficients.”*® In tetrad
notation the Gauss-Codazzi-Ricci equations are

Rmnpq = el(ampana - amqanp) + 62(bmvbna - brnqbnp)y

Qmnip — Cmpin — ama‘anv - a’nq‘qup + amq'qun
F GYn'n = €2(—8,Dmn + 8abmy),
brnis = Bmpin = Dme¥n's = Duc¥m's + buma¥s's
F bpi¥m'n = —€1(—8,0mn T 8amy),
and

e
= Spim ™ 8¢Ym n+sq7nqm + amabnq - a"quq = 0,

Smin

where ; denotes the intrinsic derivative. On writing
down each component of the Gauss equation ex-
plicitly, it proves useful to work not in terms of
the a,, and b,, but rather in terms of certain
quadratics of these arrays. The notation is now
introduced.
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3. USEFUL IDENTITIES

609

The components of the Gauss equation can be

Consider a tensor T,.,, which is proportional to Written in empty space-time as

the skew product of & symmetrical tensor {,,,,
Tunse = ¢(tastac — tmabus)-

+, Ty, defined by
To = Thiasr = ¢(tiatia — tiitaa),
T, = Tig3 = ¢(tiatia — tiites),
Ty = Thaes = O(ligtss — tates),
Ty = Tauz = d(tizts — bastid),
Ty = Tasss = d(taates — taoles),
Ty = Tissa = ¢(tistas — tyalss),
Ty = Tig1a = ¢(tyitss — tiatia),
T; = Tiazs = d(tistes — tiatas),
Ts = Tosss = ¢(taslss — tozlos),
Ty = Tz = d(bastss — loalas),
Tio = Thorz = ¢lbiitas — tistia),
Ty = Tasss = ¢(lastss — tastas),

The twelve scalars T, -+

satisfly twelve quadratic identities, namely,
T7(Tz - Tz) - T5T3 + TsTx + T4Te - ToTs =0,

(12)
T.T: + TeTy + T.T: + T2oTs + ToT5 = 0,  (ib)
T5Ty + TsTy + Tarr + TooTs + TuT, = 0, (o)
TsT. — T:Ts — ToTs + T\T1, + ToTs = 0,  (1d)
TT. — Ty — TsTs + TuTu + T.Ts = 0,  (le)

Te(Tz - Tz) - TlTs + TlTs - T0T7 + T0T7 = 0,

(1f)

T«T, — Ty) — T,T, + T.T, — T.T, + T.T, = 0,
(1)
T,T, — T\.Ts — TsT: = 0, (1h)
T.T, — TsT, — T:T: = 0, (19

—T(Ts — Ty) — T\Ts + 1., =0, (1))
—Tu(Ts — Ty) — TsTy + TsT, = 0, (1K)

TioTss — ToTs + Tels — +,Ts + T.T,

+ T5 — T.Ts — 2T.T, = 0. @y

These identities were found by inspection. Using
each identity to eliminate a product of the 7’s it
can be shown that no further independent quadratic
identities exist.

Ay + B, = ¢, (2a)
A, + B, = ¢, (2b)
As + B, = ¢, (20)
Ay + B; = ¥, (2d)
Ay + B, = ¢, (2e)
As + B; = ¢, 21)
As + B, =0, (2g)
A; + B; =0, (2h)
As + Bs = 0, (21)
Ay + By = s, 23
Ao + By = —¥, — ¥, (2k)
Ay + By =~y — {, 20

where ¢, -+ , ¥, are the tetrad components of
the curvature tensor introduced by Newman and
Penrose® and the scalars 4o, A, - -+ ,and By, By, -+ -,
are defined in terms of a,,, and b, in the same way
as Ty, T, - -+ , are defined in terms of ¢,,. Thus
Ay = e,(@130:3 — @1,835),
By, = ey(bisbiz — bubsg), ete.

Substituting B for 7 in the quadratic identities
(la), - -+, (11) and using (2a), - -+, (21) to eliminate
By, By, +-- , in terms of 4,, A,, -+ , yields twelve
equations linear in 4,, 4,, + -+ (the terms quadratic
in Ay, A,, - - -, are identically zero). These equations
are

Yods — Kbl(l‘iQ - fIs) + (V. — ¥2)4,
+ V(45 — 4) — Yuds = 0,
Yota — ¥i¥s — Yods — ¥i(4o + A-z) — ¥4,
— od, + (Yo + ¥2) 4s — ¥udo — ads = 0, (3D)
Vive — ¥a¥s — Yady — ¥s(4io + 4) — G4,
— ¥ads + (Y2 + ¥2) 4o — ¥1 4, — 145 = 0, (3¢)
Yo¥s — ¥ — Yodo — %(4{2 + 4.) + 44,
= Pads + (Yo + U A — Yo do + Psde = 0, (3d)
Vit — Yo — duds — ¥a(ds + Au) + ud;
— 0l + (Yo + T)ds — A+ $hds = 0, (3¢)
—Yods + Tods + u(ds — 4)
— (4 — 4) — (o — $)4e = 0,

(3a)

31
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—¢4A7 + 1;414-_7 + l//3(A9 - Aa)
—~ P5(Ay — 45) — (¥ — ¥)A4s = 0, (3g)
Yoz — 'Pf — vods + (4, + As) — ¥4, = 0,

(3h)
Vaba — Vi — Yuda + du(ds + A) — 4, =0,
(1)
Vi — Ui — s + 0l + de — 4o
+ (Y — ¥ A + (4o + F)(d: — Ar)
+ Ysds — $d; =0, Ch))
Vi— Ui — s + Ul + ads — 4,
+ (¥ — ) Aw + (2 + T)(4: — A))
+ ¥ A, — ¢4, =0, (3k)
¥+ 29 — Yot — 200,
+ WAy + Gu(ds + 43) + 2424,
+ 205(4s — o) + (e + F)(Awo + Av)
+ (4, + Ay) + ¢4, = 0. (3D

The same equations hold with A4 replaced by B.

The usefulness of these equations can be demon-
strated. The null tetrad can always be chosen so
that ¥, = 0. If @,., = 0 the equations yield, with
Yo = 0, ¥ = ¢ = ¥3 = ¥, = 0. Hence the space-
time is flat. This proves that no empty space-time
is of embedding class one, since, for such space—
times, 4., and s, could be put zero. Furthermore,
if the determinant of the coefficients of 4,, -+« , An
in the Egs. (3) is nonzero, then 4,, --+ , A;; can be
determined in terms of ¢, --- , ¥i. By symmetry
B,, -+, By, can also be determined and will be
equal to 4, -+ , A,;. Thus Egs. (2a), -+, (20,
can be written with A = 0 and B replaced by 2B.
However, it has just been shown that such a system
of equations is only possible in a flat space-time.
Hence for embedding class two the determinant must
be zero. This imposes a condition on the curvature
tensor.

The two theorems stated in the Introduction can
now be proven. Since these concern algebraically
special space-times the null tetrad can be chosen
so that ¥, = ¢, = 0. The converse of the Goldberg—
Sachs theorem® gives v;5, = 7135 = 0. Geometrically
this means that the tetrad vector I° defines a con-
gruence of geodesic rays with zero shear.’ If v,5, = .43
the congruence is irrotational and therefore hyper-
surface-orthogonal.'® If y,5, = —714; the congruence

® R. Sachs. Proc. Roy. Soc. A264, 309 (1961).

10 P, Jordan, J. Ehlers, and R. Sachs, Akad. Wiss. Mainz.
1 (1961).
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is nondiverging. These results will all be used in
proving the theorems.

4. TYPE III

The null tetrad can be chosen so that y; is the
only nonzero ¢ and ¢5 = ¥5. The Eqgs. (3a), -- -, €3))
yield Ag = A; = Ay = Ag = 0, Ao + 4, + 4; =
A+ fiz __I‘L = 0,¢; = A; + 4,, with 4; = 4,,
and A, = A,. These are consistent with the condi-
tion ¢; & 0 only if a;;, = a3 = 0 and a,, = O.
In this case the following further equations are ob-
tained, @33 = Qu4, Gos = G2y, Gz + Gus — Gag = 0,
and s = 2e.0,:0.,. Similar results hold for b,,, and
substituting into the Gauss equation gives e¢; = —e;
(i.e., the embedding space is of signature 2), @.; =
—cbhys, and @,,, = cb,, for all other choices of mn,
where ¢ = +1.

Putting mnp = 124 in the Codazzi equations,

Giz;s + QiYarz — GaVizz — Gas¥iaz T CasVise
= e(—8:b12),

b12;4 + bixvarz — basviza — bagviee + b24Y 134
= —e,(—8,012).

Adding —e¢ times the first equation to the second
leaves

Gz47134 = 0.

Hence, since a,, 5 0 (Y3 = 0), one has y;3 = 0
which proves Theorem 1 for type III space-times.

5. TYPE I

The null tetrad can be chosen so that ¢, and ¢,
are the only nonzero ¢, and ¢ = ¢, If ¥y # ¥,
the Eqgs. (3a), ---, (3]) yield

A, =A1=A4=A5=A6=A7=A8=O!
A2=%2:
Ap = Ay = _%(‘l/z‘l“;z) and A9=A3=%‘03'

Substituting these into the identity (1i) gives ¢, = 0
which contradicts the hypothesis. Hence, for em-
bedding class two ¢, = ¥,. In this case the calcula-
tion proceeds as in Sec. 4 and it is found that

@y = @z = by = by = 0.
Equation (2k) then reads
2y, = e}, + a3,
Putting mnp = 121 in the Codazzi equations gives

Giz;1 = —es8,hyg

and

b1z = €:818.
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Multiplying the first equation by e,a,,, the second
by e:b,s, and adding yields
%(elaiz + ezbiz);l = 0.

Hence ¢,,;, = 0. However with the present choice
of tetrad, one component of the Bianchi identities®
becomes

¢2;1 = 37134302-
Thus v,3s = 0 which completes the proof of The-
orem 1.
6. TYPE N.

The null tetrad can be chosen so that ¢, is the
only nonzero y and ¢, = ¢,. Equations (3a), --- ,
(31) yield

A0=A1=A2=A5=A5=0 With A7=14-.7.
These and the Gauss equations are consistent only

if a;; = a;3 = by = b3 = 0. The calculation divides
into three subcases.

1) a,, # 0.

From Eq. (2k) b, # 0, and so 4, = B, = 0
imply as, = bz, = 0. Putting mnp = 314 in the
Codazzi equations gives

@i2v1zs = 0.
Hence
TYizs = 0.

(2) a,; = 0, not both a,, bs, are zero.

From Eq. (2k) b, = 0. Putting mnp =
in the Codazzi equations gives

134

@34(Yias — Y1as) = 0
and

b34(’Yla4 - 7143) =0
Hence

Yise = Yi43-
(3) Q13 = b12 = Q34 = b34 = 0.

Putting mnp = 123, 324, 334 in the first Codazzi
equation gives

O23Y143 — QzsY1a2 = 0,
O23;4 — Og¥214 — O22Ys14 T Ga2Yarz T GazYare
+ G33Y24s — O23Y3as = €x(—Subag),
Gaaia — 20557314 T Oa3Va1s + 20357308 = €2(—84bs3).

Taking v, times the last equation from 7,,; times
the second, using the first to eliminate derivatives
of a,, and finally using the Newman—Penrose field
equations® to eliminate derivatives of the 4’s yields

EMBEDDING CLASS TWO 611

—Y143Y13202s T V143Y134022 — V134Y142825 = O.
Suppose 134 # 0. Then
023 = Uag,s
and
Aoy = U2l133 + U2a44;

where U = v,4/714s. Substituting these into (2e)
gives

Yy = -Uz[ela33a44 4 e2basbudl,

which is zero because of (21). Hence, since y, # 0,
v13s = 0 and this completes the proof of Theorem 2
for type-N space-times.

7. TYPE D.

The null tetrad can be chosen so that ¢, is the
only nonzero y. As in type II space-times it is
found that embedding is only possible if ¥, = ¥,.
Using the Bianchi identity ¥.., = 3y, yields
immediately 7,32 = <vw.s which proves Theorem 2
for these space-times.

8. REMARKS

The metrics possessing hypersurface orthogonal
geodesic rays with zero shear have been studied
by Robinson and Trautman' and Kundt.”* The
Gauss—Codazzi—Ricei equations can be written ex-
plicitly for the metrics but are too difficult to solve.
Further analysis of the type-D space—times for
134 # 0 limits one to the D-S space—times of Robin-
son and Trautman. These include the Schwarzchild
solution which is known to be of embedding class
two.*®

For space-times of type I the null tetrad can be

"chosen so that ¢, = ¢4 = 0, ¥, = ¢¥; ¥ 0 and

9 = 16¢2. Equations (8a), --- , (3l) possess
solutions consistent with the identities (1a), - - -, (11)
only if at least one of the expressions ¥, — ¥,
28 — ¥;, Wi+ 20 — ¥; — ¥u¥, is zero. The
geometrical significance of this result is obscure. In
each case the general solutions to (la), --- , (1I)
can be found but these contain several arbitrary
scalars and the method becomes too unwieldy to
yield further information.

The method depends on the simplicity of Egs.
(3a), + -+, (3l). For space-times of higher embedding
classes these equations will become multilinear
equations in several sets of unknowns 4, B, C, --- .
These equations are unlikely to be of help in analyz-
ing such space-times.

1], Robinson and A. Trautman, Proc. Roy. Soc. A265,
463 (1962).

2'W, Kundt, Z. Physik. 163, 77 (1961).
18 C. Fronsdal, Phys. Rev. 116, 778 (1958).
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The symmetry properties of the 3j-symbols are studied for an arbitrary compact group. It is shown
that when the three j’s are all inequivalent it is possible to choose 3j-symbols which are invariant
under any permutation of the j’s and of the corresponding m's (generalized magnetic quantum num-
bers). When two of the three j’s are equivalent, the 3j-symbols can be chosen in such a way that at
most & minus sign appears when the j’s and m’s are permuted. It is also shown that when the three
j’s are equivalent it is in general not possible to choose the 3j-symbol such that its absolute value is

invariant under every permutation of the m’s.

INTRODUCTION

N the development of Racah algebra for an
arbitrary compact group it is possible to use
3j-symbols which are defined only up to a unitary
transformation in the multiplicity variable.® In this
paper we show how this arbitrariness in the defini-
tion of the 3j-symbol can be used to impose some
simple symmetry relations among the various 3j-
symbols.

It has been shown by Wigner® that the symmetry
properties of the 3j-symbols for an arbitrary simply
reducible (SR) group are essentially the same as
for the rotation group in three dimensions. Hamer-
mesh® has given the properties of the 3j-symbols
of 8,, the symmetric group on n symbols, which is
not SR if » > 4 and de Swart* has obtained the
symmetry properties of the 3j-symbols for SU(3).
More recently Masuda® has given the symmetry
properties of the 3j-symbols for an arbitrary (com-
pact) group. For non-SR groups it is usually assumed
that the 3j-symbol (j1722) s, m.m.ms ¢an be chosen such
that its absolute value is invariant under any permu-
tation of the j’s and of the corresponding m’s. How-
ever, as we will show, this assumption is in general

* This work was supported by the National Research
Council of Canada.

+ This paper is based upon a thesis submitted in May 1965
in partial fulfillment of the requirements for the Ph.D. degree
in mathematics at the University of Toronto.

{ Present address: Laboratoire de Physique Théorique
et Hautes Energies, Batiment 211, Faculté des Sciences,
91-Orsay, France,

1 Jean-Robert Derome and W. T. Sharp, J. Math. Phys.
6, 1584 (1965).

: K. P. Wigner, “On the Matrices Which Reduce the
Kronecker Product of Representations of S.R. Groups”
in Selected Papers on the Quantum Theory of Angular Momen-
tum, edited by L. C. Biedenharn and H. Van Dam (Academic
Press Inc.,, New York, 1965). See also E. P. Wigner, Group
Theory (Academic Press Inc., New York, 1959).

# M. Hamermesh, Group Theory (Addison-Wesley Pub-
lishing Company, Inc., Reading, Massachusetts, 1962).

4 J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).

8 N, Masuda, Nuovo Cimento 36, 693 (1965).

valid only when at least two of the three j’s are
inequivalent.

THE TRANSPOSITION MATRICES

The matrix elements of the irreducible representa-~
tion j of the group G are denoted by j(R)"..., where
E € G. We write j(R),.,” for the complex conjugate
of j(B)™,.- and (4] for the degree of 7. Sums are implied
over repeated m (generalized magnetic guantum
number) and r (multiplicity) indices; the 3j-symbotl
is denoted by (jijzfs)r,mimems [OY (fifefs). in short-
hand form). It is defined by

jl(R)m‘f»x’jZ(R)m.mn’ = Zia [j3]{<jlj2.7.3)r.mxmnu}*
X js(R)m;m"(j1j2j3)r,mx’mn’m:’) (1)

where the indicated sum runs over all the equiv-
alence classes of irreducible representations of G
since (§1f2s), is chosen to be zero whenever j¥ is not
a constituent of §; X j, (i.e., whenever §,f,j; do not
form a triad). The 17-symbol () ma: = [[1HG0/*) mom: =
{(G™™ }* can then be used as a metric tensor to
define 3j-symbols with some of the m’s contra-
variant. For instance

(jlj2]‘3)f.'"lmsma = (jl)mlmx’(jl*ijﬂ)f.mx"’l:ma'

In shorthand notation (4,j.fz),. " m.m. IS written
(§1J2Js).." Similarly the unitary matrix

A(123), = (fifefa)(rjzds).

can be used as a multiplicity metric tensor to raise
the multiplicity indices. It is then easy to show that'

(jszja)f = {(jlij:i)r}*-
We assume that for each representation space a
definite choice of basis has been made. The 3j~-symbol
(§1J27) is then determined up to a unitary trans-

formation in the multiplicity variable. We will say
that two sets of 3j-symbols are U-equivalent if they
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are related by a unitary transformation in the
multiplicity variable and we write

{(jlj2j3)r.mnnzm‘}’ = U(123)rr'(jlj2j3)r’.Mxm:ma' (2)

We now introduce the unitary matrices

M(a! bc)rrl = (jajcjb)r(jajbjcy’: (3)
and

M(ab: C)rr, = (jbjnj':)r(jajbjc)"y (31)

where j.j,j. can be any permutation of the triad
jijajs. Using the unitarity of the 3j-symbols’ we
obtain

(jajcjb)r = M(“y bc)rf'(jajbjc)r” (4)
and
(ojade)s = M(ab, €)." (afsie)r - 4"

In view of Egs. (4) and (4') we call the matrices
M{a, bc) and M (abd, ¢) transposition matrices. Given
a triad 7,77, there are at most twelve such trans-
position matrices: M (1, 23), M (2, 13), M(3, 12),
M2, 3), M(13, 2), M(23, 1), M(1, 32), M(2, 31),
M3, 21), M(21, 3), M(31, 2), and M (32, 1). There
are six other unitary matrices which correspond to
transpositions of the first and third j7’s in the 3j-
symbol, but these are not new because they are
products of some of the above twelve. Similarly, the
cyclic permutations of the 7’s and m’s in a 3j-symbol
can be expressed as a product of transposition
matrices. Moreover the twelve transposition ma-
trices listed above are not all independent since

M(ab, ¢) = M(ba, )™,
M(a, b)) = M(a, cb)™",

®)

and
M(23, 1) M(2, 13) M(12, 3)
= M3, 12) M(13, 2) M(1, 23).  (5')

Using Egs. (5) and (5") we can express every trans-
position matrix in terms of five of them, We call
such a set of five “independent’ transposition ma-~
trices a fundamental set for the triad j,j.js. Without
any loss in generality we choose M (12, 3), M (13, 2),
M(23, 1), M(1, 23), and M (2, 13) to be the funda-
mental transposition matrices (i.e., members of the
fundamental set). Any permutation of the j's and
m’s in a 3j-symbol can be obtained by applying
successively a number of fundamental transpositions
and their inverses.

According to Egs. (3) and (3') the transposition
matrices are completely determined by the 3j-
symbols and the transformations of the 3j- symbols
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realized by the matrices U(abc) induce the following
transformations of the five fundamental transposi-
tion matrices:

M(12, 3)" = U(213) M(12, 3) U(123)™",
M(13,2)" = U(312) M(13, 2) U(132)™,
M(23, 1) = U321) M(23, 1) UQ3D)™,  (6)
M(1, 23)" = U(132) M1, 23) U(123)™,
M2, 13) = U(231) M(2, 13) U213)™.

The transformation properties of the other permuta-
tion matrices are easily obtained from those of the
fundamental set.

Let j.j»ja be three irreducible representations of
a compact group G which form a triad, and suppose
we are given a complete set of 3j-symbols for this
triad, i.e., we are given all (j.5,j.),, where j.jj. can
be any permutation of j,7.js. We now wish to find
a new complete set of 3j-symbols which is U-equiv-
alent to the given set and which yields the “simplest”
permutation matrices, i.e., the simplest symmetry
properties for the 3j-symbols.°®

For SR groups the usual choice of symmetry
properties for the 3j-symbols is that of Wigner."’
It consists in taking®

M(a, bc) = M(ab, ¢) = (—1)/«*i**ie,

where (—1) is a certain phase associated with j.
For a general group such a simple choice is not
possible.

Several authors assume that it is in general possible
to diagonalize simultaneously all the fundamental
transposition matrices of any triad. They then choose
their 3j-symbols such that the effect of a permutation
of the /s and m’s is at most a multiplicative phase.
Below we give a counterexample which shows that
this assumption is in general wrong.

In order to discuss the symmetry properties of
the 3j-symbols of a general group it is convenient
to consider three different cases corresponding to
three different types of triad.

CASE 1

If the three members of a triad are all inequiv-
alent, i.e., j;  j. ¥ jz ¥ j;, the five fundamental
transposition matrices can be transformed to the

8 It should be emphasized that this set is not necessaril
unique, i.e., two U-equivalent but distinct sets of 3j-symbo
may satisfy the same symmetry relations.

7W. T. Sharp, “Racah Algebra and the Contraction of
Groups.” Report AECL-1098, Atomic Energy of Canada
Ltd., Chalk River, Ontario, 1960.

8 For SR groups the transposition matrices are just complex
numbers of modulus one.
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same unitary Hermitian matrix D by taking®
U@213) = D,
U(123) = M(12, 3),
U(132) = D M(12, 3) M(1, 32),
U(312) = M(12, 3) M(1, 32) M(31, 2),
U(321) = D M(12, 3) M(1, 32) M(31, 2) M(3, 21),
U(231) = M2, 3) M1, 32)

X M(31,2) M(3, 21) M(23, 1).

This is easily checked by substituting Eq. (7) into
Eq. (6).

It then follows that the transformed transposition
matrices are all equal to D since every transposition
corresponds to a product of an odd number of
fundamental transpositions. A cyeclic permutation
corresponds to a product of an even number of
transpositions and each new 3j-symbol is therefore
invariant under any cyclic permutation of its argu-
ments.

Since one can always take D = 1 one can choose
the 3j-symbols to be invariant under any permuta-
tion of the j’s and m’s provided the three j's are
inequivalent.

@

CASE 2

If exactly two of the three j’s are equivalent, say
f1 = ja # s, Bgs. (6) become

M(11, 3y = U(113) M(11, 3) U(113)™",
M(13,1) = U(311) M(13, 1) UA3D™,  (8)
M1, 13)’ = UQ131) M(1, 13) U(113)™".

Clearly it may be possible to choose M (11, 3)" equal
to the unit matrix only if M (11, 3) has no eigen-
value other than +1. Since M(11, 3) = M (11, 3)*
its possible eigenvalues are +1 and —1. There-
fore, if M (11, 3) has eigenvalues +1 and —1 with
degeneracies S and A, respectively,’® then by a
suitable choice of U(113) we can take

M(11, 3) = [1“ 0 } ©)
0 —14

If we now take

¢* This matrix D must be unitary and Hermitan but it is
otherwise arbitrary. For a non-SR group one usually takes
D = 1. If the group is SR, D = (—1)i1+is+is ig the most
convenient choice because it is then possible to consider the
three different types of triad on the same footing.

10 One easily shows that S and A are the multiplicities of
js* in the symmetric and antisymmetric squares of j;, re-
spectively.
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Uas1) = U(113) M(11, 3) M(L, 31),
U@L = U(L13) M, 31) ML, 1),

we obtain
M3, 1) = M(1,13) = M(11, 3) = [15 0 ]
0 —1l,

Since M (11, 3)’ = (M (11, 3)")™" it then follows that
every new transposition matrix is equal to M (11, 3)’
and that every cyclic permutation leaves the 3j-
symbol invariant.

CASE 3
= j, (= j) the Eqs. (6) become
M(jj, 3 = UG M3Gj, ) UGN,
MG, i) = UG MG, i) UG~
Clearly the two fundamental transposition matrices

M4, 7) and M (4, jj) can be diagonalized simulta-
neously only if they commute, in which case

Finally if j, = j,

(10)

[o@yar = [x@ar,
where x’(R) is the character of j and the integration
is to be performed over the (compact) group. To
prove this we use the fact that

(M, i) MG, D) =1

which follows from the commutativity of the two
Hermitian unitary matrices M (j, j7) and M5, 7).
This means that the 3j-symbol (1), mmrm:- 1S iD=
variant under any cyclic permutation of the m’s.
It then follows from the properties’’ of the 3j-
symbols that

[ iRy iRy i) dR

= [ KRy iBY" AR dE.

Setting m = n, m’ = n’, m"" = n”, and performing
the sums we then obtain BEq. (11).**

We conclude by giving an example for which
Eq. (11) does not hold. Consider S, the symmetric
group on six symbols and let j be the irreducible
representation of degree 16 usually denoted by the

1 See for instance Ref. 1, Eq. (2.5).

2 Equation (11) can also be obtained as follows. We first
observe that the matrices M(jj, j) and M(j, jj) generate a
representation M of the group S; The transposition matrices
can be taken in diagonal form only if M does not contain the
irreducible representation [21] of S; and the multiplicity of
[21] in M is easily found to be } [ [(x/(R))* — xI(R*)] dR/{ dR.
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Young diagram [321]."* A simple calculation shows
that

; G'®Y — XRZ X(BY) = 2160.

Thus if j is the 16-dimensional irreducible representa-
tion of S, it is not possible to diagonalize simulta-
neously M (55, j) and M(j, 77). In other words, it
is not, possible to choose the 3j-symbols of S, in the
“symmetric” form (Jif)r.mmms = 6:(01)r mmms =
0,/ (49)) ., mm''m’, where 6, and 68,/ are just phase

13 G. de B. Robinson, Representation Theory of the Sym-

metric Group (University of Toronto Press, Toronto Ontario,
Canada, 1961).
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factors.* For SU(3), although we could not find
a similar counterexample, to our knowledge no proof
has yet been given that the 3j-symbols can all be
chosen in diagonal form.
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A quantum mechanical perturbation expansion of the partition function is used to evaluate the
free energy of the electron gas and multicomponent plasmas to logarithmic accuracy in the particle
number density, thus including the next important contribution beyond the ring approximation. The
quantum generalization of Abe’s work on the classical electron gas is given for the ladder interactions
with the dynamic screened Coulomb potential, and each ladder is shown to be separately finite be-
cause of the finite size of the wave packets describing point electrons [of the order of the thermal de
Broglie wavelength X = %(8/2m)1/?]. The results show that quantum effects due to the uncertainty
principle persist at high temperature, and that when ¥7 > Ryd plasmas are quantum systems,
rather than classical, because X is greater than the average distance of closest approach, Se?. Results
are also obtained for the Wigner-Kirkwood wave mechanical diffraction corrections to the classical
electron-gas free energy which are valid for low temperature (k7 < Ryd). The connection between
the high- and low-temperature formula is discussed, and it is shown how the logarithmic divergence in
the free energy that is cut off at Se? in the low-temperature electron gas in the Abe theory is cut off
at X in the high-temperature case. Also it is shown that the quantum diffraction effects contained in
the Montroll-Ward ring sum formula are valid only for kT > Ryd, even though the quantum ring
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sum formula contains the classical Debye—Hiickel result.

I. INTRODUCTION

N this paper we consider the evaluation of the
free energy of single-component and multicom-
ponent plasmas at high temperature to logarithmic
accuracy in the particle number density. The general
method to be used is an evaluation of terms in the
perturbation expansion of the partition function
along the lines initiated by Montroll and Ward"
some years ago. A quantum mechanical treatment
is necessary from the beginning since quantum effects
persist even at high temperature. These quantum
effects, however, are primarily due to the uncertainty
principle and not particle indistinguishability; thus
in this paper we assume Maxwell-Boltzmann statis-
tics. Over a very wide temperature and density
regime the dominant contribution to the plasma
free energy due to Coulombic interactions is given
by the ring interactions, the equivalent of the Bohm
and Pines random phase approximation (RPA).? The
quantum mechanical ring sum formula obtained
first by Montroll and Ward' has been evaluated for
high-temperature plasmas and gives wave mechan-
ical corrections’ to the classical limit, the Debye—
Hiickel result. If these usually small wave mechanical
corrections are retained, then it is also necessary
to include additional corrections not in the RPA

* Worked performed under the auspices of the U. S.
Atomic Commission, Contract No, W-7405-eng-48.

1 E. W. Montroll and J. C. Ward, Phys. Fluids 1, 55 (1958).

2 i:,) D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951);
see also (b) D. Bohm and D. Pines, Phys. Rev. 85, 338 (1952).

3 H. E. DeWitt, J. Math. Phys, 3, 1216 (1962).

arising from a more accurate treatment of two-body
interactions. The Feynman diagrams describing the
higher-order contributions to the two-particle scat-
tering amplitude are often described as ladders* and
in this paper we will use this term to describe the
analogous contributions to the free energy. The
ladder diagrams were evaluated for the classical one-
component plasma, a gas of point charges in a con-
tinuous neutralizing background, by Abe.” Here we
give the quantum theory of the ladder diagrams.

It is helpful to consider the divergence difficulties
that one finds with a simple perturbation expansion
of the free energy of a system of point charges.
These difficulties are simply illustrated by the class-
ical electron gas. The Helmholtz free energy ob-
tained from the first three terms of the expansion
of the second virial coefficient in powers of ¢ is

2 =
BF — Fy) = ——%—,fo 4rr® dr

X [2! ( F) e\, T

= _4”Np{%(ﬁe2)2Lmax - Tlf(ﬁez)‘

X log (Lma.x/Lmin) et } ’ (1)
where F, is the ideal-gas free energy, 8 = 1/kT,
and p = N/V is the number density for N particles

4 8. 8. Schweber, H. A. Bethe, and F. de Hoffman, Mesons
and Fields (Row, Peterson and Company, Evanston, Illinois,

Vol. I, p. 81.
8 R. Abe, Progr. Theoret. Phys. (Kyoto) 22, 213 (1959).
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in volume V. In the second line of Eq. (1) the
cutoff lengths L,... and L.;, indicate the linear and
logarithmic divergencies which a correct theory
should take care of automatically. Note that the
first-order term in ¢* is removed by electrical neutral-
ity. The summation of the ring diagrams replaces
the second-order term in Eq. (1) with

1 f 1 dg [ V. dk4rge’Bp  4rge’Bp
0

20 9 @ T K KT 4ngeBe
__1fvdE] 1 _1
="3) G {(lcxnf log [1 + (kxn)z]} @
= —4gN P%(662)2)\D7

from which one sees that the cutoff of the linear
divergence is the Debye length, A\p = (4we’8p) L.
Essentially the ring sum is a modification of second-
order perturbation theory in which one Coulomb
interaction is replaced by the screened Coulomb
interaction:

u(r) = (&/r)e”" ™", ®3)

The logarithmic divergencies of the third-order term
in Eq. (1) are removed following Abe® by replacing
the simple third-order perturbation theory with

_;_VT’_./; A dr Z (—ﬂ:'j(r))m

m=3

= +4aNpts(8e*)’[log (\p/Be”) — D, ---], (4)
D, =log3+2C —11/6, C = 0.5772.

In the third-order term, the long-distance cutoff
is again the Debye length, and the short-distance
cutoff is the only other length in the classical prob-
lem, the average distance of closest approach, ge®.
Equation (4) is the first term of the nodal expansion
developed independently by Abe,® Meeron,® and
Friedman.” As applied to the electron gas, the nodal
expansion is a rearrangement of the complete per-
turbation expansion of the free energy such that
long- and short-distance divergencies are systemat-
ically cut off at Ap and Be’, respectively. Note that
two steps are necessary to cut off the logarithmic
divergencies in the third-order term of Eq. (1):
(i) chains of Coulomb interactions are summed to
give screened interactions, u,(r), between two par-
ticles, and (ii) the resulting ladder diagrams with
screened interactions are summed from 3 to o,
Step (i) gives L. = \p and step (ii) gives L. = Be°.
The classical diagrams are shown in Fig. 1.

¢ E. Meeron, Phys. Fluids 1, 139 (1958).
7(a) H. F. Friedman, Mol. Phys. 2, 23 (1959); see also
(b) H.'F. Friedman, Mol. Phys. 2, 190, 436 (1959).
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BIF-R) = <> + Z &>
Uelr) = e = e

Fra. 1. Diagrammatic representation of the leading con-
tribution to the free energy of the classical electron gas.
Points represent charges, horizontal lines the Coulomb inter-
action, and wavy lines the screened interaction.

Wave mechanics introduces a third length, the
thermal de Broglie wavelength, A = #&/(@mkT)*.
The point charges of the classical problem must
now be considered as interacting wave packets of
spatial extension X. This finite extension has the
important consequence that each ladder term is
separately finite. Thus the quantum theory of the
third-order term in Eq. (1) gives Lgia = X, and
themth-order term will be proportional to (3¢*)™/A™ 3,
It is important to realize that at high temperatures
the thermal wavelength is larger than gé°, ie.,
X > B¢ when kT > Ryd. Consequently the ladder
interactions for m > 4 may be neglected in com-
parison with the m = 3 term at high enough tem-
peratures. Thus the quantum theory of high-tem-
perature plasmas is in one respect simpler than the
theory of the classical electron gas, namely, step (ii),
the summation of ladder diagrams, is not necessary.
The uncertainty principle provides the necessary
short-distance cutoff. The two diagrams required
for the quantum treatment of the divergencies in
Eq. (1) are shown in Fig. 2. Each particle is in-
dicated by a bubble in which the downward line
indicates the hole in the equilibrium Maxwellian
momentum distribution after interaction and the
upward line indicates the various excited states of
the particle. The intermediate temperatures go from
0 to B, and indicate the ‘“times’ at which the inter-
actions take place. In the classical limit, # = 0,
the bubbles shrink down to the points shown in
Fig. 1.

BIF-F )y =« “2 8, 8y
+ ’
8, B2
J A ,
. Bl
A

usi.kw) = /.,-r"’ . — 4 f_'_ _(

F1a. 2. Diagrams representing the leading contribution of
electron—ion interactions to the free energy of a high-tempera-
ture plasma. Light bubbles represent electrons, and heavy
bubbles, ions. The wavy lines indicate the dynamic screened
interaction.
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II. QUANTUM MECHANICAL FORMS OF THE
LADDER INTERACTIONS

In this section we use the formalism of Bloch and
de Dominicis® in conjunction with the Montroll and
Ward procedure for summing chains of Coulomb
interactions. Even with the neglect of quantum
statistics the mathematical form of the ladder dia-
grams of Fig. 2 is vastly more complicated than
the simple classical form appearing in Eq. (4). In
place of the simple static screened interaction, u,(r),
the quantum theory for the electron gas requires
the nonstatic dynamic screened potential whose
spatial Fourier transform is

u-(ki7 Bo’ - B:)

- i u(k.) exp 2wiv(8; — B9)/8
1 + Bu(k)N(Rk;, 2miv)

Pp=—0
(y=0,%1,*+*+, )

= 3 ke, 20) exp [2riv(s: — §)/6]

= w(k;)8(8;: — Bi) + w,(k:, Bi — BY), (5)
with u(k) = 4me/k’V, and u,(k, 27iv) is the four-
dimensional Fourier transform:

u,(k, 2m1v) = u(k)/[1 + Bu(k))(Ak, 2miv)].  (6)

In the third line of Eq. (5) the screened potential
is broken into the static Coulomb part and the
nonstatic polarization potential whose four-dimen-
sional Fourier transform is

u,(k, 2miv) = —Bu(k)u(k, 2r)\(AE, 2ris).  (7)

The function A,(Ak, 27iv) is the Fourier transform
of the simplest charge density fluctuation, and has
the form

MRk, 2rv) =

V d°p exp (@ — Bp’/2m) 1 f’ ir
Q

(2rh)* 8
X exp {21/ ~ +[(p + Fk)' — p’]/2m}
= NL(7°, 2zw), (8)
where z = Ak, A = E(8/2m)}, and « = Bu is the

chemical potential defined by
e* = (2rh)’p/(2amkT)}(2s + 1).

Explicit forms and various properties of the L(z*, 2i»)
functions are given in Ref. 3. Note that the quantity
1 4+ Bu(k)r.(Ak, 2miv) is the RPA expression for
the plasma dielectric function for imaginary fre-
quency values, fhw, = 2xiv.

The results for the ladder diagrams will be given
for a two-component plasma composed of N, elec-

% (a) C. Bloch and C. de Dominicis, Nucl. Phys. 7, 459
(1958); see also (b) C. Bloch and C. de Dominicis, sbid. 10,
181, 509 (1959).
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trons and N, ions in a volume V. Electrical neutral-
ity requires that z,N, + z;N; = 0, where 2, and z;
are the charge numbers of electron and ion, respec-
tively. The electrons comprise a fraction f, = N,/N
and the ions f; = N,;/N of the total number of
particles, N = N, + N;. The screened potential
for the two-component system is the same as Eq. (5)
except that the plasma dielectric function becomes

e(k, 2miv)
1 4 Bu(k) [N\ (Rk, 2miv) + 22N (Rik, 2miv)]
1 + (4mBe’ )k~ *[2f LXK, 2miv)

+ ALK, 2ri)] — 1+ 1/(kNo)?,

where A\p = (478pe’(z*))"? is the multicomponent
Debye length with (¢°) = 22f, + 2if..

The free energy will be denoted as

BF — Fo) = —N{Sine + 2332,,.. e},

where S, ., is the contribution of a ladder diagram
with m dynamic screened interactions as given by
Eq. (5). After the sum of all two-body interactions
there will be similar contributions from clusters of
n particles interacting via the dynamic screened
potential, i.e., the complete quantum generalization
of the Abe nodal expansion.’ S,,,, must include elec-
tron—electron interactions, electrons with ions, and
ions with ions. The portion of S,,,, arising from the
temperature orderings shown in Fig. 2 is

(—z2:)" f V d’p, exp (@, — Bp5/2m.)
2 2rh)®

V d°p; exp (a; — Bpi/2m;)
X f @ah)?

V@ e A [
X f f ) ™D 5(.2.;1"')
B>Bm> e o>hy 1
xfo dﬁm-'-_/;dﬁlga

% ‘/O'ﬁ>ﬂm'>"'>ﬂx' d[g'," /;dﬁ{

X exp {—[(8; — B)(Pen — p) + -

+ (Bn = Bn-1)(Pe.m-1 — p2)]/2m,}

X exp {—[(8 — B)@i.. —p)) + -

+ Bh — Bl m-1 — P)]/2m;}

X uy(lry B1 — B =+ Us(Km, B — Bu), ©

. *E. Meeron (Ref. 6) introduced the term “nodal expan-
sion.”” A node is a particle with three or more interactions
ending on it.
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where
pa.i = pe + h(kl +
Pii = ps — bk +

: +ki>;
-+ k).

The other contributions come from the remaining
m! different orderings of the intermediate temper-
ature variables. When all m! time orderings are
added together and the classical limit taken, the
result is

—~B2)" NN &%
NS, = SHE gfnf) f f N s
4’
X () g

= vpts CEEE [ o oy, (10)

which gives the Abe result for the electron gas,
Eq. (4).

For a static potential, u(k)8(8; — B.), the expres-
sion (10) with each g8} going from 0 to 3 is the entire
quantum form of 8,,,, since the g} --- B, integra-
tions are removed by the §(8; — B!) functions. For
plasmas, however, the actual dynamic screened po-
tential, Eq. (5), allows the m different interactions
to cross. There are m! possibilities corresponding
to the different permutations of the intermediate
temperature variables. As an example, if in Fig. 2
we have 85 < 8/, then the exponential in (10) con-
taining p; becomes

exp [— (8] — 8){(p: — kky)’ — pi]
+ (85 — B0 {lp: — Alks + k) — pi})/2msl.

Since we have assumed MDB statistics the mo-
menta p, and p; occur only in exponentials and
can be easily integrated out. The complete result
with all m! time orderings is

(—zezi)mNeNi
2m!lV

o | P
X (2 k) -[)p j:dﬁ"' e dBy

X [ oo [ ast o an

X Gm(Bl, xekly ttt ﬁm) Xekm)
X Gm(ﬂ:{, ?\iki; Tty Bf,n: 7\lkm)
x ul(klj Bl - Bi) o ul(kml ﬂm -

st.ﬂ.oi =

Ba), (A1)
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where @,,(8,, Ak,, - - -) is the m interaction propagator
defined by
m!
GM(BU 7\k1, . = E Gm.a(Bl} xekn . ')y (12)

a=l

where the summation over « gives the m! permuta-
tions of the 8, - -+ 8,.. For the ordering B8,, > Bn-, >

+++ > B, the result withk,, = —(k; + -+ + k1)
is
G p>pn>-->p. = €XD (—x*{{(B: — Bk +

+ (Bn — Bu-)(& + - F Eas)’]

- [(62 - ﬂl)kl + v + (ﬁm - Bm—l)

X (kl + tee + km—l)]2})' (13)

The propagators are periodic from 0 to 8 for each
of the m — 1 intervals 8, — B8; and thus may be
expanded in Fourier series as

Gm(ﬁl, ml} . ') = .Z: exp (z-:l 27I"LV.ﬁ /B)
X L, (XK, 27tvy, -+ ) Mooy, 2W0mey) (14)
y; = 0’ :!:1’ cee :tm,
m—1
Vip = ™ Z Vi,
i=1
where'®
L. (3k,, 2xivy, - -+ , RKpoy, 2700y)
mt
S e 3 f d 8.
fron i o [
X exp [21r1,v,([3,,, —B) + -
+ 27rivm—1(6m - Bm-—l)]Gm(ﬁl, )\kly b ')- (15)

By using the Fourier expansions for G, and u,,
Eqgs. (14) and (5), the temperature integrals in S, .,
may be immediately performed to give

(—2.28)"NN; [ V"' &k, -
2'm'V (2 )3(m 1)

X 6(2': k.) , .Z;'" SK(Z Vi)

X Lm(xekl) 27":'/1) ] Xekm—U 27!'1:1’,,‘_1)
X L(Xikl, 21r1:V1, Tty Xikm_l, 21!'1:1’,,,_1)
X (b, 210) - -+ U(bomy 2mi0,). (16)

This result, Eq. (16), is the exact quantum form
of the Abe theory. Unfortunately there is little hope
v E. W. Montroll, Les Houches Summer School lecture

notes, in La theorie des gaz neutres et jonises, Hermann & Cie.,
Paris, 1960).

- ki

NSZ.m.e: =
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of evaluating it very far when m > 2 since there
are m — 1 wave vectors (momentum transfers) to
be integrated over, and m — 1 discrete frequencies
2riv to be summed over, and the L,, functions are
intractably complicated because of the m! time
orderings.

Equation (18) simplifies very much if there is a
static potential u(k) in place of wu,(k, 2wiv) since
then 8; = B/. One notes that, since the propagators
@, involve the thermal wavelength quadratically
in an exponential [see Eq. (13)], we have

Gm(ﬂl; Kakly v ')Gﬂs(ﬁl’ xiklr o )

= Gm(ﬁl, xeikla ‘o ')) (17)
since
I8 MM
2 2 _ x2 _ L = ——et
xe + xi s xe: 2ﬂeikT, Hei Mo + my

By using the Fourier expansion of @, in Eq. (17)
and integrating over the temperatures, one finds

Z L,,,(X kl, 21!'1/1/1, tery, Xekm—-ly 27l'iVm_1)

1 VYm—3x

X Lm(xikh 27”:1’1, "t Kikm—ly 27ri”m—1)
= L,,.(7\,ik1, O, Tty X,ik,,,_l, 0). . (18)

This relation holds only for Maxwell-Boltzmann
statistics. For static potentials, the » summations
in the 8,,,. expression (16) disappear since all time
orderings are equivalent, and we have

ofefs ( 2?:,;)

x [ [ V’"“(g"‘f;(,;:,; L
xo(Zk) [ g [ as

X exp (_xei{[(ﬁz’ - 61)k2i +

Sz.m.ei(static) =

-+ (Bm - Bm—l)(kl + -+ k —1)2]
- [(Bz - ﬁl)kl + -+ (,3m - ﬁm—l)
X &+ o A K] Dulky) - ulka). (19)

A ladder diagram with fwo screened interactions,
8., in the present notation is not part of the Abe
8. function since it is included in the ring diagrams.
At this point, however, it is useful to discuss the
ring diagrams in the same manner as S,.,. Note
that the ring diagrams as drawn in Fig. 2 appear
to distinguish the electron and ion bubbles on the
ends from the electron and ion bubbles in the
screened interaction, as is actually the case in the

HUGH E. DeWITT

ladder diagrams with m > 3. Since a ring diagram
with n charges in the Montroll-Ward method is
proportional to (1/n)[Bu(k)A.]", it is convenient to
replace the 1/n with an integration over the coupling
constant, ¢’> = ge’, so that

dg . 1
L5 =a
as in Eq. (2). Thus the ring diagrams in Fig. 2
give'
2 o ¢
% f V d’p, exp (@, — Bpe/2m.)

2rh)®
% /' V d’p; exp (e; — Bpi/2ms)

(2rh)°
8 B 1 8 ,
2f0 & [ dﬁlgfo g}
X exp (—{(B: — B)(p. + Ak)* — pZ]/2m,

+ 18 — Bi| [(p: — hk)* — pil/2ms})

X u,(k)u, o(k, B, — BY)
- NNl ["d0 55 [ ¥l 20

X L,(A3K?, 2miv) L,(R3K%, 2mriv). (20)
If we add together the results corresponding to
Eq. (20) for 8.ing,eo and 8S.in,.;; and perform the

elementary ¢ integration, then the complete ring
sum becomes

1&)
_52

ym—c

NSrinB.ei =

V d%
(2m)?

NSring

V &k (41rﬁe2p
@)’
X [ Lo(A2K?, 2niv) + 23 Lo(X2k°, 2miv)]

— log {1 + =FL 4”5'“’ L (24, LR, 2miv)

+ 25 L(RTE?, 27r73V)]}>' 21)
This is the Montroll-Ward result for multicom-
ponent plasmas.

It might appear at first sight that the separate
evaluation of a part of the ring sum such as 8,4,
is a meaningless exercise. In fact it will be shown

i The evaluation of 8, 2 and S:ine is simplified by the fact
the 2! pieces of G, in Eq. (12) are identical so that we have

Gx(B2 Rk, B2, —Ak) = G(|B2 — Bil, Ak)

= exp {—(Xk)H|82 — 8| — 182 — Bi[1}.
Slmﬂa.rly the two pieces of the Fourier transform, Ly =

.>8 +_Lz2,p>p, are identical and one sees that Ly as
ﬁgmed by Eq. (15) reduces to Eq. (8).
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in the following sections that the quantum diffrac-
tion effects contained in the total ring sum, Eq. (21),
are correct only when both A, and X; are greater
than g¢’. If, as is usually the case, A; < B¢’ then
the pieces of the ring sum must be evaluated
separately. The result for S,i.... exact to O(e")
obtained using the method described in Ref. 3 is

Sring,ei = %Z:Z?faflA{l - (37#/24)7&

+ HEGE + D) + @l + 2Afe)/EN+ -],
(22)
where

A = B (Z")/\p = 1/4mp)],
Yo = xe/)‘D: Yi = 7\i/)\ny Yei = 7\ei/)\n-
III. EVALUATION OF THE THREE-RUNG LADDER

The complete form of 8,,,, as given by Eq. (16)
is much too complicated to allow a complete ana-
lytical evaluation. Nevertheless, some useful com-
ments may be made about it. For m = 2, ie,
essentially the ring sum, the complete quantum me-
chanical form can be evaluated to give a series
expansion in powers of ¥ as indicated in Eq. (22).
This exact evaluation is possible because there is
only one wave vector to integrate, a simplification
which is due to the fact that the ring integrals in
configuration space are convolutions which become
powers of u(k) in k space. For m > 3 the reverse
is true, i.e., in general one has m — lk-vectors to
integrate over, but in the classical form one gets
powers of u,(r) in configuration space as shown in
Eqgs. (4) and (10). Thus it is expected that S, ,, will
be mathematically more tractable in configuration
space than in k space. Unfortunately there seems
to be no practical way to convert the exact expression
for S, , into a configuration-space integral. The
reason is that we would have to find the Fourier
transform of u,(k, 8; — B?) in order to take into
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account the retardation effects that oceur for 8; # 8.
However, it should be further noted that the retarda~
tion effects [essentially the contributions from
u,(k, 2xtv) for » £ 0] play no role in cutting off
the divergencies. Only the Debye screening length
in the » = 0 is needed for the larger cutoff for m = 3,
and only the pure Coulomb part of the screened
potential is needed for » < X. Thus to get the leading
term of S,,,, we can neglect retardation effects, and
use the static approximation, Eq. (19). The ladder
diagram integrals for static potentials can be written
in configuration space; the result is

Sz, m.e1(static) = Jofefi(—2.2:8)"

xf---fd3r,---d37‘,..u(r)"'“("-)

1>om> s >0,
Xf dv,, + - fdu‘
0 0

exp [—(r; — r1)2/47‘:i(1)2 — )]
[47R2:(v, — vl)]*

exp [—(r; — 1) /4K (vs ~ v5)] e
[4nR5i(vs — Uz)]‘

€xp [—(rm - r1)2/47\zi(1 — Um + Ul)].'
4rks(1 — v + v)]*

X

X (23)

Equation (23) is the mth term of the perturbation
expansion of the quantum mechanical second virial
coefficient. By using u(r) = (¢*/r) exp (—7/Ap) in
(23) we have an approximation to the exact expres-
sion, Eq. (16), that is sufficient to give for m = 3
the logarithmic leading term and constant following
it. For r > X,; the integrand of (23) reduces to the
classical form, [u(r)]”/m!. After a change of vari-
ables in (23) for m = 3,

=TI, =T+ XX, T =T + XX,

we have

1 v
Sass 2 botfi(—z2) [ @ [ @a [ [ o, [

X fo " dv, u(ru(lr + Rax, Du(lr 4+ AaXa|)

€Xp {-[x?/‘l(vz — o) + (x; — x1)2/4(v3 —v) + x§/4(1 — v + v)]}

X

In order to obtain the asymptotic form of this still
difficult integral for the Debye potential we break
the integration into two regions, r < Rand r > R

[(47")2(’)2 — o)y — v)(1 —vs + vl)]i

- (29

where R is any length such that X,; < B < MAp.
For r > R the potentials are essentially independent
of X.; and the classical form may be worked out
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to be
e 1(—6 o2 2)3
Sz.s.e;(r > R) = Ef_fFZ!z_ﬂ;_
© y e—r/)q:.g_ ffA ) -
X‘/R 4ar d"( r ) - ( N 12 [— logB/\o — log3 — C + OR/M\o) ---],  (25)

where A is defined as in Eq. (22). .
For r < R the simplest procedure seems to be to neglect the unnecessary screening factor,
exp (—r/Ap), since B < \p, and to make explicit use of the 1/r form of the potential. Thus we have

8,5..(r <R) = —iz—a—u--Azf dv3f dvzf dvlfdxl flmny dy

X 37 [Y? 4+ 2veiyz: cos 0, + 22y + 2vayzs cos 6 + vl

xp {—[23/4(v, — v) + (Xo — %) /4(vs — ) + 23/4(1 — v; + )]} 26)
[(4”") (¥ — v)(Wa — vo)(1 — v; + 7)1)];

The r integration (y = r/\p) is done in three regions,

xe

Yeii < Yoila <Yy Yeoils < Y < Yeilzy ¥ < Yeil1 < Yeilo,
with the result

R/AD 1 1 1
? =1 1/74; (2, T2, 0), 2
[0 VA e T ] = OB @A) + 8(ei, 3, 005 0) @0

where cos 8 is the angle between x; and x,, and

(21/2:) "Po(c0s 0) Yaza)™ | 4 (@ = 21) §~ (@a/m)"Po(cos 0)
—log z, + ; m [:1 - /)\D) :| ,; @n+ 1)

(21/25)" "Pa(cos §) 1 @/ (2 /xz)"”:l L X
+ @n + Den + )~ ~lgnt g 2 P.(cos 0)[ p w1 | = ~loga t i@/m)

273 -1
+ 3 log (2(1 — cos 0){':1 - 2%0050-!— (i—;)] - cos0+;c—;}
. z x 27y x -1
X [1—2—‘cos0+<—‘)_|——‘cos0+1 ) (28)
(71 o T

For z, < z, in expression (28), z, and z. are interchanged. Combining (26) with (25) removes the
joining point R to logarithmic accuracy and one has

a0 (1) 4 2],

3(x,, x5, cos 0) =

where
D,= —log3—-C+1,

1 L1 v
I=3! f dv, f dv, f dv, f d’z, d°z, 9(zy, 2, cos 6)
0 0 0

% exp {—[al/4(v; — v)) + (X2 — %,)*/4(vs — ) + x2/4(1 — v+ vl)]}
[(4m)*(vs — v2)(vs — 02)(1 — 05 + Ux)]
The constant D, in the classical case can be evaluated exactly, and the result is given in Eq. (4). The
quantum constant D, has not proved tractable, but presumably is of the same order of magnitude as D,.

IV. HIGH AND LOW FREE ENERGY OF THE ELECTRON GAS

We have seen from the results of the previous sections that when the fundamental lengths of an
electron gas are ordered as B¢ < X < Ap then the appropriate dimensionless parameters for expressing
the thermodynamic functions are the ratios A = Be*/Ap and v,, = X../Ap. The free energy has the form
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B(F — Fo) = —N[3Ag:(veo)

+ ‘112'1\293(7”) + Agu(vee) + ---1, (30)
where
g(7) =1 —Ferlv+ 4 — -+,
9s(v) = logv + D, + O(y) ---,
. . (31)
gn(y) = ,YGT"'—% aT'"_zz

+ @m.m—Z(IOg Y + DM) + 0(7)'

The function g,(y) from the ring sum may be worked
out to all orders in v (see Ref. 3). In Sec. III the
log v part of gs(y) has been obtained, and the con-
stant D, appears as an intractable integral. The
coefficients @,,, of the leading term of g,(y) may
be reduced to integrals something like the expression
for D,, but no way has been found to evaluate them.
The coefficient of ¥ in g¢,(y) includes nonstatic
effects.’”” For m > 3 the nonstatic effects also appear
in the coeflicient of the O(y).

The exact results that have been obtained so far
are useful, though limited. One sees that the O(Ay)
term from the ring sum is the most important
quantum correction, and this is followed by the
O(A” log ) term from the three-rung ladder. The
pressure of the electron gas obtained from (30) and
(31) is

BPV = p 2 gF
dp

= N[l — 3AQ — $rbvee + 9l — )
— 12A%(log yee + Dy + %) -+ -1 (32)

The O(Avy®) term in the ring sum is known, but
there is little point in retaining it unless the O(A%/y)
term from the four-rung ladder is also retained.

We now compare the high-temperature quantum
mechanical result, Eq. (30), with the result for a
nearly classical electron gas. Nearly classical will
be taken to mean kT < Ryd so the A < g¢’."* The
classical limit (A = 0) was obtained by Abe,” and
small wave mechanical corrections may be calculated

2 Tf the » 5 0 contributions to the ring sum are neglected,
the coefficient of the O(y) term is (#t//2-8)(6 — 24/2)
which differs from the correct value 3#t/16 by only about

5 0+

13 Evidently since nearly classical means low temperature,
there may be some question about the validity of assuming
Maxwell-Boltzmann statistics. The importance of quantum
statistics is measured by the size of the quantity px3/(2s + 1),
where s is the particle spin. Note that assuming an arbitrarily
large spin s is a way of removing particle indistinguishability
from the quantum mechanical problem.
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from the Wigner-Kirkwood (WK) expansion.* The
appropriate dimensionless parameters are now A =
Be*/Ap and the WK expansion parameter 7, =
Xee/Be® = 7.o/A. The free energy now has the form

BF — Fy)

= —N[S,(A) + Z; S.(A) + A’G(n)], (33)
and exact results for A < 1 and » < 1 as far as
they are known at this time are
B(F — Fo) = —N[3A + f2A%(log A + D)

+ A log A + -

+ A(=dm" + thon’ + 1hen” o). (39)
The functions S,(A) are the terms of the nodal
expansion® which describe a cluster of n particles
interacting in all possible allowed ways via the
Debye screened potential. The function G(5%) gives
the residual wave mechanical effects as calculated
from the terms of the WK expansion.'® In Eq. (34)
the terms of order A’ log A, A%, and A® log A are
the first terms in the expansion of S;(A). The three-
node term, S;(A), was shown by Friedman to begin
with aA® + bA* log A, but the constants a and b
are not yet evaluated. According to Friedman, S,(A)
also begins with 0(A%), while S;(A) and Se(A) begin
with O(A*) and 8,(A) with O(A®). It seems likely
that the 8,(A) functions become smaller than the
beginning terms in a systematic way but there is
no proof yet. The expansion does apparently con-
verge.'® The parameter A in the nodal expansion
takes the place of the density when compared with
the Mayer cluster expansion for ordinary nonideal
gases. However, unlike the Mayer expansion for
which the irreducible cluster integrals of order =
form the coefficients of p", the nodal expansion is
nonanalytic in A, as evidenced by the appearance
of log A. Equations (30) and (34) give exact results
for the wave mechanical corrections in the respective
limits Be® < A(kT > Ryd) and 8¢* > & (kT < Ryd).
In order for the two results to pass from one to the
other when k7 =~ Ryd the function G(x°), for which
only the first three terms of the series expansion
are known, must have the form for o > 1:

11T, D. Landau and E. M. Lifshitz, Statistical Physics
(Addison-Wesley Publishing Company, Reading, Massa-
chusetts, 1958), pp. 96-103. The author thanks Jan Grzesik
for performing the extremely tedious calculations required
for obtaining the O(%®) term 1n Eq. (34).

15 H. E. DeWitt, J. Math. Phys. 3, 1003 (1962). Equation
(52) in this paper is incorrect since it gives the high-tempera-
iau(xi'((ei form of S;,2 and the WK expansion of the higher-order
adders.

18 S, Brush, H. E. DeWitt, and J. Trulio, Nucl. Fusion 3, 5
(1963).
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3
n - _ T
+ fs(log n + Dy — D) + Gs,/n + +-+ . (35

It is reasonable to expect that G(4°) is a smooth
function between the known limiting results (24)
and (35), but at present it is not known how to
calculate it when 7 &~ 1 (kT &~ Ryd). To understand
the two results it is helpful to draw on analogies
with scattering theory. Note that the parameter g
may be written as

Yn = ¢'/h),

where (v) is a thermal velocity. Thus 1/4 is a measure
of the validity of a scattering calculation in the near
classical limit (¢®/hv >> 1) or scattering in the Born
approximation (¢’/Av << 1). In the quantum me-
chanical form of the free energy, Eq. (30), the RPA
term is something like the calculation of the scat-
tering amplitude with the dynamic screened po-
tential in first Born approximation, the three-rung
ladder giving the log v is roughly equivalent to
a second Born approximation of scattering in the
static screened potential, and the evaluation of
gn(¥) =X @m/y™"° is equivalent to higher Born
approximations with the pure Coulomb potential.
The function G(y°) is shown in Fig. 3 with the
region of uncertainty between the known limits
shown as a dashed line. This region, n /& 1, requires
a complete quantum mechanical calculation, and
no expansion procedure will help. Since, however,
only the Coulomb potential is involved, it seems
likely that this function can be exactly calculated
because the Schrédinger equation can be solved
exactly for the 1/r potential.

It is important to note that the quantum correc-
tion in the ring sum, O(Ay), O(Ay?), etc., are valid
only at high temperature, i.e., when A < . It is
deceptive that these corrections apparently vanish

T T T T 7

G(72)

.F1a. 3. Plot of G(»*) vs n. The solid portion for 5 < 1is
given by Eq. (34), and the solid portion for 3 > 1 is given
by Eq. (35). The dashed line for y ~ 1 connecting the two
solid gxeces indicates the region of uncertainty which can pre-
sumably be calculated with the exact Coulomb wavefunctions,
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as v — 0, since when vy < A, Eq. (34) is valid
rather than (32). If one considers the ring sum
alone, it is easy to come to the erroneous conclusion
that the free energy is an analytic function of A
in contradiction to the WK expansion.

V. THE MULTICOMPONENT PLASMA

Using the results of the previous sections we can
now write down the free energy of a real plasma,
such as fully ionized hydrogen. Because of the dif-
ferent particle masses, m, and m;, of a two-com-
ponent plasma there will be three thermal wave-
lengths, A.., Ao, and A;;, which must be compared
with Be’. Since protons and other ions are 2000
times and more heavier than electrons, the normal
situation in a fully jonized plasma such as hydrogen
with kT > Ryd is that the lengths are ordered as

xii < 382 < xei) xee < )\D
and the appropriate dimensionless parameters are

7 < A < Aoty Yoo < 1.

Consequently the electron—electron and electron—ion
interaction contributions to the free energy are given
by the quantum mechanical limit, Eq. (30), while
the ion—ion interactions are nearly classical and
their contribution is given by Eq. (34). Note that
in this situation the ring sum must be broken up
into the various parts S.ing.eey Sring.eiy 1A Sying,i1
as given by Eq. (22), because the ion~ion quantum
corrections in the complete ring sum are not valid
when X;; < Bé°. The complete result for the multi-
component free energy to logarithmic accuracy is

A 3!
B(F — Fo) = —N{g [1 ~ 16

X (&efeves + 222ifofiver) /)

lzif;vﬁ . _A_2 6.2
+ 4 <2?> } + 12 [zefe(IOg 'Yee + Dq)
+ 2z:z?fefi(10g Yo + D)

+ :e?ff(logz—if-ie—2 + Do>] / @ + % A’G(ﬂzi)}‘
(36)

Equation (36) is valid for hydrogen for the tem-
perature region Ryd < kT < (m;/m.) Ryd. At much
higher temperature when X;; > 2}ge¢’ the ion—ion
interaction must also be described quantum me-
chaniecally.

A low-temperature result for the free energy of
a multicomponent plasma analogous to Eq. (84) is
not possible since the multicomponent plasmsa has
no classical limit. As the temperature is reduced
below a rydberg, bound states between electrons
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and ions begin to form. A rigorous calculation of
the free energy of a partially ionized plasma in-
cluding hydrogenic bound states has yet to be
carried out.'”

VI. DISCUSSION

The principal results of this paper, Egs. (30) and
(36), show that wave mechanical effects persist at
high temperature. Thus plasmas with k7 > Ryd
are not classical. In order to understand physically
how this happens it is useful for a moment to con-
sider a many-body system interacting with a more
singular pair potential, u(r) = g,/r*. The average
distance of closest approach defined by (u(r)) ~ kT
is I, = (g,/kT)"?, while the thermal wave length
is X = h/(2mkT)*. At high temperature we see that
l, > X when p > 2. Thus the repulsive 1/r” potential
is sufficiently hard that the particle wave packets
with extension X eannot intermingle at high tem-
perature. Thus such a many-body system is evidently
classical in the high-temperature limit, and the WK
expansion may be used to give wave mechanical cor-
rections since the WK expansion parameter n = 1/,
is indeed small for large T'(yn « T*"'/?), In the plasma
case, p = 1, the 1/r potential is sufficiently soft
that the distance of closest approach becomes less
than the de Broglie wavelength at high temperature,
i.e., €/kT < X when kT > Ryd, and consequently
the particle wave packets overlap more at high
temperature.

In this paper we have assumed Maxwell-Boltz-
mann statistics because we wished to focus attention
on the quantum effects due to the uncertainty
principle rather than effects due to particle in-
distinguishability. Nevertheless a complete accurate
treatment of plasmas requires the inclusion of quan-
tum statistics even at high temperature because
exchange interactions are of the same order of
magnitude as some of the wave mechanical effects.
The first-order exchange term is of the order of
v*/(2s + 1) and seems to be safely negligible com-
pared with A from the Debye—Hiickel term. The
second-order exchange term is also finite and is of
order Ay/(2s + 1), and hence is comparable to the
first diffraction correction in the ring sum. The third-
order exchange appears to be of order A*/(2s + 1)
and thus contributes an additional constant to be
added to D, in Eq. (31). A complete discussion
of statistic effects will be deferred to a later paper.

In view of the exact results now known for the

17T, Nakayama and H. E. DeWitt, J. Quant. Spectr.
Rad. Transfer 4, 623 (1964).
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plasma free energy it is worthwhile to comment
on one approximation method used by various
authors in recent years. This method is the attempt
to find an effective or pseudo-potential replacing
¢’/r in the classical calculation which is to include
to some degree quantum effects. Such an effective
potential must reduce to the pure Coulomb potential
when r >> A and be finite as r — 0. One of the earliest
forms and also the most tractable one for analytical
evaluation is

2.2:€

Uors(r) = _‘1',‘— 1 —e ),

@37

which was used by Glauberman and Yukhnovskii.'®
In order to describe wave mechanical effects the
quantity «,; must be a/A,; where a is a constant
to be chosen by some suitable criterion. Recently
Kelbg has proposed*®

2
u,u(f) = 2__82;6 {(1 — e—r'/zx”’)

V2 xr

+ xei

1 — Erf (v2r/ X.i)]} ,  (38)

and a rather similar form has been obtained by
Koppe and Hagenow®® by approximating the Wigner
distribution. These effective potentials may be put
into classical expressions such as the ring sum, Eq.
(2), and the ladder integrals, Eq. (4), and one can
obtain quantum corrections of the same form as
the exact results exhibited for the high-temperature
electron gas in Eq. (30). Any such effective potential
that is finite at r = 0 (usually proportional to e*/X)
will cut off the short-range divergence of the three-
rung ladder and give correctly the ¥zA® log ¥ term
in the free energy. Getting the exact value for the
coefficient ##* of the Ay term in the ring sum is
harder since the region r & A contributes most.
Kelbg’s potential gives this result very closely and
also the coefficient of Ay®. The simpler form, Eq.
(37), gives the coefficient of Ay when a is chosen
properly, but not the coefficient of Ay®. Such effec-
tive potentials are interesting to try since the calcula-
tions of the free energy are much easier than the
exact integrals of the quantum mechanical per-
turbation theory. For example, by using Eq. (37)
one can obtain an approximate value for D, and

18 (a) A. E. Glauberman and I. R. Yukhnovskii, Dokl
Akad. Nauk SSSR 93, 999 (1953); see also (b) translation,
UCRL Trans. 668 (L).

1 G. Kelbg, Ann. Phys. (N.Y.) 12, 354 (1954).

20 K. Hagenow and H. Koppe, Proc. 5th Int. Conf. Toniza-
tion Phenomena in Gases, Paris 1963, p. 221.



626

the coefficients @,,, in Eq. (31) for the higher-order
ladder terms. Nevertheless, in the opinion of this
author, this semiclassical approach is of limited
usefulness since the validity of the results obtained
by using any u.s; can be tested only by comparison
with exact results.

HUGH E. DeWITT
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In the complex energy plane, the pure Coulomb 7' matrix possesses branch points which would not
appear if the force were properly defined. This is demonstrated by a study of the secreened Coulomb 7'
matrix in the limit as the sereening radius R tends to infinity. No branch points develop if the proper
order of limiting processes is observed and the results agree with previous calculations; however, the T
matrix is discontinuous in the limit. A formula for the screened Coulomb 7' matrix is given which is

valid to order 1/R for all energies.

I. INTRODUCTION

HE T matrix for a system undergoing scattering
is given by

T=V+VI1/E +ie— K — V)]V. ey

Here K is the Hamiltonian for the system in the
absence of interaction, and V is the interaction giving
rise to the scattering. The total energy of the system
is denoted by E; the small imaginary term <e serves
to make the Green’s function

G=1/E+ic— K — V) @)

well defined.
We consider the T matrix in the momentum rep-
resentation, with matrix elements denoted by
(k,|Tik,). It is convenient to introduce a complex
wavenumber &, which is related to the total energy

by
E + ie = B°K*/2m,

thus the energy dependence of the 7' matrix may be
indicated explicitly by (k|7 (k)|k,), or simply T'(k).

For most quantum-mechanical systems, the 7T
matrix cannot be given in closed form. However,
the case of a two-particle system with pure Coulomb
interaction has been studied extensively, and re-
cently Hostler and others' derived integral repre-
sentations for the Coulomb Green’s function which

1 L. Hostler, J. Math. Phys. 5, 591 (1964); J. Schwinger,

ibid. 5, 1606 (1964); E. H. Wichmann and C. H. Woo, ibid,
2, 178 (1961).

0 <arg k) <m;

reduce to hypergeometric functions. From these
the Coulomb T matrix can be obtained directly.

The resulting expression for T'(k), however, has
the drawback that it does not approach a well-
defined limit as k> — k2 or k* — k2, and indeed has
branch points there. This behavior is certainly not
correct, for one can show on very general grounds
that the only singularities of T'(k) should be a branch
point at £ = 0 and simple poles on the imaginary
k axis corresponding to the bound-state energies
of K+ V.

The correct form of the T matrix when k¥* = k2
is given in Ref. 2, where a similar anomaly in the
limiting process |k,|—|k,| was studied. The difficulty
there was traced back to the long-range nature of
the Coulomb force and disappeared when the effects
of shielding were introduced.

In the present case the unphysical branch points
are also due to neglect of shielding effects. The
scattering of charged particles is caused by an in-
teraction which is always screened at very large
distances; the T' matrix may therefore properly be
regarded as depending on two parameters, ¢ and the
screening radius B. To find the value of T'(k, R)
for real k, one must take ¢ — 0 followed by B — .
Usually, the ordering is unimportant, but the branch
points at k? and kI occur in Hostler's expression
because the limit R — « has been (implicitly) taken
first.

2 W. F. Ford, Phys. Rev. B133, 1616 (1964).
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LIMITING FORMS OF THE SCREENED COULOMB T MATRIX

The present work is intended to clarify the situa-
tion by studying the behavior of the screened
Coulomb 7' matrix in the limit R — o, In Sec. II
the formalism is established and applied to the cutoff
Coulomb potential. This interaction is chosen be-
cause it allows one to determine unambiguously the
effects caused by extending the potential past the
cutoff radius. In Sec. IIT these effects are isolated,
and a general expression for the screened Coulomb
T matrix is derived, which is valid to order 1/R for
all k.

In Sec. IV the limits ¢ —» 0 and B — <« are taken.
We find that branch points at k? and k3 do not appear
if the proper order of limits is used; furthermore, the
resulting T matrix agrees with that obtained in Ref.
2. For other values of %k, the screened and pure
Coulomb 7T matrices are identical in the limit
R — . Hence, the order of limiting processes is
unimportant except in the vicinity of k* = kI
and k* = kj or when |[k,| = |k;|. (The last case
requires special treatment and is not considered
here; in the following sections it is assumed that
lk,| # |k,|.) The branch points in the pure Coulomb
T matrix are due to that part of the potential beyond
the screening radius R; Sec. V treats the effects of
this part of the potential on the plane wave part of
the pure Coulomb wavefunction.

II. SCREENED COULOMB I MATRIX

We begin by making an expansion in Legendre
polynomials of the T matrix for an arbitrary central
potential V(r):

(| T k)
B
= m IZ_% @+ DPuls-E)ka| To [R). (3

The coefficients (k,|T:|k,) are given by?®
(2] T k)

- erj_m f_ll I&| T )P dp (= kioks), (&)

and may be obtained by using Eq. (1) if the Green’s
function is known. This is accomplished by making
an expansion of the coordinate representation of the
Green’s function:

we =22 pemndarm. o

After the angular integrations are carried out, we
have

3 The expansion here differs by a minus sign from that
used in Ref. 2.
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<k2| Tl lk1> = Bz + ﬂ[z; (6)
where
Bo= [ iGnWoidery dr, @
and

_ © . © )2 ,
M, /; 7 dr/; " dr’ §i (k) W(r)

X | G [r YW ()i’

with W) = @m/R)V ().
To obtain the partial wave Green’s function
{r|G:|r’), we write the operator equation

(E+ie—K—V)G =1

in the coordinate representation, which leads to

@

[:}(%57“ + K - w—;—’—” - W(r)](rl G ')

6 — !
= _(L;z_”_) ©)
The solution to this equation is easily shown to be

| Gy ')y = (1/ikrr)Fa(r)HA(r5), (10)

where 7. is the smaller and », the larger of r, v/, and
where F, and H, are the regular and irregular
solutions of

[ - 2ED o o =0 av

having the asymptotic forms
Fi(r) ~ cos [kr — 4x(Il + 1) + &1,

H (r) ~ e’”kr—ir(l+1)+61]
1 .

(12)

With this normalization the Wronskian of F, and
H, is equal to k.

We now apply these formulas to the cutoff
Coulomb potential

Vo) = J[Vo/r, r <R,
0, r>R.

The solutions of Eq. (11) must in this case be pro-
portional to pure Coulomb functions for r < R, and
to free-particle functions for r > R. The Coulomb
functions are normalized so that their Wronskian
is equal to 4k, and the free-particle functions are
so chosen that the asymptotic forms of Eq. (12) are
obtained for large

P = {N,F:(r), r<E,

%kr[e”'h(,l)(kr) _|_ e—i&lh(l‘z)(k,’.)], r> R,
(14)

(13)
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-1 e
O
kre'®*h{" (kr),

Here h{" and h{* are spherical Hankel functions;
the pure Coulomb functions F; and H; may be
written*

Fi(r) = 3Cy(n)(2kr)"""e™

r <R,
r>R.

(15)

X &1+ 14 ig,20 + 2; —2kr), (16)
Hir) = &7 (= 2kr)' o™
X ¥ 4+ 1 + 9, 21 + 2; —2ikr), (17
where
Ci(n) = e ¥ [T + 1 + in)/T@2L + 2)], (18)
e =T1+ 1+ i)/TU+ 11—, (19

and 1 = mV,/k’k. The quantities N, and §, are
determined by equating logarithmic derivatives of
F, at r = R, but to first order in 1/R this is equiv-
alent to matching amplitudes and phases; ac-
cordingly,

N, ~1, 6:(k) ~ o, — n In (2kR). (20)
For brevity we introduce the functions

w(r, K) = rj(Kn)W@Fi(r), (21)

vi(r, K) = rji(Kr)W(n)Hi(r), (22)

so that M, may be written

1
M=%,

1 R r
+ fo 0i(r, k) f w(r, k) dr' dr.  (23)

B R
wi(r, k) f vi(r’, ky) dr’ dr

Now, by reversing the order of integration in the
second term, we can show that

M, = ml(kz; kl) + mz(ku kz) = m; + 771'1,
where

1 R R
mulle, k) = o fo w(r, k) f @, k) dr' dr. (25)

(24)

In principle, therefore, evaluation of the cutoff
Coulomb 7 matrix has been reduced to evaluation
of m;(k,, k,) and the integral
R
B =20k [ ikadikolrdr.  (26)
0
[A detailed study of the I = 0 terms m,(k;, k,) and
B, is given in NASA TN D-2781.]
¢ Notation and formulas for the confluent hypergeometric
functions @ and ¥ are taken from Bateman Manuscript
Project, Higher Transcendental Functions, edited by A, Erdélyi

(McGraw-Hill Book Company, Inc., New York, 1953),
Vol. I, Chap. 6.

WILLIAM F. FORD

III. T MATRIX FOR LARGE R

The difficulty with the foregoing analysis is that
it leads to expressions so complicated that the sum-
mation over ! cannot be carried out in closed form.
Since in practice the screening radius is always very
large, one is then tempted to take limit B — « in
the hope that the resulting series can be summed.
This approach is successful, but care must be taken
when &* — k? or k> — k] because the limiting process
is nonuniform.

We begin by rewriting m, in the form

tkm, =f u;(r)f v,(r’) dr’ dr
0 r

[ [ oe]

— fR ") f " o) dr dr,

which is possible if u, and v, are given some suitable
definition for r > R. For the present purpose it is
convenient to require that «; and »; have the same
functional form for r > R as for r < R;le., u; and
v, are proportional to pure Coulomb functions times
spherical Bessel functions for all r. With this de-
finition, the first term in Eq. (27) is just what one
would write for the pure Coulomb® T matrix, and
to emphasize this we write

my(R) = my()

@7

— (/TR VAR) + o(1/R),  (28)
where
UR) = fo " ) dr 29)
and
ViR) = fR " o) dr. (30)

The third term in Eq. (27) has been dropped because,
as shown in Appendix A, it is ©(1/R) for all cases
considered here.®

Generally speaking, the second term in Eq. (27)
may also be neglected. To see this, consider the
asymptotic forms of «; and v,,

sin (k,r — 37l)
ksr

~ 3xl + o1 — 9 In (2kr)],

U (r) ~ 29k

X sin [ (31)

8 By ‘“pure Coulomb” we mean a quantity obtained by
assuming B = « at the outset, as opposed to taking the
limit B — « at the last.

¢ For simplicity, the symbol 9(1/z) is used loosely through-
out to denote any term which vanishes when z —» o,
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sin (kl'r _ %ﬂ'l) ec’(kr—}rlﬂn) )
ky (2’67‘)”

From Eq. (32) it follows, on integration by parts,
that

U;(T) ~ — 21:1]’9

32)

Vz(R) = (33)

e;kR 1
(2kR)*" G[Gcz - kf)R]'
From Eq. (31) one can show that

[e™*/(2kR) ™[ru(r)]

is a bounded function of r for r < R, B — «; con-
sequently, the quantity e™**U,(R)/(2kR)*" has no
worse than a logarithmic singularity as R — «, and
therefore

UR)Vi(R) = o[1/(* — K)R]. 34)

Equation (28) shows that m,(R) is given by its
unscreened value m;(«) except when contributions
to the latter from large r are important, and these
occur only when k* — k2. Similar conclusions may
be drawn for #i;(R), the critical condition becoming
k* — k2. Since B;(R) = B,(«) + 0(1/R), we may
write

(kal Tulle, B) o) = (k| Tk, ) o) + o(E})

o ptmm) + ol @

or, after the summation over ! has been performed,

el T B) ) = (ia] T, =)l + o(3)

1 1
+ "[(k” = k?)R] + 0[(1& - kg)R]' (36)
Now let us attempt to obtain a result more general
than Eq. (36). This requires that we extract from

the neglected terms and retain those parts which
are important when

(k* — k)R — 0 or (k* — k)R — 0.

For this purpose the quantity U,V, must be ex-
amined in greater detail.

We begin with V;, which is given asymptotically
by

Nﬂ i} ‘/‘w €
Vi(E) k, ¢ & (2kr)*"

ikr

dr.

X [e—s'k,r + (_1)l+leihr] " (37)

A change to ¢t = r/R as the variable of integration
yields
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VilR) ~ 75 €™ Gk — k)R]

+ (=D"fl(k + kJRY}, (38

where
f(x) = 1:17 f t—l—!'nes'zt dt
1

= i ¥(l, 1 — iy; —iz), |arg (—iz)] < in.

39)

The asymptotic form of f(z) is easily found to
be —ne’®/z, while for values of z approaching zero,
the relation

e ¥(1, 1 — 49; —iz)

= &(—in, 1 — in;dz) — (—ix)"T(L — i)  (40)
yields
f2) 21— (—2)"T(1 — in). (41)

When applied to f[(k — k,)R)], Eq. (41) gives
fltk — k)R]
= 1— Co(n)e " [(ky — BR]™ + o[(k — k)R]
= 1= Co(me™ ™ ®[(k — k)/4K7)"" 4 o[(k — k)R],
(42)

where

—2r <arg (ki — k) < 0. (43)
The corresponding result for f{(k + k.)R] is exactly
the same, except that the neglected terms are, of

course, O[(k 4+ k,)R]. Combining these results, we
have for the behavior of f[(k &+ k,)R] as R — «

kR 1
(2kR)" 0[(# - kf)R]' (442)
f[(k =+ kl)R] = ~ 580k K — kf “
t — Gy (EH)
+ O[(K* — KDR].  (44b)

Before proceeding, let us note that to 0(1/R) the
product U,V, can be written in the form

Afl(k — k)R] + Bfl(k + k)R] + o(1/R),

where A and B are yet to be determined. We are,
in fact, able to give exact expressions for A and B,
valid for all k. However, since f[(k — k,)R] is al-
ready O(1/R) except when k — k,, an exact expres-
sion for A is really necessary only in the vicinity of
k = k,. Similarly, an exact expression for B is really
necessary only in the vicinity of & = —k,. For this
reason we immediately put k/k, = =1 in Eq. (38)
and write
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ViR) = —ie {fl(k — k)R]
+ (=D'fl(k + k)B]} + 0(1/R).  (45)
Next we demonstrate that
(ko] Ti(k, R) k) = (N /B)U(R),  (46)

ie., U, is proportional to (k.|7.(k, R)|k,) for the
special case where k, is complex and equal to k. The
proof begins with the observation that Egs. (6)
to (8) may also be written as follows:

Gl T B) ) = [ iWEwn dr, @)
where
) = i)

+ [ ¢l 6@ ety ar, @9

and k, has been set equal to k.

Equation (48) is almost identical to one of the
well-known integral equations for the radial wave-
function F,(r); it differs in that the wavenumbers
in §,(kr) and G, (k) are exactly equal instead of equal
in the limit ¢ — 0. This circumstance makes the
integrand in Eq. (48) a perfect derivative, however,
and, as shown in Appendix B, the result is what one
might naively expect:

$i(r) = ¢ Fu(r)/kr]. (49)

Equations (47) and (49) then lead directly to the
desired expression for U,(R).

As mentioned above, in order to determine U,V
to 0(1/R), the coefficient of f[(k — k)R] must be
known exactly only when & = k,; therefore,

€ /) UR)(k — k)R]
= fl(k — k)R] /E)ULR)]imr, + O(/R)
= fl(k — k)R] Tu(ky, R) |ki) + 0(1/E).
In like manner we may write
" /R UR(k + k)R]
= fl(k + k)RKk:| To(—Fky, R) |—k1) + 0(1/R)

= (=D'f(k + k)RKEs| To(—ky, B) k) + 0(1/(R))-
51

[The fact that §,(—z) = (—1) 'i,(x) is used to obtain
the final form of Eq. (51).] From Eqgs. (45), (50),
and (51) it follows that

my(R) = mi(») + fl(k — k)RI(k:| To(ky, R) |ky)
+ f[(k + kl)RKkz' Tz(_kn R) lk1> + Q(I/R). (52)

The expression for #i;(R) is similar, but with &k, and

(50)
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k. interchanged. Using the symmetry property

<kl| T.(k) |k2) = <k2| T(k) |k1>v (53)
and its consequence
<kxl T(k) [k2> = (kzl T(k) |k1>: (54)

which can be readily established from Eqs. (7) and
(8), we may give a general expression for the screened
Coulomb T matrix, correct to ©(1/R) and valid for
all k:

(k| Tk, B) [k)) = (k| T(k, =) [ky)
+ fl(k — k)EYk.| T(k,, B) [k,)
+ fl(k + E)RXk.| T(—Fy, B) [ky)
+ fl(k — k)EKk.| T(k,, B) ki)

+ fl(k + k)RYk, | T(—ks, R) [k + O(I/R)-( |
55
IV. LIMITING CASES

To complete the study of the screened Coulomb
T matrix, we need closed-form expressions for the
T matrices that appear on the right side of Eq. (55).
The first is the pure Coulomb T matrix with complex
k, which may be obtained from Hostler’s work and
written as follows:

] T, ) e = 35 G0, (56)
where
(1+) _ in
I@) = 2in(l — &) fm (’; — }) o 1 s ds,
(57)
=1+ [k — )& — /K& —k)*].  (58)

The integral I(z) may be evaluated by changing to
t=(s—D/s+ 1D
as the variable of integration, with the result

I((E) = |:2F1(1 7'77: 1+ 21), —_l_- })

— (1 i1 42 |

Considered as a function of k, I(x) has simple poles
at in = —n(m =1, 2,3 --.) and branch points at
#* = 1 and 2 = «. These latter points correspond
tok® =k} k* = k%L kK’ = 0, and ¥* = «. The be-
havior of I(z) as z — 1 may be determined by an-
alytic continuation of the hypergeometric series and
is given by

10 - ()" - 1

—2r < arg (—i—-_?_—}) < 0.

(59)

(60)
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Applying this specifically to the case k* — k2, we
can write

(ko| Tk, =) |k

Vo oy (ks — K™ (k? - k)
— o2 Co(")) [(kz — kl)z]“.;,, 4]63 y (61)
where
—r < arg (k3 — k) < m, (62a)
—2r < arg (k1 — k) < 0. (62b)

Next we consider the screened Coulomb 7 matrices
appearing in Eq. (55). All these can be obtained in
closed form from the basic result of Ref. 2,

(ko| T(k, B) [Ky)|ers,n

Vo v 30 (k) (kg - kz)"n (é)
= —3 C T (Sl =g
27I' 0(77)6 [(k2 _ k1)2]1+m +

Although Eq. (63) was originally derived with the
assumption that k = k,, it also holds for &k = —k,.
To show this, we note from Eq. (1) that T(E — ¢) =
T(E + 1¢)* if V and K are real. From this, in the
limit ¢ — O,

T(k — kie™) = [T(k — k)J*.

Equation (63) satisfies this relation and therefore
holds for ¥* = k. The symmetry property (54)
may be used to obtain the result for k* = k.

We can now see explicitly how the screened
Coulomb T matrix behaves as R — . If k is com-
plex, or is real but not equal to £k, or 3-k,, all the
f functions in Eq. (55) are ©(1/R), and therefore

lim (k| T'(k, B) ki) = (ko| Tk, ) [ky)

R—o
_ Ve 14 I
T 2r' (k, — k)’

(63)

(64)

But when k approaches one of the critical values,
say ki, Eq. (55) reduces to

(k.| T(k, R) k) = (k.| T(k, =) [k)
+ fl(k — k)RIK,| T(ky, B) [ki) + ©(1/R).  (65)

The T matrix is thus represented by a combination
of two terms, one correct for R = «, k # k,, and
the other correct for k¥ = k,, B < o; which term
dominates is determined by f[(k — k)R] If R — «
faster than k — k,, the first term dominates, and we
are led again to Eq. (64). As discussed previously,
however, the limit B — = is actually a convenience
and should be performed last, which corresponds to
(¢ — k)R — 0. Comparing Eq. (44b) to the T
matrices as given in Egs. (61) and (63) reveals that
in this situation a cancellation takes place and
yields
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(| T(k, B) k) = ;| T(ky, R) [kcs)
1
+ el — kaR) + of3)
ANy o
= 9.2 Co(n)e [k, — k1)2]1+iv
+ o[(k — k)R] + o(E})- (66a)

In the general case, where (¢ — k,)R approaches
some fixed value as R — =, use of Eq. (40) leads to

(ko| T(k, RB) k) = (&| T'(ks, B) [Iy)

X ®[—in, 1 — in; ik — k)R] + o(1/R).  (66b)

Obviously, similar results are obtained when k ap-
proaches any of the other critical values.

We may summarize our findings as follows: Gen-
erally, it makes no difference when the limit B — o
is taken in the expression for the screened Coulomb
T matrix; the result is identical to the pure Coulomb
T matrix and does not depend on R. The exception
to this generalization occurs when k* approaches
k? or k2. In this case the screened Coulomb 7 matrix
admits of an asymptotic expansion, the leading term
of which is a well-behaved function of k and depends
on R through the logarithmic phase factor e‘*°. In
contrast, the pure Coulomb 7 matrix has branch
points at k? and k3, in addition to being independent
of R.

Near these critical points, the difference between
the pure and screened Coulomb T matrices is due
to contributions to the former from * > R. These
contributions do not affect the angular dependence
of the T matrix, but only its magnitude and phase.
The effect on the magnitude is such as to make the
T matrix discontinuous in the limit B — . This
effect is strikingly displayed when % is on the real
axis; near k,, for instance, we have

}132 (k| T(k, R) |k

Vo 1

= o7 & — &) I, N, 67)
where
Colm), ky >k,
M, = 11, ko =k,
T k
€ Co(’?); 1 < k’ (68)
o, = {0007), ko > ki,
61”‘00(77), k2 < kl'
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V. WAVEFUNCTIONS

A remarkable finding of the preceding section
is that when k* approaches &? or k2, the entire con-
tribution to the pure Coulomb 7' matrix comes from
large values of /. More precisely, the contribution
from 7" > R consists of two parts identical except
in normalization, one of which exactly cancels the
contribution from ' < R. When screening is in-
troduced, the cancellation is prevented. It is perhaps
worth noting that this same phenomenon is re-
sponsible for the well-known distortion of the in-
cident plane wave in a pure Coulomb field.

To see this, consider the wave operator 2(k),
which is related to the Green’s function by the
equation

Qk) =14+ Gk)V. (69)

Suppose that Q(k) operates on a plane wave of
momentum kk;, with & £ |k,|. A partial wave ex-
pansion yields

ARy, = @7 3@+ DPERIRG), (0

where
RBiy(r) = ji(kw)

+ [ ¢l6® ety @, @y

[The radial function R;(r) is generally different from
¥ (r) of Sec. IV, because the wavenumbers in j;(k,r)
and @, (k) are different.] By making use of quantities
defined in previous sections, we may develop the
following exact expression for R, (r):

Ri6) = i) + 3 (NHLOUlre, k)
+ NPROE) — VR, (72)

where r. is the smaller of r and R. [We have written
Ui(r,k,) to indicate explicitly that &, is involved,
not k. as before.]

Now let us determine the asymptotic form of
Ry (r). Since k* # k}, we have V,(r) = ¢*'0(1/r) as
before. Thus, if we suppose r. to be large enough
tha:t N [ 3Eand 1,

Ry(r) ~ ji(kyr) + Q/ikn)[H,(O)Ui(re, k) + 0(1/r)]
~ (k) — (eu'/r)('—i)l(kl Tu(k, ro) ki)
+ o(1/rl). (73)
This equation may be inserted into Eq. (70) and
the summation over ! performed, which yields

Q. ~ Y e — ] 7 79 k) |
74)
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where k = kr/r. The “scattering amplitude”
—(k|T'(k, r.)|k,) depends only weakly on r., through
a logarithmic phase factor e™*7'"#*<); the plane
wave ¢'***" is unaffected.

Although Eq. (74) has been derived assuming a
cutoff Coulomb potential for W(r), this restriction
is not necessary. We can return to Eq. (72), set
R = =, and proceed as before; now the only re-
ference to a cutoff potential is to identify U,(r, k.)
as proportional to (k|T,(k, r)lk,). Thus we conclude
that even in a pure Coulomb field, the incident plane
wave is undistorted if k* = k2.

However, if k> — kI, the result depends critically
on when the limit B — o is taken. Equation (74) is
still valid when k* = k? provided that r > R, i.e.,
the limit B — o is taken last. Here the factor
Vi(r.) — Vi(R) in Eq. (72) prevents any cancel-
lation due to contributions from +* > E. But if the
limit B — o is taken first, the term F,(r)V,(r)
survives and becomes important as ¥* — k2. Now
cancellation does take place, and after some re-
arrangement we find that

R ~ Co(n)<k’ 4-];?]9 ) e F]éf,r) + OC—<2> (75)

or

QE)bic, ~ Colm) (] — £°)/4k11 ¥4,  (76)

where ¢5, (r) is the pure Coulomb wavefunction.” As
is well known, ¢i, is given asymptotically by a
scattered wave plus a distorted plane wave. We
also note from Eq. (76) that Q(k)e., does not have
unit amplitude for large r, a fact first pointed out
by Mapleton.® Both these features which appear as
k* — k2, the plane-wave distortion and the amplitude
renormalization, are due to (unphysical) contribu-
tions from ' > R,
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APPENDIX A. ORDER OF MAGNITUDE OF [3u,V; dr

In the text, the third term in Eq. (27), which may
be written

fR " WV dr, (A1)

" Equation (76) is actually an identity holding for
all r, not an asymptotic equality., This can be proved
by using the integral representation (56) in the relation
Q =1+ (F 4 i¢ — K)7IT and taking the limit k? — k2.
The result is proportional to an integral representation for
the pure Coulomb wavefunction.

8 R. A. Mapleton, J. Math. Phys. 3, 297 (1962).
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was neglected on the premise that it is always 6(1/R)
for cases of interest. To prove this, we first observe
that (using the asymptotic form of ;) the integral
may be decomposed into four integrals of the type

‘/am el')\r
Vi(r) dr
B 7'1+ iy 4

where N and » take on the values »(k & k,) and 41,
respectively. From Eq. (33) for V,(r), we see im-
mediately that e™ "V, (r)/r*" = 0(1/r) unless k¥* — k2;
therefore

(A2)

Cer G

To derive an expression valid when k* — k2, we
integrate (A2) by parts and obtain

1 t’)\
1:)\ { 1+ vy (T)

© _iAr :
+ [ 4 [lil-ﬂ Vi + o) |}
R Tl'l'i!ﬂ r

since dV,/dr = —v,. From Egs. (38)-(41) we can
show that, for all values of k, ¢*"V,(r)/r*”" is bounded
and e*v,(r)/r**" is ©(1/r) as r — . Consequently,
(A4) is 0(1/AR), which leads to

h 1
f); uIV; d’r = O[(kz

° 1
j}; w,V,dr = O[(kz

T

(A4)

sl @

Equations (A3) and (A5) indicate that the integral

is negligible unless k? = kZ, which is excluded from
the present discussion.

APPENDIX B. EVALUATION OF 1,(kr)
In Eq. (48) we encounter the integral

P = f ] G YWY jslor' e dr,

which may be written explicitly as
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P = u%zr [F,(r) f T WS d
+ Hy) fo P dr'] :

where F;(r) = krj,(kr). Recalling that F,(r) and
H,(r) are both solutions of

[Edp - D W(r)]f,(r) -0,

and observing that ,(r) satisfies a similar equation
but with W{r) = 0, we can readily verify that

FOWEmE = & (5 % - 1, 00)

where W(5,, ;) is the Wronskian of ¥, and f,.
Therefore,

= %W(ﬁf,, fl):

1 ¢’ =
P = :ch_r [F;(T)W(EF;, Hl)‘f'-r

+ HZ(T)W(gl) l) lf r=0]y
and after some rearrangement,
1
P = '—LE' [FI(T)W(EH Hl)r"-w
- gl(r)W(Fl; Hl)r’-r - HtW(Gl, F;)f'-o].

Since both F; and &, vanish as (kr)'** when kr — 0,
the last term is zero. The Wronskian of F; and H,
is equal to ¢k, and from Eq. (12) one can establish
that as kr —

W(EFU

For the cutoff Coulomb potential, the upper limit
for the integral P should actually be »* = R, and
thus finally

P =" *PF () /kr] — ji(kr).

This equation leads immediately to the result given
in Eq. (49).

Hl) — ikeibx(k.r)
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KenNETH D. GRANZOW

The Dikewood Corporation, Albugquerque, New Mexico
(Received 23 July 1965)

Spherical outgoing waves of arbitrary time dependence are first written in the usual way as a
Fourier integral of a sinusoidally time-varying multipole expansion, It is then shown that the integrals
over w of the r- and {-dependent part of the multipole terms can be replaced by differential operators
operating on arbitrary functions of retarded time. Thus a form of the multipole expansion is ob-
tained that does not explicitly contain the frequency spectrum of the multipoles. Given the value
of E, (for electric multipoles, or B, for magnetic multipoles) as a function of time on the surface of
a sphere, expressions for the multipole expansions of all the spherical field components are derived.
The method employs a convolution integral and is useful in problems involving a very broad fre-

quency spectrum.

I. INTRODUCTION

HE classical treatment of spherical waves in
terms of a multipole expansion is usually carried
out with an assumed sinusoidal time variation. Since
the frequency spectrum and phase are arbitrary, the
actual time variation (after mathematically per-
forming a Fourier integration) is also arbitrary. In
this paper a multipole expansion is formulated that
does not explicitly contain the frequency spectrum.
The Fourier integral of the multipole spectrum
multiplied by the spherical Hankel function, which
appears in the classical formalism, is replaced in the
present treatment by a differential operator and an
arbitrary function of retarded time. Using the multi-
pole expansion in this form, the problem of extrap-
olating to larger radii field values given on the surface
of a sphere (which contains the source) can be solved
in the time domain, i.e., without Fourier analysis.
This is an advantage when dealing with electro-
magnetic fields consisting of a single (non-oscillatory)
pulse. Numerically performing the Fourier transform
of such a pulse requires integration of the product of
the pulse function and a sinusoidal kernel; such
numerical integration with a kernel which is periodic
and whose sign oscillates necessarily involves much
cancellation and hence buildup of roundoff error.
Furthermore, two such integrals would be required
if the result were to be obtained in the time domain
by this method. The second such integration would
be especially difficult because the frequency spec-
trum of such a pulse is necessarily broad. In the
present treatment only one integration is involved
and the kernel is not periodic.
The starting point is Jackson’s form of the multi-

* Research supported by Air Force Weapons Laboratory,
Kirtland Air Force Base, New Mexico, under contract
AF 29(601)-6634.

pole expansion." Only the electric multipole field
will be considered; the magnetic multipoles can be
treated in the identical manner with E replacing
B and —B replacing E. Only outward moving waves
will be treated in detail; the corresponding expres-
sions for inward moving waves are only slightly
different even though there are theoretical difficulties
in applying them. Inward moving waves are dis-
cussed in the appendix. Some of the methods pre-
sented in this paper are generalizations of methods
that have been applied to the dipole by Wicklund.?

II. MULTIPOLE EXPANSION TRANSFORMED
TO THE TIME DOMAIN

The electric multipole field for outgoing waves
can be written'

B = Z aE(l) m)hl(l)(kr)xlm(ex ¢)v (1)
E = Z % aE(l, m)V X hl(l)(kr)xlm(e: ¢)7 (2)

t,m

where Xin(6, ¢) = (1/l0 + DILY1a(9, ¢) (the
vector spherical harmonic), the time dependence is
e '“', h{" is the spherical Hankel function, and
ag(l, m) is the amplitude of the multipoles. The
coefficients az(l, m) are arbitrary complex functions
of w. The spherical components of Eqs. (1) and (2)
can be written

B, =0,

> ax(l, mr® (k) [ !
S 200+ D LI+ pel+ 3))

X {[@+m+ DI+ m+ 2 Y mn

1 J. D. Jackson, Classical Electrodynamics (John Wiley &
Sons, Inc., New York, 1962), pp. 545, 546.
~2J. 8. Wicklund, “Extrapolation of the Electromagnetic
Field,” Diamond Ordnance Fuze Laboratories, TR-1058,
1962 (unpublished).

Bg=
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+ - m+ DI —m+ 2”1}

1+1
tr—arop ¢-

X (l - m — 1)]}9 1¢Y!—1.m+1

m)

+ I+ ml+m— 1)]*6“Yz_1,m_1}] '

B¢ i Z aE(lv m)hl(l)(kr)

2 [0+ P

XA+ m)( — m + DPeY; e

- [ - m)(l + m 4+ 1)]*e—i¢Yz.m+1}, 3)
and
E = % —ast, mliQ + DF A

i,m

s alm 1
Bo= 250+ DF @D

X [Gr — (1 + DREED]
X ([0 — M+ m + VP ™Y, iy
- [(l + m)(l - m + 1)]§e+;¢Yl.m—1)y

i —a(l, m) B, Gk
By=3 X+ Op {[@l T e+ T

X {[(l + m 4+ 1)(l + m 4+ 2)]%6—i¢Yl+l.m+l
+ (= m+ DU —m+ 2DVe™Y 0y e}

(1 + DRk
Tl ne+ oy - m

X (—m=— DY, 1 nn

+ [+ md + m — 1)]*e““Yl_1.m-1}}- @

A Fourier transform of Eqs. (3) and (4) can then
be performed to yield multipole expansions of the
field components in the time domain. Thus, in Egs.
8), if ag(l, m)h{ (kr) is replaced by

azs(l, m, T, 1) = f e 'ax(l, M () do,  (5)
and, in Eqgs. (4), if
ag(l, m)h" (kr)/kr, as(l, m)h, Q) (kr)

and ag(l, m)h,)(kr) are replaced by

()
kr do,

asllymr ) = [ e asl, m) ®

anllymyr, ) = [ an(l, G do, (D
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and
ag-(, m, 1, §) =f e tagl, MEO() do,  (8)

respectively, the resultant multipole expansions are
in the time domain. In the following, expressions
will be found for egs, ag,, az+, and . that do not
explicitly contain the frequency spectrum ax(l, m) of
the multipoles, but instead contain arbitrary func-
tions of retarded time az(l, m, t¥).

The spherical Hankel function can be written®'*

ha(kr) = &' Z.(r) {exp [—i(wt* 4+ 7/2))/K™'),  (9)
where t* = t — r/c and E,(r) is the differential
operator

w ) = 3t &

,_,"(7') Z;)T:H—IC"—, dt*n—;r H (10)
where

k=0

nn + 1271
The variable ¢ is a dummy in Eq. (9). If, at a given
constant radius r, a dimensionless retarded time = is
defined by the equation 7 = ct*/r, the operator
Z.(r) can be written in the simpler form

1 < A
= rn+1 ’ZO Mg dTn—j'

Substituting the expression for A" in Eq. (9)
into Eq. (6), and associating the dummy ¢ with time,
one obtains

I+ B — & + 1

My =

Ealr) (11)

axlomr ) = [ ast,m) Lz
SIS CELLIPR

The operator, (1/r)E,(r), may be taken out from
under the integral sign since it is not a function of
o [assuming that the coefficients axz(l, m) are well
enough behaved functions of w to allow the change
in order of integration and differentiation]. The
functions az(l, m, t*) of retarded time are now
defined by

aE(lv m, t*) = j:+w [aE(l1 m)

X exp [—i(wt* + 7/2)]/k'*’] dw. (13)

3 M., Abromowitz and I. A. Stegun, Handbook of Mathe-
matical Functions (National Bureau of Standards, Applied
Mathematics Series 55, 1964), p. 439.

+J. A Stratton, Electromagnetzc Theory (McGraw-Hill
Book Company, Inc., New York, 1941), p. 405.

(12)
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Equation (12) can then be written
aEr(l, m,7r, t) = (l/r)El(r)aE(lr m, t*)'

Since the functions ax(l, m, t*) are Fourier transforms
of arbitrary functions of w, they are arbitrary func-
tions of retarded time. Similarly, one can write

(14)

asa(l, m, 7, 1) = 225 B @as(l, m, 17, (15)
aE+(l1 m,7r, t) = Elﬂ(r)aE(l: m, t*), (16)

-1 9 .
ag-(l, m,r, 1) = —¢ 3 Bi1(n)ax(l, m, *). (17)

¢ ar*
The multipole expansion for the B field [Eqs. (3)]
can now be written in the time domain as follows:

B, =0,

9
Bo = (1;_6—— ':'l(r)aE'(l: m, t*)

I

l
X [[(21 FHEI+ 3P {Kl +m+1)

X+ m+ 2Dl *Yimn
+[l-—m+DI—m+ 2)]*e"“Ym,,,.-1}
141

t@ =@+ op {W -m
X (l - m - 1)]ie—i¢yl—1.m+1

+ [+ ml+m— 1)]’6“1’1_1,.,.-1}:] )

~ ST O ¢ 3 Bast,m, )

X {0+ m(l — m + DF®Y; n
— [ = mA+ m+ DY, na}.  (18)

Likewise, the multipole expansion for the E field
[Egs. (4)] can be written

E, = ¥ -0 + D} ; BdasC, m, )Y,
1 1 -
B - S orar s o
D &

+ c2 6t*2 El—l(T)JO‘E(L m, t*)
X {0 — m)( + m+ DPe ™Y, mn

— [+ Mm@ — m + DY, 0,
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z

"_22,” (z+1)

X {[(Zl + 1)(2l + 3)]9 E1s1(Max(l, m, t*)

XA{[Q+m+ D0+ m+ P Y irmn
+ [l = m+ DI — m+ 2P Y iy mea}

I+1 1 9°
+ (2l = D@l + 1)]} 62 at*2 B Moz, m, ¢ *)

X Al = m)T — m — DPeY 1ot mun

+ [+ mA+m— 1)]*6“‘“Yz-1.m—1}}°

If the field to be described is independent of ¢,
then m = 0, and the multipole expansion reduces to

B, =0,

(19)

B, =0,
B, = G 3 5 5 Bas(l, 0, P,
E, = G 5~ + DF 7 E(ax(, 0, 9P,
B = (211r)* > (211lL ) [ZE‘“(”)
+OED T2 0 e, 0,8,
E, =0, (20

where P is the normalized Legendre function.’
Ounly in the special case of m = 0 are the field values
real if ax(l, 0, t*) is real. For general values of m,
the functions az(l, m, t*) can be arbitrary complex
functions of ¢*. The real or imaginary parts of the
expressions given in Egs. (18) and (19) then rep-
resent the actual values of the field components.
Since the operator E;(r) plays a role similar to that
of the Hankel function in the frequency domain
expressions, it will be referred to as the Hankel
operator.

1. SPHERICAL BOUNDARY-VALUE PROBLEM

Suppose electromagnetic field components are
known as functions of time on the surface of a
sphere that contains all the sources of the field of
interest. Then (it will be shown that) the functions
ag(l, m, t*) and O,(r)ag(l, m, t*), where O,(r) is
any of the operators in Egs. (18) or (19), can be
expressed as integrals of the given field.

% Reference 3, p. 332.
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Only the components E, will be used to obtain the
functions az(l, m, t*) and O,az(l, m, i*). The reason
for this is twofold. First, the dependence of the terms
of the expansion of E, on the angle coordinates
6, ¢ is given simply by the spherical harmonic. Thus,
on a sphere of radius r,, E, can be expressed in the
form

E() = & —0Q+ DI - sl m, )Y iy (D)

where 8z(l, m, t*) is given by
BE(lr m, t*)

To %) Y
= —m E(" Y%, dQ.

sphere of
redius ro

(22)

Second, the component E, is due only to the electric
multipole; even if a magnetic multipole is present,
it does not contribute to E,. Thus, if both types of
multipole sources are assumed present simultane-
ously, the electric part will be selected from the
total field if E, is used to analyze the fields. The
magnetic multipole part can be analyzed in an
identical manner by replacing E by —B and B by
E. Thus only B, would be used to analyze the mag-
netic multipoles. All fields (and their derivatives)
are assumed to be zero initially, i.e., at t* = 0.

Equating the coefficients of Y, ,, in Eq. (21) and
the first of Egs. (19) (with r = r,), one obtains

E(ro)ag(l, m, t*) = Bz(l, m, t¥). (23)

Defining the dimensionless retarded time 7, = t*¢/r,,
one can write Eq. (23) as

El(ro)a%(ly m, 7'0) = Bi@(lx m, TO): (24)

where

a’E'(lv m, TO) = aE(l) m, To"o/c)y
and

B&(l, m, 10) = Bx(l, m, roro/c).

To solve Eq. (24), Green’s functions will be found
that satisfy the equations

EI(TO)GZ(TO: 76) = 6(70 - T(’>)v l= O) e, @, (25)

with the initial conditions, G;(0, 7§) = G (0, 1) =
cor = @EV(0, 7)) = 0, where

G;’.)(OJ T(,)) = diGl(TO) T(’))/d‘l'gln-o-
The functions aj(l, m, 7,) will then be given by
ol m, ) = [ Gilro, TBR, m, ) drb.  (20)
V]

Due to the initial conditions below Eq. (25),
Gi(r, 74) = 0for 0 < 7o < 74 For 0 < 7§ < 7o, the
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Green’s functions are given by
1,1 even
a1 $¢l-1),1 0dd
Gi(ro, 74) =10 { Z exp [pi;(ro — 74)]
i=1
X le; 8in qi;(ro — 78) + di; cos g;;(r0 — 75)]
+ fi exp [pl.§(1+1)(7'0 - 7'6)]} s @7

where f, = 0if [ is even and (p;; & iq;;) are roots of
the polynomial equation

F.(» =0, 28)

where
1
F.(@) = _Zoﬂzizl_i-

The roots of F.(z) are the roots of H,}}(iz), the
half-odd-integer-order Hankel function of the first

kind. In Jahnke and Emde’s notation,®

Fi2) = 2'81.4(22) = 2'Gn2)? exp (2)(0)'TH (Y, (22).

Note that H,$}(iz) has a singular point at z = 0
which annihilates the zero and branch point in its
coefficient; thus F,(z) is analytic and nonzero at
z = 0. The general behavior of the roots of H,}(iz)
can be deduced from the graph on p. 243 of Jahnke
and Emde (Ref. 6). It is found that for I odd, F,(z)
has one real negative root and (! — 1) complex roots
which appear in complex conjugate pairs and have
negative real parts. For I even, all of the ! roots of
F(z) are complex (appearing, of course, in complex
conjugate pairs) and have negative real parts.
Numerical values of the roots for I < 16 are given
in the appendix. It is significant to note that all
of the roots are distinct. Thus, Gi(r,, 7;) can be
written in the form of Eq. (27). The derivatives of
G (7o, 75) for 0 < 75 < 74 can be written

k }(?—l'll)oledd
4 O

d Gi(ro, T3) 1+1

2o T . Z:

drt = < o exp [pii(ro — 7o)}
X [(d” CcOSs koz,' + Cii Sin k01,~) Ccos q”(To -_ T(l))
+ (C” [e{0X] ko;,- - d” Sin kﬁ;,—) Sin q”(‘ro - 76)]
+ fzp'f.wn) exp [p:.3a+1(10 — T{))]} ' (29

where r;; exp (6,;) = pi; + ig.;. Integration of both
sides of Eq. (25) from 7} — € to 7§ + € and taking
the limit as ¢ — O reveals that d' G (ro, 74)/dri™?
must have a positive discontinuous jump of mag-

nitude r;** at the point 7, = 74. Thus

¢ Bi. Jahnke and F. Emde, Table of Functions (Dover
Publications, Inc., New York, 1945), pp. 136-137.
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I+1
To=To +E To .

lim d' '@ (7o, 78)/drs™"

0

Since the lower-order derivatives must be continuous
at 7, = 7} to satisfy Eq. (25), the equations deter-
mining the constants ¢,;, d;;, and f; in the Green’s
function for 0 < 75 < 7, are

41,1 even
3(1-1),1 odd

sz(dl,' COS koli + Crji Sin kﬁl,-)

=1

‘+‘ fzp’f,;(z+1) = 51:.1—1, k= 0: 1, ’ l— 1; (30)

where §,; is the Kronecker delta.

Now that the Green’s functions are determined,
the next step is to find explicit expressions for
0,(rat(l, m, 7o), where, again, O,(r) is any of the
operators appearing in Eqgs. (18) and (19). Terms of
the form

1 d (1, m, 7o)

I3
TI-H dT ’

must be evaluated. By successive differentiations of
Eq. (26) one obtains

dkag'(lv m, TO)

k=1,2,---,14+1,

= [ @0, 70083 m, 78) dr,
0

dré
k=1, ,01—1,
1
Leblantd — [ 61 (ro, )840, m, 70 dr
To
+ 70785, m, 70),
dl+l l .
"‘—'a'_(;‘é#‘i)‘ f G(l l)(To, ‘To)ﬂE(l m To) dTo
4
+ T(l)”[ilgi%fﬂ — 3+ 1DBEI, m, To):l’ (31)

where G{"(ro, 7§) = d'Gi(ro, 7})/dri. Noting that
10 = 71/1, and hence that

dk _ (:— )k dl:
dr* o/ dre’
one can write

1 def 1
rl+1 di rl—-k+1rlé

% { [ T GO (rrfra, 7081, m, TH) dih

+ ur Bh(l, m, 7o)+ Supear”

X [dB4(l, m, 70)/dro — 30 + 1)B4(L, m, n,)]} ,
k=12

Jl+10 (32
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To obtain the final expression for the terms of
0,(r)a}, the expression for G{* given by Eq. (29)
is substituted into Eq. (32) which yields

(@)z —k+1
d r
t‘c,/ro }(l 1) lodd t*c
|: ri; exp [pli(r_ - 76)
0

X [(dli CcOS k0;,— + Cij Sin kﬂl,-) ({03 ql,‘(t*C/ro hd T(’))
+ (ci; cos k6;; — dy; sin k6,;) sin g,;(t¥¢/ro — 70)]

+ flp’zc.wu) exp [pl.i(lu)(t*c/ro - 7'5)]]
X Be(l, m, 7§) drb + 8upBE(, m, 7o) + i.1e1
X [dBz(l, m, 70)/dre — 31 + DBE(, m, To)]}

E=1,2---,1+1.  (33)

The integrals in Eq. (33) are independent of r,
that is, independent of the radius of observation
of the field. Hence, for a given source, the integration
need only be performed once to give field values
everywhere outside the sphere.

The integrals required in Eq. (33) are

t*c/rqo t*C
Ia(l’ m, jr t*) = f Sin in<7’ - Tl;)
[}

0

£
X exp Iipz,-(% - Té)]ﬁi‘(ly m, 7'6) dT(')s (34)
0

t*c/ro t*c
I, m,j % = f cos q”(T — 76)
1)

[
t*c 4 4 4 ’
X eXp p” X - To ,BE(l, m, To) dTo, (35)

where j = 1,2, .-+, if liseven. If [is odd, j =
1,2, ---, 30 4+ 1) and ¢, ,3a+1) is taken to be zero.
[The constant ;341 is, of course, the real root
of Fi(z) = 0.]

One can now write the expansions for B,, B,,
E,, Ey, and E; at arbitrary radius r in terms of the
integrals (34) and (35). Substituting the expressions
for the derivatives of af from Eq. (33) into Eq. (11)
and using 7, and I, to represent the integrals of Egs.
(34) and (35), one can write ags, ag,, cgy, and ag_
[as expressed in Egs. (14) through (17)] as follows:

ans = & [ 110+ (2 = 1)patt,m, 29

To dBE(l, m, t*)

+ ¢ dt*

] + ; ;J ”’HFh'm(rr t*)' (36)
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4
ag, = %ﬁz(l, m, t*) + ;1" Z:o BF a1,y 2%), (37)

ar, = LED [(z+2) —z]ﬁEa, m, )

* 1+1
+ :ZM#)“ + = Z trer,iFrim(r, %), (38)
l To sk
ap- = —{5; I:(l - 1) 7 - l - l]BE(ly m, t )
* 1-1
+ :;:,_:d_ﬁg_(l,__(#l,t_) -+ %‘ ‘Z=o Mz—-1..'Ftim(7', t*)} ) (39)
where

31,1 even

p \ ¢ [H-1. T 0dd
0 (1—i+1)
Frinlr, t¥) = (;) Z Ty

i=1

X {[di; cos (I — ¢4 1)6;;

+ ¢;sin (@ — i + 1,1, m, §, 1)
4+ feiscos (I — 7+ 1)8y;

— dy;sin (1 — 1 + D6, m, §, 19}

+ flpﬁ;(ililx))lc(l, m, (I + 1), t*)}-

The field components are then given by Eqgs. (18)
and (19) with agp, ag,, ez+ and ag_ substituted for
the quantities they represent.
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APPENDIX
A. Incoming Waves

If Eqs. (1) and (2) are rewritten with h;® sub-
stituted for 2", they then represent incoming waves.
The equations in Sec. II involving h;" can be re-
written with 2> instead of h{"’; they then apply to
incoming waves. Since h{¥ (kr) can be written

RP () = ¢ B @) [exp [—ilwtt — x/2)1/K], (40)
where
= pu(=D'7 d!
E;Z)(r) = L‘.,l(T)ln=_¢¢s = ra lri.,.lcl_,- dt:l_j ,

= I+ r/c,
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the equations involving =;(r) ean be written for
incoming waves by substituting ¢ for t*, E;* (r) for
=,(r) [or equivalently u;;(—1)'"7 for u,,],

and

[exp [—itt — 7r/2)]] for [exp [—i(wt* + x/2) ]:I_
kl+l k1+l

In solving the boundary-value problem of Sec. I11,
the auxiliary Eq. (28) is the same except for a change
in sign of the coefficients of the odd powers of z. The
roots are the same as for outgoing waves except for a
change of sign of the real parts. Thus the Green’s
function contains exponentials increasing in time
instead of decreasing as in the outgoing-wave treat-
ment. This comes about because incoming waves are
related to outgoing waves basically by a time rever-
sal. The Green’s functions are not time reversals to

TasLe 1. Roots of H,(}}(iz) =

Order Real part Imaginary Order Real part Imaginary
@ of z partof z  (I) of 2 part of z
3  —2.322185 0. 12 —8.253457 0.867839
3 —1.838907 1.754381 12 —7.997204 2.608939
12 —7.465614 4.370186
4 —2.896211 0.867234 12 -6.610991 6.171537
4 —2.103789 2.657418 12 —5.329710 8.052905
12 —3.343023 10.124297
5 —3.646739 0.
5 —3.351956 1.742661 13 —8.947802 0.
5 —2.324674 3.571023 13 --8.830184 1.736704
13 —8.470615 3.483830
6 ~—4.248359 0.867510 13 ~7.844380 5.254921
6 —3.735708 2.626272 13 —6.900370 7.070641
6 —2.515932 4.492673 13 —5.5630681 8.972248
13 —3.449867 11.073928
7 —4.971787 0.
7 —4.758290 1.739286 14 —9.583335 0.868314
7  —4.070139 3.517174 14 ~9.362826 2.607241
7 —2.685677 5.420694 14 —8.911220 4.361654
14 —8.198775 6.143068
8 —5.587886 0.867614 14 ~7.172405 7.973204
8 —5.204841 2.616175 14 —b.720353 9.894709
8 —4.368289 4.414442 14 ~3.551087 12.025738
8 —2.838084 6.353911
15 —10.273503 0.
9 —6.297019 0. 15 —10.170628 1.736566
9 —6.129368 1.737848 15 —90.859659 3.480484
9 —5.604422 3.498157 15 —9.323611 5.242350
9 —4.638440 5.317272 15 —8.532440 7.034373
9 —2.979261 7.291464 15 —7.429402 8.878983
15 —-5.900151 10.819999
10 —6.922050 0.867690 15 —3.647357 12.979501
10 —6.615282 2.611555
10 —5.967534 4.384950 16 ~10.914145 0.875305
10 —4.886218 6.224985 16 —10.714492 2.602741
10 —3.108916 8.232699 16 —10.328305 4.356535
16 ~90.711228 6.126361
11 —7.622450 0. 16 —8.848105 7.928469
11 —7.484148 1.737140 16 ~7.673256 9.787751
11 —7.057923 3.488977 16 —6.071237 11.747872
11  —6.301334 5.276207 16 —3.739232 13.935028
11  —5.115647 7.137018
11 —3.229722 9.177112
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each other because the boundary conditions forced on
them are not related by a time reversal. For out-
going waves, Gi(ro, 7;) was found to be zero for
1o € 7l; for 7y > 7} it is nonzero, but exponentially
decaying. For incoming waves the Green’s functions
G® (o, 7§) are again zero for r, € 7f; for 7, > 74,
however, the functions G{® exponentially rise.

B. Solutions of Scalar Wave Equation

Note that (rE,) satisfies the scalar wave equation.
It follows that the formalism and solution of the
spherical boundary-value problem for (rE,) can be
applied to any quantity satisfying the scalar wave

KENNETH D. GRANZOW

equation, i.e., the rectangular field components or
vector potential components.”

C. Roots of the Hankel Function

Using double precision on an IBM 7044 computer,
roots of Bq. (28) were obtained through the 16th
order. Greater computer precision would be needed
to obtain them beyond the 16th order. For [ = 1, the
root is —1, for | = 2, the roots are —% == 7v3. Table
I contains the roots that were found numerically.

7D. D. Babb and K. D. Granzow, ‘‘Extrapolating Electro-
magnetic Fields From Values in a Spherical Region,” Air
Force Weapons Laboratory, WL TR-64-179, 1965 (unpub-
lished), Sec. II.
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An overcomplete family of states (OFS) is constructed for a countably infinite linear vector space
with an indefinite metric for the case that the metric is diagonal with eigenvalues (~1), where n is an
integer. A continuous representation is indicated and the properties of a semiclassical description of a
quantum mechanical system (the pseudo oscillator whose creation and destruction operators @ and at
satisfy [4, @t} = —1) defined in this vector space are studied. It is found that a consistent OFS |z> can
be constructed if the operator G(z) which generates the state |z> from the vacuum is unitary. Further-
more, with the statistical state of this system specified by a bounded pseudo-Hermitian density
matrix 5, the related semiclassical complex function p4(2) for antinormal ordering of operators in the
indefinite metric space is found to be bounded, with ps(z) and [p,(2)]* integrable, continuous, and a
boundary value of an entire analytic function of two complex variables. The semiclassical function
on(z) for normal ordering is associated with a sequence of functions py(,) (2) whose square is integ-
rable and related to a sequence of tempered distributions py(,) such that the corresponding sequence of

density matrices 5(,) converges to 5 in the norm.

I. INTRODUCTION

HE general properties of continuous representa-~

tions of Hilbert spaces have been studied'* and
used to relate semiclassical and quantum phenomena
in specific cases. In particular, the equivalence of
the quantum and semiclassical descriptions of optical
coherence has been shown by Sudarshan,® by
Klauder, McKenna, and Currie,* and by Mehta
and Sudarshan.® In this case, a positive-definite
density matrix ¢ is used to specify the statistical
state of the radiation field.

It is of interest to know whether continuous rep-
resentations of linear vector spaces with an inde-
finite metric (IM) exist, and, if they do, how they
are defined. Then, given such a continuous rep-
resentation, does a well-defined semiclassical de-
scription of a quantum mechanical system defined
in the IM space result? It is found, that, indeed,
for the special case considered, such a continuous
representation exists, Furthermore, the semiclassical
description of the states of a simple pseudo oscillator
defined in an IM space is a generalization of the
description of the states of a normal simple oscillator
defined in a Hilbert space.

* This work was supported in part by the U, S. Atomic
Energy Commission. . .

TN};,tiona,l Aeronautics and Space Administration Pre-
Doctoral Fellow.

1 See the following: J. R. Klauder, Ann, Phys. (N.Y.) 11,
123 (1960); J. Math. Phys. 4, 1055, 1058 (1963); sbid. 5, 177
(1964). Also see J. R. Klauder and J. McKenna, J. Math.
Phys.” 5, 878 (1964); bid. 6, 68 (1965); S. 8. Schweber,
ibid. 3, 831 (1962).

2 R. J. Glauber, Phys. Rev. 131, 2766 (1963).

3 E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963).

1J. R. Klauder, J. McKenna, and D. G. Currie, J. Math.
Phys. 6, 734 (1965).

5 C. L. Mehta and E. C. G. Sudarshan, Phys. Rev. 138,
B274 (1965).

In the following, Sec. II is devoted to the develop-
ment of the overcomplete family of states (OFS)
for the IM space defined by a simple pseudo oseil-
lator, i.e., where the creation and destruction op-
erators @* and g, respectively,® satisfy [a, a*] = —1.
In Sec. III, a quantum mechanical description of
the statistical state of a simple pseudo oscillator is
used along with the OFS of Sec. IT to determine
the corresponding semiclassical description. Section
IV contains some conclusions.

II. AN OVERCOMPLETE FAMILY OF STATES FOR
AN INDEFINITE METRIC SPACE

Here we will develop an OFS and then give some
important properties of a continuous representation
formed from it. This approach is parallel to that
taken by R. J. Glauber® in his treatment of the
continuous representation of the positive-definite
metric (PDM) space, except for modifications in-
troduced by the IM. A brief introduction to some
of the important properties of IM spaces is given
in Part A. In B, we introduce the IM space cor-
responding to the pseudo-harmonic oscillator. Then
the OFS and a continuous representation of the
IM space are considered in C and D, respectively.

A. Some Properties of Indefinite Metric Spaces

The properties of vector spaces with an IM have
been discussed by L. K. Pandit.” In general, the
norm squared”® is (uju) > 0, <0, = 0. In particular,

¢ Henceforth, A will denote an operator defined in an TM
space and A an operator defined in a positive-definite metric
Hilbert space.

7 L. K. Pandit, Nuovo Cimento, Suppl. 11, 157 (1959).

8 In the following, we wiil denote vectors of a PDM space
by |v) and those of the IM space by |u). Further, we will refer
to the norm squared simply as the norm.
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if we choose an IM space to be in one-to-one cor-
respondence with a PDM space, then®

W vy = (u|n o), )]

where n is the usual Hermitian metric operator
which is defined in the PDM space. Though it is
customary to define a metric operator only in the
PDM space, we will also define one, 4, in the IM
space so that '

] 7 [w) = (ulw.

This allows for added clarity in the following.
An operator P in the IM space is related to P by

(| P |v) = (u| nP |1).
The adjoint P* is defined by
@ P [uy* = (u] P* Jv) = (u| oP* |),

where the form of P is given by P* = n™'P"n, and
P" is the usual Hermitian adjoint. An operator
which is invariant under the adjoint operation is
said to be pseudo-Hermitian,

When a change of basis vectors is made in the
IM space such that the operator U transforms the
orthonormal base set |u) into the basis |u’), then

W | vy = | TU by = (u| nUU ).

In order that the metric be preserved, it is necessary
that U*U = 1. When the IM is preserved under
a transformation U above, U is said to be pseudo-
unitary. The corresponding pseudo-unitary operator
in the PDM space satisfies U'U = 1.

While Hermitian and unitary operators are diag-
onalizable and have real and unimodular eigen-
values, respectively, this is not always true for
pseudo-Hermitian or pseudo-unitary operators. In
fact, the difficulties arise because eigenvectors of
zero norm may occur. In complete analogy with
the Hermitian and unitary operators, however, one
finds that the eigenvalues of the pseudo-Hermitian
operators are real and those of the unitary operators
unimodular for those eigenvectors with nonvanishing
norm,

B. A Linear Space with an Indefinite Metric

We can construct a linear space with an IM using
the usual procedure for constructing the Fock space
for a single harmonic oscillator beginning, instead,
with a single pseudo oscillator. The operators @ and
a* of the pseudo oscillator are defined in the IM
space by @ |0) = 0, (0| a" = 0, and [g, ¢°] = —1,

? We are defining two different metrics on the same set

of points. There is a one-to-one mapping of expectation values
from one metric space to the other.
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where |0) is the vacuum state. One finds an ortho-
normal set of states |n) where n takes the values
0,1, 2, ---, which satisfy

a‘aln) = —n |n), (2a)
any = —ntn — 1), (2b)
a n) = (n+ 1} n+ 1), (2¢)

with
Iy = [1/(n)*(@")" |0) (2d)

and
(m | n) = (=1)" 8. (2e)

The corresponding PDM Hilbert space contains |n)
where (m|n) = 8,.,, and the relation

(m [n) = (m|n|n) = (=1)" 6 3)
gives the form of the metric n. It satisfies a™ = n

and w° = 1.
The completeness relation in the IM space is

1= 2 [mNunl, (4a)
where N, = (—1)". The corresponding relation in
the PDM space is

1= 2 In)n|. (4b}
A useful representation of the completeness relation
is found by using n |#) = (—1)" |n) and defining
7 |n) = (—1)" |n) with 5° = 5 and 4° = 1. This
then leads to

(m| 7 |P) = (m| an |P) = (m | P).

Now we can define an alternative form of (4a) and
(4b), respectively, as

7 (5a)

3 el
and

2 ImN.(n].

n

n (5b)
The above formalism is sufficient to construct the
OFS that is required.

C. Construction of an Overcomplete Family of States

In order to construct an OFS, we look for the
complete set of states [2) which are eigenstates of @
and, thus, satisfy @ |z) = 2 [2); |2) is generated
from the vacuum |n = z = 0) and 2 is a continuous
parameter. Since ¢ is not pseudo-Hermitian, the
eigenvalues 2 = « + 4y = re’’ are, in general,
complex. The state |z) can be expressed as a linear
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combination of the states |n) using the resolution
of unity given in (4a); thus, we have

[e) = 22 Im)(=Dn | 2). (6)
The recursion relation
2n — 1|2) = nkn |2) )

is found from the properties of the states |n) given
above. This together with (6) yields

=T mEd ol (8)
and
¢l = Zomelon. @)

Now the states |z) are specified except for the
factor (0|z). This factor is determined by requiring
|z) to satisfy a normalization condition which would,
at the same time, permit us to define a completeness
relation in terms of [2, |¢)(z| d°%2 (d°¢ = dx dy =
r dr d6). The simplest normalization consistent with
a well-defined completeness relation is

Glil) =(]2 =1. 9

Using this with (8a) and (8b), we find that [{0 | 2)|* =
¢~ '*!"". With the phase chosen such that (0 | z) =
, (8a) becomes

0= T i

"HZI

_§ 1z]*

(8¢)

The form of the completeness relation can now be
checked using (8c).

fj le)z| d*
f f" Z | )———;,n,; miemm ) e dr de,
=w E |m)<mi;
= 1.

Thus, we have

i=1 [ e,

which is seen to correspond to

1 =7lrf_° [)(z| d*

in the PDM space by using (9).
It is not possible to define a completeness relation
if the normalization (z | 2) = 1 is assumed. In

(10a)

(10b)
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particular, this leads to the assignment of !'*'" to
(0 | 2) which makes the integral, [ |z)(z| d°¢, singular.
This type of problem may arise in any treatment
of countably infinite IM spaces if one attempts to
define operations independently of any PDM space,
since the concepts of continuity, convergence, and
completeness may not be well defined.

The completeness relation (10a) restricts the form
of G(z), where |z) = G(2) |0) and |2, + 2.) = G(2,) |2:).
In fact, one can show that

(| é+(zo)"_lé(zo) o) = (e| 7 |¢)

follows from (10a) and the self-reproducing property
which is discussed later and found in (32).
This implies that

GG = 7 (11)
and finally,

G (2)G(2) =

in the PDM space. Therefore, G(z) must be unitary
with respect to the PDM.

When we generate the state |dz) differing in-
finitesimally from the vacuum by the operator G(dz)
with normalization G(0) = 1, then by the require-
ment

a G(dz) |0) = dz G(dz) |0),
the commutation relation [4, "] = —1, and the
unitarity of G(dz), we see that it is restricted to the
form

Gldz) = 1 — ade* — a'dz.

Equation (12) satisfies (11) to first order using the
fact that # anticommutes with ¢ and a@* in this
representation. The finite form corresponding to (12)
is found by letting 2 — Az and dz — zd\, where A is

a real parameter. This leads to
dG(\2) . G\ + 24N
o~ lm AN

= (—az* — a"2)G()N).
With a proper choice for A, we find that
G(z) = "7,

Using the well known identity

(12)

— G(2N)

(A+B)+314,B]

e‘e® =e ,

valid for all cases when the commutator [4, B] is
a number, we see that
Gz) = e e gt "
leads to |z} in the form
lo) = e e """ |0),

(13)

(14)
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This is just the form into which |z) given by (8c)
reduces when (2d) is used.

D. A Continuous Representation of an Indefinite
Metric Space

In the PDM case® there is a one-to-one mapping
of the states of a harmonic oscillator onto the
Hilbert space &, of entire analytic functions in
which the scalar product is defined as (f | g) =
1/7) [ f(&)*g(2)e”"*"" dz. Furthermore, it is known™
that a unitary isomorphism exists between &, and
the conventional Hilbert space of square-integrable
functions. An analogous situation occurs for the con-
tinuous representation of an IM space. To see its
exact form, let us make the transition from the
states |f) of the pseudo oscillator to a space of
entire analytic functions.

Let |f) represent some linear combination of the
states |n) such that (f| 7 [f) = (f|f) < «. The
projection of |f) onto the OFS [z} is

@ | f) = (&l f(a) 10) = f(z*)¢z | 0),
@) = e

¢ |2y = et (15b)

We can see that f(z*) is an entire analytic function
in the following way. Let |f) be

H= T bim) = T b @ 10)

Since boundedness requires that D, |b,)* < ®, then
b, — 0 as n — o, Therefore,

1) = T b @

converges for finite [2|.

In order to calculate the form of the scalar product
of two such states (g| and |f), we make the transition
to the corresponding PDM space and use the resolu-
tion of unity in terms of |) given by (10b). Then
{g | {) has the form

@in=Glnlp=1[@laed" a o

We return to the IM space to calculate (g | 2);
it becomes

@l =lal =2 [ 1) |2 a%,

where we have used the completeness relation in
the form (10a). From (8c), we find that

(15a)

and

an

10V, Bargmann, Commun. Pure Appl. Math. 14, 187
(1961).
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(& |2) = e gm0,

Using (15b) and (18), (17) becomes

019 =2 [ tome et e @,

(18)

When we express g(z’*) and e™*""* in terms of their
expansions, integrate, and substitute into (16), we
find that

@ln= }r f g(=2)*f@e """ d’2.

Therefore, in the IM case, there is a one-to-one
mapping of the states of the pseudo oscillator with
normalization (f | f) < = into the generalized vector
space F. of entire analytic functions in which the
scalar product is defined by (19). A similar form
is encountered again in ITI where we consider the
representation in §, of the density matrix g for the
pseudo oscillator.

19)

III. STATISTICAL STATE OF A PSEUDO
OSCILLATOR DEFINED IN AN INDEFINITE
METRIC SPACE

Now we consider the properties of the semiclassical
description of the statistical state of the quantum
mechanical pseudo oscillator defined in an IM space
using the OFS developed in II. A single state of
the system is characterized by the destruction and
creation operators @ and &*, respectively, of the
pseudo oscillator. We specify the statistical state
of this system by a bounded pseudo-Hermitian
density matrix 5 with certain trace properties such
that the expectation value of an operator O in the
IM space is given by Tr (50). Pseudo-Hermiticity
is imposed to preserve linearity and in order that
the projection of 5 to any nonzero norm state be
real. The correspondence between the PDM and
IM spaces used in IT has the form

(m| 5 |g) = (m| ng |g),

where g is the PDM counterpart of 3.

In order to determine the semiclassical description
of the given quantum mechanical system, we express
the expectation value of some operator G(g, ¢*) in
a state described by p, i.e., Tr [3G(a, ¢*)], in terms
of an integral over an appropriate distribution of
states corresponding to the density matrix. This
distribution will depend upon the ordering of the
operators contained in G(@, ¢*). Consider the case
where G(a, @*) is chosen to be

G@, a*) ="' ™ or ¢

where « and 8 are complex numbers.
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The correspondence between Tr (5G) and an
integral over a distribution is readily found for the
case of antinormal ordering of the operators ¢ and
&" by using the resolution of unity of the OFS |z)
given by (10a); this leads to

Tr (pe™*%™") = Tr (pe”**7e"),
= Tr (p‘e‘“"}r j d’z |2)z| e—ﬁ”ﬁ),

=1 f (2| 7p |2)e “e™" d’.
™
Now the correspondence is seen to be

f pa2)e ™ e d’z = Tr (pe"*%""), (208)
where p,(2) = (1/7) {z| 5 |2) = (1/7) (2| ¢ |2). The
correspondence is 5 — p,(2), @ — z and 4" — —z*
for antinormal ordering. The sign change that occurs
here, ie., @° — —z* is due to the fact that the
metric § anticommutes with a*.
In complete analogy with (20a), we specify the
correspondence for the normal ordered product to be
f pn(2)e ™ e d = Tr (5¢*'¢™*%).  (20b)
If we denote the integrals (20a) and (20b) by F4(«, 8)
and Fy(a, 8), respectively, then for F(e, 8) given by

F(a; B) =Tr (Ise-m”ﬂ“);
we have

Fue, B) = t**F(a, B), (20¢)

and

Fula, B) = ¢ ***F(a, B). (20d)

The properties of 5 are considered in Part A.
In B, the properties of p,(z) and its relation to
physical systems are discussed. It is found that p,(z)
is complex and that it is bounded, continuous,
integrable, and its square is integrable. Further-
more, pa(z) is a boundary value of an entire analytic
function of two complex variables which satisfies
certain reproducing properties. The properties of
on{2) and its relation to p,(2) are discussed in C.
While py(2) is not bounded in the sense of p,(z),
it is found that a sequence of tempered distributions
on(» €xists to which one can identify a sequence
of functions px(,(z, ¥) whose square is integrable
where the corresponding sequence of density ma-
trices 5(,, converges to 5 in the norm.

The above properties are generalizations of the
properties of the p,(2) and py(2) that Mehta and
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Sudarshan defined® from the positive-definite Herm-
itian density matrix p describing the statistical state
of a normal oscillator in a Hilbert space.

A. Properties of p

The density matrix 5 defined in the IM space is
assumed to be a bounded pseudo-Hermitian operator
which is a member of some trace class. In this case,
the expectation value of finding the system in some
particular state is positive or negative. In order that
all of these expectation values be defined, we require
that

Trp=1,
Tl"ﬁﬁ:T,

(21a)
(21b)

where |T| < « and real. Further, we require that
the PDM counterpart of #3, ie., np, which is
Hermitian, be positive-definite; this implies that
T > 0 since Tr 75 = Tr np. This restriction is
imposed so that, first of all, g reduces to the special
case of the positive-definite Hermitian density ma-
trix when n = 1. Second, in the less restrictive case
when n is nondegenerate and Hermitian with n £ 1
and [n, o] = 0, it requires that the corresponding
7 which is now also Hermitian, and thus, diagonal-
izable and which one can separate into positive and
negative norm parts be such that its positive and
negative norm eigenstates correspond to positive and
negative eigenvalues, respectively.

The representation of 5 in the IM space defined
by the pseudo oscillator is given by

p = 2 i [Man(m]
where p,.n, is given by'
pan = (0| B |m) = (n| ng |m).
The trace conditions (21a) and (21b) require that
2 (=D = 1

and that

> tom = T.

These together imply that lim, .« [psm] = 0. Further-
more, since

(21¢)

lpnml2 S Ipnn‘ lpmmlf
then, |p.m] — 0a8sn — ® and m — =, independently.

B. Properties of g,(z)

The explicit form which defines p,(2), i.e.,

@ =2Gliml =telol (2
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and the properties of  allow us to determine the
properties of p,(z). It is immediately evident from
(22a) that p,(2) is, in general, complex unless [7, 5] =
[#7, o] = 0. The real and imaginary parts of p4(2)
are given by

Re pa(2) = (1/m)(2| 0z |2), (22b)
Im p,(2) = (1/m)(z] or I2), (22¢)
where
oz = 5(o + ¢°)
and

or = 3(e — ¢")
are the Hermitian and skew-Hermitian parts of g,

respectively.
We show that p4(2) has the following properties.

(1) pa(2) is bounded, |p4(2)| < |Tr (4p)|/7 = T/

(2) The integral |f pa(2)e ™ e d2°] < €' is
bounded. Also, p, (2) isintegrable since [ p,(2) d* z=1.

(3) The square of p,(2) = pu(z, y) is integrable.
That is, 0 < [ [ps(z, )]’ dz dy < 1/x. Also, we
find that

‘ f pa(z, y) da

(4) pa(2) = pa(z, y) is the boundary value of an
entire analytic function of two complex variables.

<

.
)

2
™

2
[ v | <

We begin by showing the bound of p,(z). From
our definition of p,(2) given in (22a), and the fact
that 7 |¢) = [—2) (see Sec. IL.), we have

b4 = = (~2] me o).

Since np is Hermitian, it may be diagonalized in
the PDM space and expressed in terms of its eigen-
values w, and eigenvectors |£,) in the diagonal form

ng = ; @y |£")(Eﬂ"

Under the unitary transformation S which diag-
onalizes ng, the vectors [z) — S [2) = [¢/). Thus,
pa(2) is given by

pA(Z) = nE % (—Z, I En)(sn IZ’).

Since ng is defined to be positive-definite, then the
w, are positive and w, < T; this leads to

pa@)] S T 1T (=2 [8)E | 2]

T
T

I(—2’| (; | £)(&D 12)];
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T
la@! < L ltel n 12},
_ _7_1 —2 |s|®
= Loy,
Our final result is
@] < < (23)

The bound on the real part of p,(z) can also be
found using (22b) directly. For the special case that
or = (o + o) is positive-definite and Tr ¢z =
1 =T, we find

0 < Re pa(?) < 1/x.
This is the result which is obtained for p,(z) when
o is defined as the PDM density operator for a
state described in terms of a normal oscillator
defined on a Hilbert space.®

In order to consider the second point, we set
a = B*in (20a) and rewrite it as

f pa(2) €5 42 = APV Ty (55T, (24)

Since the eigenvalues of a pseudo-unitary operator
for nonzero norm eigenvectors have unit modulus,
then the expectation value of ¢ #**#" for a given
state satisfies

() < 1.
The normalization Tr (5) = 1, leads to
[Tr (57| = [(****") < 1.

Using (25), (24) can be written with the bound
lf pa(2) €777 a2

By letting 8 = 1(s + ) and 2 = z + uy, the left
side of Eq. (26) with p,(z) = pa(z, y) is written as

(25)

< AL (26)

L, ) = [ palo, 1) O dmdy, (@D

and

IL(s, )] < e, (26a)

The function L(s, t) can be identified with the
bilateral Laplace transform'' of p,(x, y), where the
strip of convergence of (27) in the s and ¢ complex

1L An entire operational calculus based on the bilateral
Laglace transform has been developed by B. Van der Pol
and H. Bremmer. See B. Van der Pol and H. Bremmer,
Operational Calculus based on the Two Sided Laplace Transform
(Syndies of the Cambridge University Press, London, 1955).
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planes must be specified. Certainly, (27) converges
for s = ¢ = 0 since (24) and (27) imply that

L0, 0) = f pald) & = 1.

The bilateral Laplace transform converges for finite
values of real ¢ and ¢ by (26). The inverse of (27)
is given by

~ds f dt L(s, t) &=+,
(28)

where ¢, = Res = sof 27) and¢c; = Ret = ¢
of (27) and the integration is performed in the com-
plex s- and t-planes within the respective strips of
convergence defined by (26) and (27). The bound
of (26) in addition to the boundedness of 5 is suffi-
cient to ensure that (28) exists. Furthermore, since
L(s, t) is found" to be analytic and free of sing-
ularities in s and ¢, then we can shift the contour
defined in (28) to any region, i.e., any value of ¢,
for the s plane and any ¢, for the ¢ plane contained
in the region of convergence.

In the case of the bilateral Laplace transform,
one can show'' that the product rule

PA(x) y) = (211r—1.)2

s—i®

f_ pk(—x, —ypaslz, y) dx dy
1 c1+im

_ cat i s
e ) f e OFdsar (20w

holds. However, from (22a) we note that p%(—z) =
p4(2). This condition implies that Re p,(2) is even
and Im p,(2) is odd under the change from z to —z;
i.e., we have Re p4(2) = Re ps(—2), and Im p,(2) =
—Im p,(—2). This together with (29a) and (26a)
leads us to an integrability condition on the square
of the form

f_ : loalz, v)T dz dy

- f {[Re pa(a)]” — (Im p4(@))"} dz dy
1 c1+i®

catiw .
< N2 6%“”‘“) ds dt.
(27”’) c1 =g cg—1i®™

The right side of the inequality can be evaluated

for ¢, = ¢, = 0; making the change of variables,
we have

f_ loalz, YN dzx dy < (2—1_)31; ds_[_ e gy

The upper bound is seen to be
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® 1
[ loutz, ¥ dzay < -
The lower bound on the above integral is seen to

be zero by applying the above change of variables
directly to (292). The final form is then

0< [lom P dsdy <>, (20b)
where the integral is real.
We can also show that p,(z, y) is integrable over

each of its arguments separately. First, we integrate
(28) over z,

[ pate, ) o
= fm dx 1 fCHw L(s, t) """ ds dt
- (21ri)2 c—i®™ ’ ’
— * 1 ® fw . 3 ~i{sz+ty)
= f_m dz @ f_w ds a dt L(is, it) e ,
-1 fm dt L(0, it) e***
2r Jow ! )

But, this gives

f palx, y) dz

1 ® .
< 5;[ dt |L(O, 1),

_ _l__f —t1/8
=3 die ,

and the final form is

© 2 }
[ o ae] < (2. (30)
Similarly, we find that
@ 2 *
f_ paz, ¥) dy| < (;r) . (30b)

In the case that Im p,(z, ¥) = 0, (29b), (30a),
and (30b) yield results similar to those obtained
for the positive-definite density matrix p correspond-
ing to the normal oscillator. The contribution of
the negative norm states is contained in Im p,(z, ¥).

Now we show that p,(z) corresponding to the
IM 5 is a boundary value of an entire analytic
function of two complex variables. The derivation
follows Mehta and Sudarshan.® We let

o8, 7) = = (| ip ) 107 1T, (3a)
where § and vy are complex numbers. We introduce
the vectors of the IM space defined by the pseudo
oscillator.
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p(3, ) = 1-1;," (5* | n)n| B |m)(m]| 7 |y)et"*"et 1",
1> WA ) 5,

o(d,7) = = % o ———1—((2;(;3)"- 1)

Since |pam| — 0 as m — = and n — «, independently,
we see that p(8, v) is finite and convergent for all
finite values of 6 and . Thus, p(5, v) is an entire
analytic function of & and y. Using the definition
(31a), we see that p,(2) is given by

lel®

pa2) = p(e*,2) € (31c)

If we now express & and v in terms of two in-
dependent complex variables, i.e, &« = 3(8 + %)
and 8 = $(8§ — 7), then the corresponding o(e, 8)
is an entire analytic function of o and 8. By letting
6 — z and ¥ — 2z* we approach the boundary of
p(e, B) corresponding to & — z and 8 — ty(e=x+1y).
Thus, for ¢« = z and B = 1y, p.(2) = palz, y) i8
the boundary value of an entire analytic function
of two complex variables.

Now one can prove the following theorem which
has its counterpart for the positive-definite metric
case. If for any bounded operator 4, defined in the
IM space

AQ) =l 7d | =0

in any finite area over the complex z-plane, then
A(z) = 0 over the whole complex 2z plane and,
further, the operator A itself is identically zero.
The proof goes through in the same way as for
the positive-definite metric case.®

One has the same self-reproducing property for
our p(8, ¥) as in the positive-definite metric case.
Here we use the resolution of the identity for the
IM, OFS |z) given by (10a). This leads to

oo, =5 [l ip el 7 " B .
Using (8c), we find that
i) = et i g,

This gives
p(8,v) = 1 f o(8, 2)K(z, v) d’z (32)
? ? 3 b

where

K(z, ,y) = e—l:l'+:‘7'
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C. Properties of py(z) and the Relation between
ox(z) and g,(2).

We have already seen that p,(z) is well defined
in the IM case. The properties of px(2), however,
are not so easily determined. In the following, we
find that if px(2) is given, then p,(z) is determined.
The relation between py(2) and p,(z) is the same
as found in the PDM case.® We also show that
there exists a sequence of tempered distributions
pwe» identified with functions whose square is in-
tegrable where the corresponding sequence of density
matrices p(,, converge to g in the norm.

The relation of py(z) to pa(z) is found at once.
If pn(2) is given, then we can construct a diagonal
form for the density matrix 7 in terms of px(2).
This is found to be

5= [ onte) bl 5 . (338)

Then, we get back (20a), i.e.,
Tr (5™ %) = f pn(2) €7 " d’%.

Now, using the fact that
pa(2) = (1/m)z| B l2),
we arrive at

pi@ = 2 [ o) el 7 WP v (330)

This is independent of the operator G(a, ¢*) and
thus, completely general.

In order to study the properties of py(2), we con-
sider the form Fx(a, 8) given above;

Fale, ) = [ oule) 7 .

This is rewritten in terms of ¢ = z + 2y, with

i + 1g) + 3 — ),
3o + ig) — 3 — ).

Then,

Fule, ) = Fu(e, 8) = [ e, ) " dady,
(34

where o/ = p + 7g and 8 = u + 7. If one could
show that Fy(a/, 8') is at worse bounded by a
polynomial as |«/| and |8/| — e, then it is possible
to identify py with a distribution that maps

P B Ry, 8),
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or one could identify py(z, y)e~****” with a tempered
distribution that maps

e-’(cz+w) — FN(O!', B’)

for p and u in a finite domain I'. However, as in the
PMD case, Fy(e/, 8) is not generally bounded in
the manner required. Nevertheless, one can con-
struct a sequence of distributions py(,, where the
corresponding Fy(c/, 8') is bounded for each member
and such that the 5,, converge to g as y — «. Such
a sequence is not unique.

First we will show that there exists a sequence
of functions py,)(z, y¥) whose square is integrable
such that the corresponding operators 5(,, converge
to p in the norm. For this purpose we introduce the
sequence of functions py(, (z, ¥) defined by'*"*®

f PN(:)(x, y) e-—(pzﬂw) e—-‘(qz+w) da? dy

Fle, 8) foorr A<pu<B,
- and —y < ¢q,v <, (35)
0 otherwise,

where A and B are real and finite. Since F (o, 8) =
¢ **Fy(e, B), from (20c) and (20d), Fy(a, B) is
bounded for bounded values @ and B. This allows
us to identify (35) with a bilateral Laplace transform
and ensures that the inverse transform

1 1+ i catico
(2—1”'5'5 ) ds f dt FN(,)(S, t) et

=i

= pyn(®, Y) (36)

exists for p = ¢, u = ¢, and Fy(,y(s, t) equal to

12 A sequence of square-integrable functions defined in
terms of Fourier transforms was introduced for the positive-
%ﬁmg metric case by Klauder, McKenna, and Currie (see

181t is also possible to define a sequence of distributions
o) Which corresponds to the sequence of density matrices
similar to that used by Mehta and Sudarshan. That is, a
sequence defined by

<n| 5(1) Im>

Pn,m;y Osm,nsy, not m=n=0;

©

=<poot 2 Puuy n=m=0;

a=v+1

0 otherwise;

where ¥rz) is an eigenvector of the oFerat,or ata, i.e, a state
in the IM space of the pseudo oscillator. One can show that
this sequence 5(,) converges to 5 in the norm and is associated
with a sequence of distributions py¢) defined on the set of
infinitely differentiable functions of compact support such
that the mapping is

—(pz+uy) —(az+ PN 3
e PT+UY qzt+ay) () FN(,)(OC’, ﬁ’)-
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the right side of (35). Recalling the product rule
(29a) for the bilateral Laplace transform, we are
led to the condition

02 [ stor=2, —Worn(e, ) dody < = (360)

for finite ». However, from (33a) we see that the
pseudo-Hermiticity of 5 implies

p=75" = [ ot el 2.

Using the fact that 4 [z) = |—z) and making a
change of variables we find

5= [ o= kel 7 .

Since Fy(o/, 8') is bounded for bounded values of
o and B/, weseethat p = ¢, = O0Oandu = ¢; = 0
are in the region of convergence of (35). Thus we
rewrite (36) as

(36b)

PN(-)(IE, y) = (7;)—2 f ds f dt FN(,)('I:S, ‘l:t) 60’(u+¢y).
- (36¢)

Furthermore, from (35) we see that

Frosis, i) = [ pwen(@, 9) €= do dy.

Taking the complex conjugate of both sides and
making a change of variables we have

Flois, i) = [ ptun(—s, —3) €7 do dy.
- (36(1)

The representation of 5 in the terms of py has been
given by (33a) and (36b). Similarly, for each px(,)
there is a 3, given by

P = f pvin(@) l2)el idz
(37a)

= f phoy(—2) |2)el 7 d’z,
which leads to

Fyontis, it) = [

—co

P?\;(I)(_x: "y) e_“"-ﬂy) dzx dy'
Comparing this with (36d) we see that
F%» (s, it) = Fri(ts, 1t).

However, from (36¢) we find that

(37b)

Pz?r(v)(_x: —y)

= (_2!.1;)_2_ f ds di F}';(,)(is, 'I/t) ei(lz+¢v).
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This together with (36¢) and (37b) shows that
v (@, ¥) = phe(—2z, —y). Now the “pseudo”
square-integrability condition (36a) leads to an
integrability condition on the square, i.e.,

02 [ lovole, 9P dody < =, (370

As in the case of ps(z), since Re py(,y(2) is an even
function and Im py(,,(2) is odd, the above integral
in (37¢) is real.

It should be noted that the pseudo-Hermiticity
of p enabled us to restrict the large class of functions
which includes a subclass of nonlinear functions™
which satisfy condition (36a) to the more restrictive
class of linear functions satisfying (37¢). The same
result was also found in the case of p,(2). Thus we
see that the assumption of pseudo-Hermiticity for
p in an IM space, in addition to imposing reality
on the eigenvalues of nonzero norm states, is also
necessary for linearity.

Now we show that 5.,, converges to p in the norm.
The norm squared of 5 is given by

[5l]” = Tr (3*p) = Tr ().
Using (33a) and (33b) this becomes

181P = 7 [ % ox(@) pa(a).

However, p,(z) is well defined and given in (28)
by the inverse bilateral Laplace transform of F,(s, t),
where s and ¢ are complex. Thus we have

c1+iom catioo
=112 _ T 2
HP” B (27i)2 f dz -/c‘;—ieo ds ~/;;—6w dt
X FA(-S‘, t) e(az+tﬂ)pN(z).
But it was established above that ¢; = ¢, = 0 is

in the region of convergence of p,(z). Making a
change from s — +is and ¢ — 4, the above becomes

—| |2 m 2 ® ©
= z
It (2r)2fd /_mds f_mdt
X FA(iS, it) ei(n+tv)pN(z).
14 Without the restriction of pseudo—Hermiticity on 5 the

class of functions defined by (36a) admits functions of the
following type.

z3+y? .

hz, y) = {e ! “y 20
0, otherwise;

T24y3 .

oz, y) = {e ’ 7Y S0
0, otherwise;

The functions fi(z, y) and fa(z, y) are in the class of functions
but their sum is not. I am indebted to the referee for pointing
out this example.

M. G. GUNDZIK

After the integration over z and using the fact that

FA(a’ /3) = e—ﬂﬂFN(a; :3))
I3[ = ﬁf ds f_m dt |Fy(s, it)[* e

In a completely similar manner the norm squared
of B is

(38a)

Bl = o [ ds [t |Putis, in)P e, (38b)

In order that 5., converge to 5 in the norm it is
necessary and sufficient that ||5,, — Bon|] — O
as », ¥ — . To show this we note that
HBew — ol

= |Ipwll* + l1ponll* = 2 Tr (BunBo) - (38¢c)
From (37a) and (33b) we reduce the trace to the form

Tr (Fopw) = f a2 pyiv (@) pan(?).

In the same way we arrived at (38a) we find that

1 0 «© . .
Tr (B Ben) = E[_ ds ‘/:w dt Fy(,(1s, i)

X Fun(is, it) €.
Thus,

Tr (5o Bn) = ||pwl]® or HBonll?

depending upon whether » or » is the smaller.
Equation (38c¢) then becomes

3o — Bonll® = llBsll* = llen
In the limit as », ¥ — o, the right side approaches
zero since both terms approach ||5|*. Thus 5(,, con-
verges to g in the norm.

The relation of the sequence of functions py ., (2, ¥)
above to a sequence of distributions is seen from (35).
For each function of the sequence there is an asso-
ciated distribution py(,, Which maps ¢~ @***"¢™*(¢=**
to Fxuy(p, g, u, v). However, we can restrict py(,
more than this immediately implies. Let the double,
bilateral Laplace transform and double Fourier
transform of a distribution 7 be defined by

L[TIp + iq,u + ) = f T ¢~ ®+i0% =iy g0 gy
and
F[T)(g,v) = f T e ' =" dx dy,

respectively. We further define the space L of
test functions f(g, v) which are infinitely different-
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iable and of rapid decrease, i.e.,

. 37q, v) g, v)| _
tm | e e | = O
lgl—ew

qivk

for all j, k, m, n. It can be shown'® that if

lim [ Slovenlp + ig, u + i) f(a, v da do

w0

= [ Slovinlla ) fla, ) dg s, (39)
ie., £lpw] converges in the space of functionals
defined on L to F[py(,)] as p, ¥ — 0 in any domain T,
then py(,, is a tempered distribution. The condition
of convergence (39) is easily satisfied by the py(,, for
any f&L and all operations indicated are well defined.

Thus, we have shown that there exists a sequence
of tempered distributions py(,, to which is asso-
ciated a sequence of functions py¢,(z, y) whose
square is integrable where the corresponding se-
quence of density matrices p(,, converges to 5 in
the norm.

IV. CONCLUSIONS

We have used an OFS corresponding to a simple
quantum mechanical system, the pseudo oscillator,

15 R. F. Streater and A. S. Wightman, PCT, Spin and
Statistics (W. A. Benjamin, Inc., New York, 1964), p. 61,
Theorem 2-9.
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defined in a linear space with an IM to derive a
semiclassical form for describing the statistical state
of such a system. The properties of this form,
determined in Sec. ITI, were found to be a general-
ization of the semiclassical description of the cor-
responding quantum mechanical system defined in
a Hilbert space; i.e., the normal harmonic oscillator.
The semiclassical function p,(z) which corresponds
to antinormal ordering of operators has the same
properties in both cases when Im p,(z) = 0. Thus,
for antinormal ordering, there is a well-defined gen-
eralization from the semiclassical form of the simple
oscillator of a Hilbert space to that of the pseudo
oscillator of an IM space. On the other hand, for
the semiclassical quantity py(z) corresponding to
normal ordering, all we can say is that in both
cases there exists a sequence of tempered distribu-
tions for which the corresponding sequence of density
operators p,, converge to p in the norm.
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In a previous paper it was shown that the leading Landau curves of some Feynman diagrams do not
give singularities on the physical sheet if some of the internal and external masses satisfy certain
simple inequalities. In the present paper it is shown that a similar property is satisfied by a class of
Feynman diagrams, The inequalities involve a fixed number of masses for the whole class.

L. INTRODUCTION

HE singularities corresponding to a given Feyn-

man diagram lie on certain real algebraic curves
whose implicit equations were given by Landau,’
as follows

Z aiQi = 01
ai(¢; — mj) =0,

where ¢;, o;, and m; refer, respectively, to the
momentum, the Feynman parameter, and the mass
associated with the jth internal line, and the sum
is around each of a set of independent loops. The
solution in which none of the a; equals zero is known
as the leading curve for the diagram. The solution
obtained by setting some of the «; equal to zero
corresponds to the leading curve of the diagram
obtained by contracting the appropriate lines. It is
believed that as a consequence of unitarity the
Landau singularities also appear in the complete
amplitude, independent of perturbation theory.?

In a previous paper® (hereafter referred to as I)
we studied the leading Landau curves of some Feyn-
man diagrams. In the present paper we propose
to extend this work to a class of diagrams and some
other diagrams. We first recall some of the motiva-
tion for this work. For various reasons it is important
to determine what singularities corresponding to a
given diagram lie on the physical sheet as the latter
is usually defined. In this connection the leading
curves of only a few of the simplest diagrams have
been analyzed in detail. These cases include the
square,* the square with one diagonal,® the square

* Work supported in part by the U. 8. Air Force and the
National Science Foundation.
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with two nonintersecting diagonals,’™ and some

other diagrams considered in I. In the first three
cases, provided the external masses are not too
large, the real section of the leading curve has parts
singular on the physical sheet (with the attached
complex surface nonsingular) and confined to the
spectral regions. This implies that the Mandelstam
representation is satisfied. The spectral regions for
a given diagram are defined as the regions in the
plane of the real invariants where the normal thresh-
old cuts (given by the appropriate normal threshold
contractions) in any two of the variables overlap.
Now it is known® that as the external masses are
increased, anomalous thresholds appear on the phys-
ical sheet for the square diagram before any higher-
order diagram. It is pertinent to ask if a similar
property holds for leading curves. In this connec-
tion, and also as a matter of intrinsic interest, it
is important to discover if there exist any diagrams
whose leading curves do not yield any parts singular
on the physical sheet. In I it was shown that there
are indeed some diagrams which yield no singularities
on the physical sheet, if some of the external and
internal masses satisfy certain simple inequalities,
which are satisfied in the equal-mass case. For this
it is necessary to assume the absence of singular
acnodes.®® In the present paper we study the leading
curves of a class of diagrams and show that a
similar property holds for the leading curves of this
class. There is one difference in that one of the
inequalities, which requires the square of a certain
internal mass to be greater than the sum of the
squares of two other internal masses, is not satisfied
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in the equal-mass case. Nevertheless it is remarkable
that there is only one such inequality, and the
number of masses involved in the inequalities is
fixed, no matter how complicated a member of the
class one considers. Also, it is not as if we consider
a finite part of the diagrams, in fact, in the proof
for the nth member of the class, the Feynman
parameters associated with all the internal lines are
involved. Further, we deal with completely general
masses. It is interesting that something definite
can be said about (a certain type of) diagrams of
arbitrarily high order with quite general masses.
In some special cases, such as the diagram of Fig. 2,
the relevant inequalities are satisfied also in the
equal-mass case, like the cases considered in I.

To explain the basic ideas, in Sec. 2 we consider
two diagrams, the first of which is a member of
the class of diagrams considered in Sec. 3. From
the Landau equations we derive an equation in-
volving the Feynman parameters and some of the
masses, from which it is at once evident that if
the masses satisfy certain simple inequalities, the
Landau equations possess no solutions with all the
Feynman parameters positive. This implies, as was
shown in I, that in the assumed absence of singular
acnodes the corresponding leading curve is non-
singular on the physical sheet. In Sec. 3 we apply
these ideas to a class of diagrams and in Seec. 4
we consider some additional diagrams. In Sec. 5 we
note that any diagram which has one of the diagrams
under consideration embedded in it also satisfies a
similar property. In Sec. 6 we discuss nonsingularity
on the physical sheet.

II. TWO EXAMPLES

We first consider the diagram of Fig. 1. The
momenta are as shown in the figure. The Feynman
parameter and the mass associated with the mo-
menta ¢, ¢;, ¢}, g/ are, respectively, a and m, o;
and m,, o} and m}, o}’ and m{’. We denote the
external masses by m,, m,, m., and m,, respectively.
The labeling of the lines anticipates that of See. 3.
The diagram of Fig. 1 has three independent loops,
the loop equations for which are

g +aigl — o'’ —ad'e =0,
s + aigh — a’qi — ai’q)’ =0, (1)
ag — aGo + @:qa — a1q; + ai’ql’ — ajgs = 0.

We note that the diagram has vertices at which
only three lines meet and that the arrows, which
denote the direction of internal momenta, are drawn
g0 that they are either coming into the vertex or
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a + . ’avl

%o

Fig. 1. One of the Feynman diagrams under consideration.

going away from it. This implies that the conserva-
tion law at the vertices is given by the vanishing
of the sum of the three relevant momenta. From
one of the vertices we get the conservation equation

@+ag+a =0 )]
Multiplying it by ¢, we get
g + g + qg’ = 0. (3

We note that if 4; and %k; are any two internal
momenta meeting at a vertex, then the scalar pro-
duct k;k; is a constant determined by the three
relevant masses. For example, it is easily seen from
the conservation equation (2) that

&)

Thus in Eq. (3) ¢,¢!’ is a constant. Our aim in this
section is to determine ¢,¢} and ¢,¢} in terms of the
o’s and the masses, and to substitute in Eq. (3)
to get a certain relation involving only the o’s and
the masses. ¢,¢7 can be obtained at once from the
first of Eq. (1) by multiplying it by ¢!. We get

2 2 2
qigl’ = 3(mg’ — m{® — m").

©®)

The scalar products ¢{g)’ and ¢{g5’ depend only on
the masses. We obtain ¢,q} as follows. Apart from
Eq. (2) there are three conservation equations in-
volving only the internal momenta coming from
three other internal vertices. We multiply these by
¢} to obtain

agl = (Ve)(ed' ¢t + ob'glgs’ — aim(®).

a9t + 996 + ai’¢5 = 0,

0:90 + ¢.q5 + 93¢ = 0, (6)

qigs + g190 + qi’¢ = 0.

Further, we obtain three other equations by mul-
tiplying the Egs. (1), respectively, by g5. Together
with Eq. (6), this gives six equations for the six
unknowns ggf, 0194, 9295, 9394, 9’95, and ¢i’q;. We
solve for ¢,¢5 and substitute in Eq. (3) for ¢,¢) and
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b L

!/ 4 I;

D% Dl/l ¢'z_

F1a. 2. A diagram obtained from that of Fig. 1 by contracting
one of its lines,

¢:9] to obtain, after some manipulation, the equation

Alaqiql’ + o’qlql’ + i’ qglgy — aimi®)
— aBaigt + aCqi’qt
rr 1’ e 1

2
+ aaar’af’ qg4 — ajoned’ay’my’ = 0, (™

where

A = alon(ey + a3 + o3’ + o) + i’ (e, + o3)]
+ Olzaé’(al + 015,) + alaé,a:;,)

B = awj(a; + i + o + o) + afonel’ + agabed’,

C = aaj’(ez + o) + a3’ +aff) + al’aye}’ +aad’af’.

We note that the expressions A, B, and (' are positive
when the o’s are. From Eq. (7) it is then clear
that there can be no solution with all positive
Feynman parameters if

I 1t

qig > 0; quql’, qlat’, a0, 9igs’, 99 <0,  (8)
ie., if
m{” > m® + ml®, mi < mi 4+ mi’?,

’2 2 2 2 2 2
my < m{ + mi*, mi < mi® + m’.

9)

We note that g¢ig}’ and ¢}’qj automatically satisfy
(8) when ¢ig} satisfies it. The first inequality in (9)
is not satisfied in the equal-mass case, but all the
others are.

We now consider the diagram (Fig. 2) obtained
from that of Fig. 1 by contracting the line associated
with the momentum g,. Following similar steps as
before, we derive the relation corresponding to Eq.
(7). This relation is obtained by setting «, = 0
in Eq. (7). We then combine the ¢/g/ and m!® terms
using the relation
—(qigs + m®)

qig)’ = (10)
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which is obtained by multiplying Eq. (2) by ¢f.
We then get the relation

(e + aaf’ + ey )(aniql’ + as’qiqi’)

+ {af/ (@ + axaf’ + aad’) + aeian}qigl’

— (euad’ + azaél)a;miz + ai(al’a;, + of’ab’)qi’ g5
(11)

From Eq. (11) it is clear that there is no solution
corresponding to positive Feynman parameters if

77 oyt 7 100 l2 —
+ aoya’qqb — afoyas’my” = 0.

aql’, e, ¢ied’, 91'4, 995 < 0,
ie., if
mi? < mi® + mi”,

m® < mi® + m{”?, (12)

2 2 2

md<m1+m{,)
2 2 2

m§ < m{® + m{”,
2 2 2

m, < m” + mi".

We note that all the inequalities (12) are satisfied
trivially in the equal-mass case. Further, the two
sets of inequalities (9) and (12) involve only two
of the external masses and not all the internal
masses, so that if these inequalities are satisfied,
the Landau equations possess no solution with posi-
tive o’s independent of all the other external and
internal masses. Equations containing the other
masses can be obtained by considering a relation
such as Eq. (3) at some different vertex.

III. A CLASS OF DIAGRAMS

In this section we consider a class of diagrams,
the nth member of which is shown in Fig. 3. It is
obtained by taking a ladder diagram with (n + 1)
straight rungs, twisting round one side of the ladder,
and joining two of its ends to the two ends (the lines
associated with the momenta g, and ¢}) of a one-
particle exchange diagram. In Fig. 3 the arrows are
drawn assuming n to be even. To avoid considering
a lot of (—1)" factors, we deal only with the cases
where n is even. The other cases can be dealt with

o Yn Yn-t o T2, h d
%

Y. T, T 4

Ynet Ve €

F16. 3. A member of a class of diagrams considered in Sec. 3.
The arrows are drawn assuming n to be even.

b
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analogously. We note that in Fig. 3, too, the arrows
are drawn so that they are all going away from a
vertex, or coming into one. It is possible to draw
the arrows this way when 7 is even. In the case
where 7 is odd, the arrows can be drawn so that only
at the vertex b are they not all going into or coming
out of the vertex.

The momenta are as shown in Fig. 3. We denote
the Feynman parameter and the mass associated
with each momentum as in Sec. 2. Thus for example
o} and m} are the Feynman parameter and the mass
associated with the momentum ¢}. The diagram of
Fig. 3 has n + 1 independent loops, the loop equa-
tions for which are (throughout the following we
assume n to be even)

’ ot ) 1ot
oy + aiqf — a’'qt! — '’ =0,
7ot 111 -
axq, + sy — '@y’ — ai’qi’ =0,
! 7 117 r 17 — (13)
A, + UpQn = On Qn — Ope1Qn+1 = 0;

aq — ago + @Gn — @_1GQuy + -

+ axq: — a ¢, + a{'q{' - a()qé = 0.
Exactly as in Sec. 2 we derive the Eqgs. (2), (3),
and (5), The difference in this case is in the solution
of ¢.,qf. To solve for q,9;, we proceed as follows.
Apart from Eq. (2) there are the following 2n — 1
conservation equations at vertices.

q0+ qn+ q:z-,i—l = 0,

¢+ ¢ +¢' =0 2<r<n; (14

@G+ g+ g’ =0, 2<Lr<n.

Solving for ¢;’, -+ -, gi4, and g3, - - -, g1, we get

a, + Olz,’, a&’)’
a; + aff Nz
—af al’
4
oy 0
A, = —
ol 0
—ay 2]
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gr = —(g0 + ¢,
q:’ = _(Qr—l + qr): 2<r< n; (15)
q: = (_l)f(QI - q{) + ¢., 2<Lr<n.

We now multiply Eqs. (13) and (15) by ¢} to get
3n equations involving the 3n unknowns ¢.qs, ¢.94,
e 0n00; BB, t 0, €hG65 95796, 0 5 QWhagd. We can
eliminate g¢jgs, --- ¢igs; 93'q%, -, Gak1Qs Using
Eqgs. (15). We are then left with n + 1 equations
in the n + 1 unknowns q.q}, * - , ¢.95. These are
the following:

1 peds

(e + &)q195 + a3/ qoqf = —aiqiqs + i’ gt i,

(ot + @)1 06 + N3g2q6 + @i’ ¢:96 = 22910,

—ab 198 + o3’ q:06 + Nagagd + i’ .8 = —a;q{qo,

.............................................

(—l)ra:QIQt; + a:'Qr—ﬂS + qurqs (16)
+ affigrna g6 = (_1)'a:q{q3.

’

a:\qlqtg + av,»,qn—lqt,) + quth; + anilqoq(; = avllql’qér
—o 10 F @b — = Cam1Qe-10h F Xlnh

732
— aQogs = —ai’qi’qs — aqqs + agma,

where N, = a, + o/ + o + «!},. We note that
the scalar products appearing on the right-hand side
of Eq. (16) are all constants determined by the

masses. From Eq. (16) we get
0:¢0 = B./A, (17
where
[ PRI 0
ol
N; of
o’ Ny - (18)
. E . a’,‘,' 0
0 o ‘N, o,
—y e —Qpy Gn —ay
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and
a;’ 0’-.---ao--.a-....oo-.ooonno9 _a{q{q(’,_l_a{’q;’qé
N, of ", : obglah
a’ Ns o - : —a3q1qs
Bl = - (:). . a'i"- N.t- ......'.'.' § aiq.{qé
E 'o..' 'O.' ... C;,’,, '6 5
6-......-010-.0‘0 (;"" .N'“ ai’l"i-l ar’)q.:q(;
o —ag o4 —p1 o —ay —al’ql’gh — agql + abmi’

We have a minus sign in front of the determinants
for convenience. Substituting in Eq. (3) for ¢,¢!
from Eq. (5), and for ¢,¢} from Eq. (17) and Eq. (19),
we get

Ao + o'qlgl” + o qlgl! — oimi’)
- alonq{q() + aanq{,Qt;

+ 00F.qq) — ot E.my = 0. (20)

It is shown in the Appendix that the expressions
A,, C,, D,, and E, are positive when the a’s are.
It then follows at once from Eq. (20) that there
is no solution with positive a’s if

ae > 0; g, vial’, o'q, ¢igt’, g9 <O.

These are exactly the same inequalities as (8) and
(9). One gets the same inequalities in the case where
n is odd. Thus we have the remarkable result that
if the inequalities (9) are satisfied, the diagram in
Fig. 3 for all » have leading curves which are non-
singular on the physical sheet, provided we assume
the absence of singular acnodes (see Sec. 6). Equa-
tions similar to Eq. (20) containing the other masses
can be obtained by considering an equation such
as Eq. (3) at some different vertex.

IV. SOME OTHER DIAGRAMS

We now consider the diagram of Fig. 4. It is
obtained by twisting the ‘“square’” diagram and the
“double square’” diagram and joining the two ends
of one to the two ends of the other (the lines 5
and 6). We label the lines as in Fig. 4 and denote
the momentum, the Feynman parameter, and the
mass of the jth line by g¢;, «;, and m,, respectively.
The diagram of Fig. 4 has four independent loops,
the loop equations for which can be taken as

= ~C.ig} + D.gi'q5 + En(agqs — otml®).  (19)
¢ — 0@y — Qs + ougs = 0,
ar;Qy — agQs — anqu + s = 0, (21)

s — 010 — o + @iz = 0,
azQs — auQs + as@s — @eqs + a:qr
— 1010 — @ugn = 0.
From the (5, 9, 10) vertex we get a conservation
equation which we multiply by ¢,, to obtain

Qs + Goia + Guoqiz = 0. (22)

We note that g.9,: is a constant. We evaluate g10¢:a
and ¢sq,. by methods similar to those of the previous
sections. That is, we multiply the first of Eq. (21)
by ¢1o to obtain g.0:1,, and multiply the Eqgs. (21)
and the rest of the conservation equations by ¢ to
solve for gsq.s. We then substitute in Eq. (22) for
@sq12 and ¢.0:; to obtain, after some reduction, the
equation

A,('—OKQQQon + 21200012 + a1:G10q1 T a1om:o)
+ a12B'¢s010 — 0110405011012 G5

— Q03050102025

(23)

’ 2
- auC q5q9 + Q30001 10 My = 0,

Fia. 4. Another of the Feynman diagrams under consideration.
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where
A’ = (a3 + a5 + ogon)as(ar + as)
+ anla; + a5 + an + ai)]
+ ag(a; + op){aan + e + enayy),
B’ = (a3 + a5 + aa)aroar; + as
+ o + aia) + anans] + aasano(on 4 a),

and
¢ = asae(al + aa)(a7 + o)
+ (alas + a0 + aaao)(a», + a5 + oy + an)-

We note that the expressions A’, B’, and C’ are
positive when the o’s are. It then follows that there
is no solution corresponding to positive o’s if

€5010; Qoazy Groqu > 0 Quls, G205, 450 < 0. (24)

We note that at the vertices (10, 11, 13) and (9, 12, d)
the momenta are not all going in or all coming out.
This implies that ¢q¢., is given by

(25)

@iz = —3(m; — mi — md,),

with a change of sign from Eq. (4), ¢109:1: also has
this change of sign. The inequalities (24) then imply
the following [noting that g;q, automatically satisfies
(24) when g;q,, satisfies it]:
mg > ms + mi, mg < my + M,
mi; < mi, + mgly m; < mi + m:, (26)
mi < m; + m;.

All the inequalities in (26) except the first one are
satisfied in the equal-mass case.

We now consider an equation such as Eq. (22)
at the vertex (2, 4, 5), namely, the equation

@n

We evaluate ¢,g, and ¢,g5 using similar methods as
before and substitute in (27) to obtain the equation

€% + @9 + ¢:95 = 0.

A'(0101¢s + 2204 + @aags)
+ e B' Q205 + 0105C" 025
+ aja; Dgsgro — anazag(aos — asty1)¢sqe
— a Em} — ayazas{ayson + i)
+ (o7 + asdan + @) }my = 0,
where A’ is given as above and
B"" = (a7 + ages + aas)(on; + ayg)

+ doau(au + Olm) + azayo,,

(28)
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C" = B" + ozaysoy; + ays)
+ as(ar + as)(on + 1a),
D = a1 + ans(@aso + erey + oy + anns)
+ ayan(e; + as + an + o),
E = oy{ame; + ages + azos)(ay; + oyp)
4 agopa(@y + as) T+ s ats.

Since the coefficient of ¢;q, in Eq. (28) can be either
positive or negative, nothing can be said about the
solution for positive o’s. However, if gsgo = 0, i.e., if

Mmio = m; + mg, (29)
then there is no solution for positive « if
0102, 904y 92945 €aGs; 5910 < O,
i.e., if
ma < my + ma, my < mj + mi,
my < m; +m;, mi <m;+ m; (30)

my < my + mi.

We note that the last inequality in (30) follows from
Eq. (29).

In Eq. (28) if a5 is put equal to zero, then the
coefficient of g;g, becomes an expression which is
positive when the o's are, like the coefficients of
the other scalar products in (28). This leads us to
consider the diagram of Fig. 5, which is obtained
from that of Fig. 4 by contracting the line 13.
The equation corresponding to Eq. (28) for this
diagram is obtained by setting o,; equal to zero
in Eq. (28). From the resulting equation it follows
that there is no solution with positive o's for the
diagram of Fig. 5 if

@193, 9394, Q204> 92055 9500, €5G10 < O,

ie.,
m: < mi+ my, my < m;+ mi,
ms < ms + mi, mi < mi+ m, (31
m; < mi + mi, mi < ms + mq.
| b 7 o
. > < 4 d
\\u
/ 3 /
b R 0 3

F1a. 5. A diagram obtained from that of Fig. 4 by contracting
one of its lines,
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Fig. 6. An example of embedding. The leading curves of
both diagrams (a) and (b) have no parts associated with
positive Feynman parameters when the masses satisfy (32).

&)

All the inequalities in (31) are satisfied in the equal-
mass case. However, since the diagram of Fig. 5
contains a triangle diagram with two of the vertices
of the triangle containing three lines each (the
triangle with lines 7, 8, and 11), it is possible to
get another condition for no solution with positive
o's quite trivially. We obtain this condition by
multiplying the loop equation for the loop (7, 8, 11)
by g, to obtain

as:qs — onGzgu = 0.

There is thus no solution with positive o's if

2
a;M; —

9798y G712 < 0;
ie, if

my < mz + mg, My < mp + my,.
However, it is interesting that for this diagram there
also exists the condition (31) involving the other
masses.

It is clear that analyses similar to those of this
section can be carried out for the following class
of diagrams. Consider a ladder diagram with m
straight rungs and another with n straight rungs.
Now twist one side of each of these around and
join the two ends of one to the two ends of the
other, exactly in the manner that the diagram of
Fig. 4 is obtained by joining a square diagram and
a double square diagram. The class of diagrams
considered in Sec. 3 is a subclass of this class.
It is our belief that conditions similar to those in
Eq. (26) can be obtained for no solutions with
positive o’s, for this larger class. However, we have
not attempted to prove this.

V. EMBEDDING A DIAGRAM

Consider any of the diagrams studied in this paper
or in I, some of whose masses satisfly inequalities
which imply that there is no solution for the leading
curve with positive o’s. If such a diagram is em-
bedded in a higher-order scattering or production
diagram, then the leading curve of this higher-order

N.
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diagram also possesses no solutions with positive
a’s. As was mentioned in I, this follows from the
fact that the Feynman parameters of the original
diagram satisfy an equation such as Eq. (7) in-
dependent of the rest of the diagram, so that if
its masses satisly the relevant inequalities, there
will be no solution with the Feynman parameters
of the subdiagram positive and hence none with
all the Feynman parameters positive. An example
of embedding is shown in Fig. 6. It can be easily
shown, using the above methods, that the diagram
of Fig. 6(a) (this diagram was considered in I)
possesses no solution for the leading curve with
positive a’s if

2

2 2
my, < m; + ms,

2 2
< mi -+ ma,

2 2 2
my < my + my,

m;

(32)

2 2 2
M, < Mg + M,
2 2 2

MMy < my + ms.

It then follows by the above argument that the
leading curve of Fig. 6(b) also possesses no solutions
with positive o’s if (32) is satisfied. We note that
the vertex d of Fig. 6(a) can be connected to any
number of other lines in the higher-order diagram.

VI. NONSINGULARITY ON THE PHYSICAL SHEET

In I we considered in detail to what extent the
leading Landau curve possessing no parts corre-
sponding to positive Feynman parameters implies
nonsingularity of those parts on the physical sheet,
It was shown that for scattering diagrams, i.e., for
diagrams involving four external lines, to get non-
singularity on the physical sheet it is sufficient to
assume the absence of singular acnodes.®*® We be-
lieve that for production diagrams, such as that of
Fig. 6(b), the condition for no solution with positive
o’s also in some sense implies nonsingularity on some
suitably defined physical sheet; but this is not clear.

ACKNOWLEDGMENT

I am very grateful to Prof. J. S. Toll and other
members of the physics department for their hos-
pitality at the University of Maryland.

APPENDIX

In this Appendix we prove that the expressions
A,, C,, D,, and E, of Sec. 3 are positive when the
o’s are.

Consider the determinant 4,. Expanding in terms
of the last row, we have, after a slight simplification,

n
A, = 2 Al alhy - ally + Al

r=}

(A1)
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where
Aé = 1; A{ = + a;"
’ 1
o+ ai o
A} = ,
o +off N,
and
ay + a;' aé’ O ............... 0
a£ + Ol;/ Nz a;’ i
_.aé aé N3 ai’ .
! 1 . .
o 0 &/’ N, .- -
A: = 4 4 4 .
-0
ol
(_l)ra: 0 .......... 0 a:l Nr

We now prove that determinants A/ are positive
when the o’s are, for all r. To prove this we first
expand A/ in terms of the last row to get the follow-
ing recurrence relation

Al = N A!_, — /4!, — alafal) - o (A2)

We now use a process of induction. For this we
assume that the expression A!_, is positive when
the o’s are, and that this expression has in it a
term of the form «!’A!_, (which is also positive
when the o’s are). We further assume that the term
al’A!_, has in it a product of the form o}/’ « -+ al’.
We now show that these assumptions about A4/_,
imply similar properties of A/, i.e., that A/ is positive
when the o's are, and that A/ has in it a term of
the form «!/,A!_,, which in turn has in it a product
of the form of’af’ --- a!f,. It is clear that the
assumptions about A!_, imply that it can be written
as

Al =al'Al, + Ky = allof’ - ol + Ky,
Nr+1 a:iz
a:f,_z Nr+2
1"
I: = ., ar+3_.

veesssssesessedD
.
.

0..'..'0"-0'..

(_1)r+lar+1

.
o
cscscecsscrssd()

(1) Papyg wvvrernens —0,y1  On
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where K, and K, are positive when the o's are.
Remembering the definition of N,, we see that (A2)
can be written as
Al = (a, + atl ) Al + al(os’ad’ -+
+ af(e)’ Al + K,)
’ Pt

12 471
— &, A, — [e 22250 £

= (a, + i) Al + /K, + o]'K,.

a:' + Kz)

cal!
(A3)

Thus A! is positive when the o’s are. Further, it is
clear from the last form that A’ has in it a term
of the form a’’,A,_, which in turn has in it a product
of the form of’aj’ --- alt, (since A/_, has the pro-
duct af’af’ -+ «!f through the term of’4!_,). It is
easy to verify that for the first few values of r, 4/
does indeed possess the properties assumed for the
purpose of the induction. This completes the induc-
tion and proves that A/ is positive when the o's are,
for all values of r. It is then clear from (A1) that
A, is also positive when the o’s are.

We now prove that the expressions C,, D,, and
E, are positive when the o’s are. It can be seen
easily that

f— re_rr
E,, = Q3 °

(Ad)

144
t Oy

To get C, and D,, we expand the determinant B,
in terms of its last column. We then get

n+l
B, = X I, (A5)
r=1
where
I, = alaj’al’ -+ al’Ilqlqs, 2<r<n—1,
I, = (aiqiq; — o' @i’ )11,
4
I, = —aa’ay’ -+ i/ qlgs,

— ’ i Pan P3N 11 00 L I
I = (agqt + al’ql’ g6 — agmy Yadas’ - oy,
and

rr :
ar+.3

.
- .l'
.
Nr+3 ‘e ‘e
. .

. ., .o
e .‘a : 1’;’ .O
Seu ..'N 7

229 n Olpt1

—a,
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Expanding in terms of the last row, we see after
some simplification, that I’ can be written as follows:

I: = —'aOAr+1,n
n—r
4
- Z ar+mar-’bm+xa::-m+2 v af’r:-lAr+l.r+m-l7 (A6)
me=1
where
Ar+1." = 11 Ar+1.r+l = Nr+l)
and
N,

a::-: Qeveecens 0
a.’-ix Nr+1

0 a:iz Nr+2 .

rr "
Orya *

Ar.t = .
. 0
. * ol
Orevvens 0 & N,

We now show that A, , is positive when the o’s
are. We first expand A, , in terms of the last row
or column to get the following recurrence relation:

Ar.n = NaAr.n—l - a:ﬂAr,.-—a- (A7)

As before we apply a process of induction. For this
we assume that A, ,_, is positive when the o’s are
and has in it an expression of the form of’A,,,-s,
which is also positive when the «'s are. Thus we
can write

JAMAL N.
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Ar,l—l = a:,Ar.a—z + K,

where K is positive when the a’s are. Substituting
in Eq. (A7) for A,,_, and remembering the form
of N,, we have

Af,l = (a' + a: + a:-,(-l)Ar,l—l
+ a:’(a:,Af.c—2 + K) - a:’zAr.l—l
= (& + af + all)A o + oK.

Thus A,,, is also positive when the o’s are and
has in it an expression of the form «af},A, ,_,. It is
easy to verify that the properties assumed for A, ,_,
holds for the first few values of s > » 4 1. This
completes our induction and proves that A, , is
positive when the o’s are for all , s. It then follows
from Eq. (A6) that I! is negative when the o’s are
positive, for all , 1 € r < n — 1. Comparing the
coefficients of ¢lq}, ¢!'q4, qqt, and m{? in B, we see that

(A8)

n—1
Co = —alll — 3 alaf'a}’ -+ al'I!
r=2
100 1 17
+ aanoi’og’ o o,
— 1T’ rr.r7 144
Dn_' —a'I] + af’aj’ --- [0

100,

—— 1
E,. = Q303 * Qlpiie

Since I are negative when the a’s are positive, for
allr, 1 < r < n — 1, it is clear that the expressions
C., D,, and E, are positive when the o's are. This
is what we set out to prove.
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Random media are considered in which the dielectric constant, permeability, and conductivity are
random functions of position. For them, the average electric field, electric current, dielectric displace-
ment, magnetic field, and magnetic induction are determined, assuming that these average quantities
are time-harmonic plane waves. The proportionality factors between appropriate pairs of these
quantities are found and defined to be the effective dielectric constant, permeability, and conductivity
of the random medium. These effective parameters depend upon the frequency and propagation con-
stant of the field in addition to the two-point auto- and cross-correlation functions of the random
dielectric constant, permeability, and conductivity. For transverse fields thay are all scalars. In
addition the dispersion equation for the propagation constant of the average or coherent field, derived
previously, is analyzed and solved for high- and low-frequency fields. From the propagation constant,
the phase velocity and attenuation coefficient can be found.

1. INTRODUCTION

N the experimental investigation of electromag-
netic fields one always measures some sort of
average field, such as the average over a small volume
or over a short time interval, or both. For a slowly
varying field in a uniform medium, this average
field is practically equa! to the instantaneous field
at a point, However, in a very heterogeneous medium
such as a turbulent gas or liquid, or a mixture of
sands or powders, the average field may differ con-
siderably from the instantaneous field at a point.
Consequently the ratio of the average current to
the average electric field, which ratio we may call
the effective conductivity ¢.¢, may differ appreci-
ably from the actual conductivity ¢ at a given point.
It may also differ from the average conductivity
(o). Therefore we consider the problem of calculating
gers a8 well as the effective dielectric constant e
and the effective magnetic permeability u.s;. This
problem is similar to that of determining the macro-
scopic parameters of matter from molecular prop-
erties.

To formulate the problem we introduce an en-
semble of media, each with definite values of o(x),
€(zx), and u(zx), and a probability distribution over
the ensemble. This ensemble with the associated
probability distribution is what we call a random
medium. By the average (f(z, {)) of a function
f(z, t) we shall mean the ensemble average, i.e.,
the average of f(z, t) with respect to the probability
distribution over the ensemble for fixed z, ¢. Then
we define the effective parameters of the random
medium by the equations

* The research reported in this paper was sponsored by

the U. 8. Air Force Cambridge Research Laboratories, Office
of Aerospace Research, under Contract No. AF 19(628)3868.

D) = ee(B), B) = pore(H), (J) = 0.1s(E). (1.1)

Here D is the dielectric displacement, B the magnetic
induction, J the electric current, E the electric field
and H the magnetic field.

To compute the averages in (1.1) we must first
determine the appropriate field in each medium of
the ensemble. For this purpose we assume that ¢'(z),
u(z), and o(zx) are pearly constant so that we can
determine the field by a perturbation method. To
find the average field we assume that ¢, u, and ¢
are statistically homogeneous and isotropic. We also
assume the field to be time-harmonic with angular
frequency w. Then we find that €, (w), go¢:(w), and
Mes1(w), Which depend upon w, are operators rather
than scalar or tensor multipliers. When applied to
a plane wave of wave-vector k, these operators
reduce to tensors which depend upon « and k.
Therefore we denote them by e;;(w, K), dorr(w, K),
and p.rs{w, k). When applied to a transversely po-
larized plane wave they become scalars depending
upon « and k = |k|, which we write as €l (w, k)
o'eff(wy k); and l‘a“(wy k)-

We obtain explicit expressions for these scalars
in terms of the two-point auto- and cross-correlation
functions of ¢(z), u(z), and o(z). Although these
expressions are somewhat complicated, we obtain
expansions of them for both low and high frequencies.
We also obtain similar expansions for k, the complex
wavenumber or propagation constant of the coherent
or average field for both low and high frequencies.
They are obtained from the dispersion equation for
k derived in our previous paper,’ which was solved
there only in a special case. Qur method of analysis

i F, C. Karal and J. B. Keller, J. Math. Phys. 5, 537 (1964).
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is similar to that of Ref. 1, from which we shall
also use some results,

Many authors have considered the problem of
calculating the effective parameters of a random
medium, but they have apparently treated only the
static case w = 0. In addition, most treatments
concern a mixture or suspension of particles of one
homogeneous substance in another homogeneous sub-
stance. In this case it is possible to employ the
methods usually used to derive the dielectric con-
stant from molecular properties, since matter may
be thought of as a suspension of particles in vacuum.
Thus Brown® determined €/,; for a suspension at
w = 0 by using the method of Yvon® and Kirkwood,*
which had been devised for the calculation of static
dielectric constants. This method is very similar to
ours, which we have also applied to the dielectric
constant problem for « 5 0.° References to earlier
work are given in Ref. 2.

For a continuous medium rather than a piecewise
uniform one, Landau and Lifschitz® obtained a result
for €;; when w = 0 and ¢ = 0. Our result agrees
with theirs when we specialize it to this case.
Molyneux’ has also treated this case and has ob-
tained one term in €/, beyond the result of Landau
and Lifschitz. It is of third order in the magnitude
of the random part of ¢'(z) and involves the three-
point correlation function of €(x). We have cal-
culated only up to second-order terms, so we do
not obtain this term. Hashin and Shtrikman® and
Beran® have attempted to obtain bounds on e/
for @ = 0 by using variational principles.

2. FORMULATION

Let us consider a medium in which ¢, u, and ¢
differ from the constants e}, po, and o, by small
random amounts. To make this hypothesis explicit
we introduce a small parameter  and assume that

¢ = €[l + nel(x)], 2.1)
moll + mu(x)], (2.2)

' W. F. Brown, J. Chem. Phys. 23, 1514 (1955).

3 J. Yvon, Comp. Rend. Acad. Sci. (Paris) 202, 35 (1936).

4+ J. Kirkwood, J. Chem. Phys. 4, 592 (1936).

5 D. J. Vezzetti and J. B. Keller, “Refractive Index, Atten-
uation, Dielectric Constant and Permeability for Waves in a
Polarizable Medium” (to be published).

6 L. Landau and K. Lifschitz, Electrodynamics of Con-
tinuous Media (Pergamon Press, London, 1960), p. 46.

7J. Molyneux, “Application of Perturbation Techniques
to Problems in Statistical Continuum Theory” (Ph.D. dis-
sertation, University of Pennsylvania, 1964).

8 Z. Hashin and 8. Shtrikmsn, J. Appl. Phys. 33, 3125

1962).

( 9 1\2[ Beran, “Use of the Variational Approach to Deter-
mine Bounds for the Effective Permittivity in Random
Media’’ (unpublished).
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o = o[l + 5o:(x)]. (2.3

Since we shall consider time-harmonic fields of
angular frequency w, it will be convenient to introd-
duce the complex dielectric constant € = ¢ + tw ‘o

which may be written as

e[l + 76(x)]

]

€

(2.4)

"

ehel + tw 0'00'1)

- -1
€ + w oy

(56 + 'L'w_la'o)(l + 9

This equation defines ¢, and ¢, (x).

From Maxwell’s equations, by elimination, we can
obtain an equation for E. When the field is time-
harmonic and the above expressions (2.1)-(2.4) are
used in that equation, it can be written as [Ref. 1,
Eq. (87)]

[L — 7L, — °L; + O(%*))E = 0. (2.5)

Here the operators L, L,, and L, are defined by

L=VxVx —k, (2.6)
L, = kg(“l + &) + Vu xV x, 2.7
L, = kgﬂlél — Vi XV x. (2-8)

The constant k, is defined by &2 = w’use.

To solve (5) for E we begin with E,(x), a non-
random solution of (2.5) with 4 = 0. Then it follows
from (2.5) that E is given by [Ref. 1, Eq. (5)]
E = E, + 4L"'L,E,

+ o'[L7LLTL, + LT L]E, + 0(7)).  (2.9)

To obtain D we multiply (2.9) by ¢ which is given
by (2.1). Then we take the expectation value of
each side of the resulting equation to obtain

(D) = Eo + nei[L7Ly) + (e)]Eo
+ °&[L(L L7 LY + LLy) + (L7Ly)E,
+ 0(x"). (2.10)

In (2.10), (D) is expressed in terms of E,, whereas
in (1.1) (D) is given in terms of (E). Therefore we
shall try to eliminate E, from (2.10).

To this end we first average (2.9) to obtain (E)
in terms of E,. Then we solve the resulting equation
for E, by iteration or successive substitution, In
this way we obtain [Ref. 1, Eq. (8)]

E, = (E) — 2L7(L,XE)
- ’72L_-1[<L1L_1L1> - <L1>LEI<L1> + <L2>]<E>
+ O(7°). (2.11)
Now we use (2.11) to eliminate E, from (2.10) and
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obtain the following equation for (D) in terms
of (E):

(D) = &(E) + nei(el)E)

+ 7e[{elL L) — (DLTYLYE) + 0(x°). (2.12)
Finally from (2.12) and the definition of € (w) in
(1.1) we obtain

erss(w) = € + neilel)

+ 7l{lL 7 L) — (DLT{L)] + O(x').
This is our first result for e.;;. It simplifies some-
what when €, u;, and ¢, satisfy

(e) =0, () =0, (o) = 0. (2.14)
In this case (2.7) shows that (L,) = 0 and (2.13)
becomes

ehre(w) = €& + 7"ei(elL7'Ly) + O(x’).

Practically the same analysis leads to an expres-
sion for ¢.;(w). We first multiply (2.9) by o, given
by (2.3), to obtain the ecurrent density J. Then we
average the resulting equation to obtain an expres-
sion for (J). It is identical with the right side of
(2.10) in which ¢ and € are replaced by ¢, and o,.
Finally we eliminate E, by means of (2.11) and find
that

(2.13)

(2.15)

U'eu(w) = gy + 71”0(”1)

+ w'ool{ei L7 L) — (o)LL) + O(7").  (2.16)
When (2.14) is satisfied, (2.16) becomes
U'eff(w) = 0o + 1)200<01L—1L1) + 0("13)- (2-17)

To determine p.(w) we may repeat the above
analysis using H and H, instead of E and E,. Al-
ternatively, we can utilize the fact that Maxwell’s
equations are invariant under the interchange of E
with H and ¢ with — u. To apply this latter procedure
to the result (2.13) we must also replace each ¢
by the corresponding u. In either way we obtain
the following result for pu.s::

lleff(w) = o + "7#0(#1)
+ "72#0[<#1L_1L1) - <M1>L_1<Zl>] + 0(773)- (2-18)

In (2.18) L, is the operator obtained from L, by
interchanging e with y,

L= ke, + p) + VaxVx. (219
When (2.14) applies, (2.18) becomes
Meff(w) = po + ﬂ2ﬂ0<#1L—1L1> + 0("73)- (2-20)

In the next section we shall evaluate the average
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in the expressions (2.15), (2.17), and (2.20) for €, (w),
0ore(w), and p.ss(w). We choose these simplified ex-
pressions to evaluate because in applying the results
we can pick ¢, oo, and u, to be the average values
of ¢, u, and o, and then (2.14) will hold. It is to be
noted that our expressions for the effective param-
eters are operators. We shall see that they simplify
to scalars when they are applied to a transversely
polarized plane wave, provided the medium is sta-
tistically homogeneous and isotropic.

3. EVALUATION OF €otr 1y Gest y AND Yeit

To evaluate the average operator (¢/L™'L,) in
(2.15) we first apply this operator to the plane wave
A exp (7k-x). Upon writing L™ as an integral op-
erator we obtain

(L7'LOA e**

= <e{(x) f G(x, x")L,(x)HA ™™ dx’>. 3.1
In (3.1) the Green’s tensor G(x, x’) is given by

G(x, x') = (NI + Gy(nit. 32

Herer = x — %, r = |r|, + = v7'r, I is the unit
dyadic and G, and G, are defined by

Gi(r) = (=1 4 tkor + kir®) e (4akir®)™
— 8 /12xkx*, (3.3)
Go(r) = (8 — 3ikor — kU®) e /4nkir®. (3.4)

We now insert (3.2) and the expression (2.7) for
L, into (3.1). Then the integrand in (3.1) becomes,
after multiplication by €/(x),

&(X)Gx, X)L, (x)A *™
= [ka{ed@umE) + {@eax)}G(NA
— AV (@ (x)) k) Gi(A
+ GV (€@mE) - Ak
+ ko {ed@m@E’) + @)} G(r)(A D)t
— (V' (d@mE) - R)A-DIG(r)
+ (V6@ (x)) - A)&-DIG.(] €™ . (3.5)

Next we take the expectation of each side of (3.5).
Before writing the result we shall introduce the two-
point auto- and cross-correlation functions R..(r),
R, (r) and R,,(r) defined by

R, (r) = <e;(x)el(x’)>:
Re’u('r) = <6{(X)M1(X'>>,
Ruu(r) = <M1(X)I‘1(x’)>‘

(3.6)
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We have written the correlation functions as func-
tions of r because we assume the medium fto be
statistically homogeneous and isotropic. Now the
expectation of (5) becomes, after noting that V =
ta/or, V' = —1a/ar,

(X)G(x, x)L(x))A =™
= {k:GI {Rs’u + R¢’¢}A + iGIR:’ﬂ(f'k)A
— IR, (BA)k + KG.(R.., + R, J(#-A)] ™.
3.7

Upon integrating (3.7) with respect to x’ and using
(3.1) we obtain

(@L7LIA & = BA [ GufRos + Ru} ¢ ax’
+iA f GRL, () & dx’
— ik [ GBI EB) ™ ax’

+ 8 [ @GR+ RoJ@AR ST . (38)

The integrals in (3.8) can be simplified by setting
x' = x — r and writing dr = dr dS where dS is
the area element on a sphere of radius r centered
at x. It is also convenient to introduce ¥ = [k
and & = %k '%k. Then all the integrations over dS
can be performed explicitly with the aid of the
formulas in Appendix I of Ref. 1. As a result (3.8)
can be written in the form

<G{ -1L1>A e = [M-'ne + N"“‘i{i‘]A ¢t (3-9)

The scalars M,.,, and N,.,, in (3.9) are defined
by settinga = ¢, 8 = g, and v = e in (3.10) and
(3.11},

Moy = ks fo {Bay + Ras}{sz - G’F:&E%} dr

f Rl i 44, (3.10)
Naﬂvmkaf R’ﬁGx ka);cd
o 18
-1 f (Rur + BuslG 3 (akfg - 55,{) dr. (3.11)
The function f(k, r) in (3.10) and (3.11) is
f(k, ¥) = (4xr/k) sin kr. (3.12)

We now use (3.9) in (2.15) to obtain the following
result for €/, (w, k):

(0, B) = &1 + P*{M ., + N...Kk}] + 06°).
(3.13)

J. B. XELLER AND F. C. KARAL, JR.

Completely similar evaluations of the expectations
of the operators in (2.17) and (2.20) lead to the
following quite similar results for o..(w, k) and
I‘eif(“” k):

a'eff(w) k} = 0'0[1 + ﬂz{Mme + Nuyeﬁi‘}) + O(”s)!

(3.14)
pore(w, ) = poll + 7*{M,., + N, Ek}1 + O(").
(3.15)

Equations (3.13), (3.14), and (3.15) are our basic
results for the effective parameters of a random
medium.

We see from (3.13)-(3.15) that the effective
parameters are tensors. They multiply transverse
field components (i.e.,, those perpendicular to k)
by one factor (e.g., €l + »°M..]) and longitu-
dinal field components by another factor (e.g.,
el + n°{M,,. + N..}]). Thus the N,,, terms
may be omitted when applying the effective pa-
rameters to transverse waves. Since plane electro-
magnetic waves are strictly transverse in homoge-
neous media, it is to be expected that they will be
practically transverse in a slightly inhomogeneous
random medium. Therefore in such media, the N .5,
terms may be unimportant and the effective pa-
rameters may practically be taken to be scalars.
We investigate longitudinal waves further in Sec. 6.

To obtain numerical results for the effective pa-
rameters we must evaluate the Fourier-like integrals
of the correlation functions in the expressions (3.10)
and (3.11) which define M ,5, and N ,4,. This evalua-
tion is described in the next section.

4. EVALUATION OF'M.,, AND N,,, FOR HIGH
AND LOW FﬁEQUENcm

The integrals in (3.10) and (3.11) for M ,,, and
N .5, depend upon « and k or equivalently upon
ky = w(emo)! and k. In addition they involve
various correlation functions which depend upon
the particular random medium. Therefore we cannot
evaluate these integrals until the correlation func-
tions are specified. However we can evaluate them
in general when the frequency w is very high or
very low. When w is small then k; is small and we
assume that % is also small and of the same order
as ko. Similarly when w is large then k&, is large
and we assume that % is also large and of the same
order as kq. In dimensionless terms these hypotheses
mean that k.a and ke are both small or both large,
where a is a typical correlation length of the medium.

The asymptotic evaluation of the integrals in
(3.10) and (3.11) for k, and % large involves repeated
integrations by parts, together with the explicit
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evaluation of certain integrals and some other special procedures. The calculation is very lengthy,
but the method is indicated in Appendix I. The first few terms in the final results are

Mo, = B + B0 25 =5 |
S0 HE b o ] [0 )
PO RE0 b B ) o
+ %:(0) [ 2 — 6k2k§(,;; ikf,)) k(K — 4k} )] + o( k_l) (4.1)
Nupo = —[Ba® + o] 005 |
_ Ré;cf,o) [ zk0(3kl:2(—];2 2K’k )+ 3k 3]?, (1 + zig) cot-! 3‘;’] _ R,’%(O) [k:k(”g,k: —g)zkg)]
A R

The evaluation of the integrals in (3.10) and (3.11) for k, and % small is quite straightforward. It merely
involves the expansion of the integrand in powers of k, and % and term-by-term integration of the

resulting series. The result of the calculation is

Mopy = 1@ — 3 (1 - )R + £ (1 +105) f Ras) dr
E ko
+ -1—5[ — 2 + 10 kg]f TR .5(r) dr + O(K%), 4.3
1K : ) E " Rurt) dr + 006 4
Noyw = —3 5 Rus0) + 75 b 2+ 5 f Ruslr) Ir = T [ Ruy(r) dr + OGE). (4.4)

The expansions (4.1)—(4.4) can be used in (3.13)-
(3.15) to obtain results for the effective parameters
at high and low frequencies. In using them it is
necessary to consider correlation functions involving
e. They can be expressed in terms of correlation
functions involving ¢ and ¢ by recalling the defini-
tion of ¢ in (2.4). By using this definition in the
definition (3.6) of the correlation functions we find

R.. = (1 + ioo/weh) 7 {Rea + (foo/wel)Roa}. (4.5)
For o = e this yields
R.. = (1 + too/we)) *{Re e + (ioo/wel)Res

+ (loo/wet)’Ros}.  (4.6)

We shall now use the results of this section to discuss
the effective parameters.

5. RESULTS FOR ¢'¢r, Gerry AND pons

Our results for the effective parameters are given
by (3.13)-(3.15) in which M .5, and N .4, are given
by the integrals (3.11) and (3.12). In Ref. 1, we
have shown that plane waves in a random electro-
magnetic medium are either transverse or longitu-
dinal, and we now consider only transverse waves.
Then the N .4, terms in (3.13)—(3.15) drop out and
we have for transverse waves

eiilo, k) /e = 1+ "M, + 0", (5.1)
a'eff(w) k)/”o =1+ 7’2M¢uc + 0(713); (52)
port(w, k) /o = 1 + "M, + O(1°).  (5.3)

The quantity M g, is given explicitly by an integral
in (3.11) as a function of %, and k. To use that
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expression it is necessary to determine k as a function
of k,. The dispersion equation for k for both trans-
verse and longitudinal waves was derived in Ref. 1
and is solved in the next section for high and low
frequencies for any correlation funetions. For inter-
mediate frequencies the dispersion equation can be
solved numerically for specific correlation functions.
The solution for % can then be used in M., to
yield the effective parameters as functions of fre-
quency.

For low frequencies, M .5, is given by (4.3) in
terms of %, and k&, and for low-frequency transverse
waves, k is given by (6.12). Upon using (6.12) in
(4.3) we obtain M .4, as a function of k,. The leading
terms in M ,4,, which may be obtained by setting

= ko, + O(4°) in (4.3), are

2

M. = —3R.,(0) + ]lc—O (11R., + 5R.g)r dr

+ 0k + O(r). (54

By using (5.4) in (5.1)-(5.3) we obtain for low-
frequency transverse waves

2
@)/ = 1 — T R..(0)

""“2 f (L1R...+ 5R..)r dr +-00) +0(), (5.5)
_ ’7_
o'eff(w)/ao =1- 3 Rn(O)

2’“2 f (11R,. + 5R.)r dr + Ok + O(), (5.6)

2

P'eff(w)/ﬂo =1- z uu(O)

2’°2 f (11R,, + 5R,Jr dr + O(ky) + O(7"). (5.7)

Correlation functions R, are given by (4.5) in terms
of R,.. and R,,. When ¢, = 0 and k, = 0, (5.5)
reduces to the result given by Landau and Lifschitz.®

For high frequencies, M .5, is given by (4.1) in
terms of k, and %, and for high-frequency transverse
waves, k is given by (6.11). In the derivation of
(4.1) it has been assumed that &k — Fk, is large.
From (6.11) we see that this is the case when (kq7)?
is large. Upon using (6.11) in (4.1) we obtain M .4,
as a function of k&, for k, large. The leading terms
in M .4, are, when R/, ,(0) = R.,(0) = 0,

Maﬁv [Rcw(o) + Raﬁ(o)][(k0/277)%b - _

~ (2ken’) *0°[RY,(0) + RUHO)] + - (5.8)
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Here b is given by
= {—R[{(0) — 2R/(0) — RIO)}™*.  (5.9)

By using (8) in (5.1)-(5.3) we obtain the effective
parameters for high-frequency transverse waves,
when R/, (0) = R,3(0) = 0. They are

eler@)/eh = 1 + 7°[Ro (0) + R (0)][(ko/20)*d — 55
— (/2k)*°[RY(0) + RO + -+,  (5.10)
ort(@)/a0 = 1 + n[R.(0) + R, (0)][(ko/27)*b — %)
— (n/2k)'0°[R;40) + RUO)] + -+,  (5.11)
pote(@)/to = 1 + 1°[R,(0) + B,(0)[(ko/20)*b — 5]
— (1/2ko)'b*[RLU0) + RL(O)] + -+ . (5.12)

6. SOLUTION OF THE DISPERSION EQUATION

FOR THE PROPAGATION CONSTANT AT HIGH

AND LOW FREQUENCIES

In our earlier paper’ we obtained the dispersion
equation for the propagation constant & of a plane
wave traveling in a random medium. For a trans-
verse wave, the dispersion equation is [Ref. 1,
Eq. (112)]

K — ks — n'[kR,(0) + D(k)] = 0.  (6.1)

For a longitudinal wave, it is instead [Ref. 1,
Eq. (111)]

ks + 7'[kiR.(0) + D(k) + M(K)] = 0.  (6.2)

The expressions for D and M in (6.1) and (6.2)
can be written as

D(k) = kg fo [R,.+2R,. + Ru][Glf - @, ﬁik ai}{] dr
e [ s 1 0f
kok f [R + Rue]Gl k ok dr

1 9f 1
l:f + 2k ak][Gl - ‘;Gz] dr

—sz [R.,

2 " 1 afl: _ = :l
+k fo Rz 6 G'z dr, 6.3)
M) = —k f [R.. + 2R,. + R..]
1 ﬂ_laf]
X 2':6k2 k ok G dr
+ i [ R+ B L
—_ r1 = ﬂ laf:”: /_l :l
kf [R.,+ R..] [akz rall G =26, |ar
1’ 1 6 7
-x [ Rwﬁca—};—[al——az dr (6.4)
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In writing (6.3) and (6.4), we have substituted
(99)—(101) into (103) and (104) of Ref. 1.

The integrals in (6.3) and (6.4) are of the same
type as those we encountered in Sec. 4 for M .4,
and N.s,. To evaluate them it is convenient to
write (6.3) and (6.4) in the forms

D) = R[I® + 2I® + 1] — KIS + I
— UL +IPT+IP,  (6.5)
M(k) = —k[I2 + 212 4+ I2] + KIS + I

+ IO+ I ~I8. (686)

The integrals I‘” are defined in Appendix I and
evaluated there asymptotically for & and k&, large,
under the assumption that B’(0) = 0.

When the first few terms in the asymptotic ex-
pansions of the I‘” for k and k, large are used in
{(6.5) and (6.6), asymptotic expressions for D and
M are obtained. By using the expression for D in
(6.1), the dispersion equation for transverse waves
becomes for k and k, large

E/ky =1+ 7
5k3 — k*
X Rn!(o) + {RWA(O) + 2Rut(0) + Ru(O)} m
k* — 3k°ky — 2ks
+ (RYO + 2800 + Ru)) S
y sy Ok — 13k%5 + 8ko
iy KRS — fc*}] »

Similarly by using the expressions for D and M in
(6.2), the dispersion equation for longitudinal waves
becomes for k and k, large,

1 = 1" [}{R.(0) + R.(0)} + (2/3K) {RL(0) + RLi(0)}
+ [2/(% — k)1{RL0) + RUO)] + O(™). (6.8)

Before solving these equations, we shall derive
the corresponding equations for k and %, small. To
this end we must evaluate the integrals I” for k
and k, small. This can be done in a straightforward
manner by first expanding the integrands in powers
of k and k,. Then term-by-term integration yields
the expansion of the integrals. When these expan-
sions are used in (6.5) and (6.6) they lead to expan-
sions of D and M in powers of k and k,. Upon in-
serting the expansion for D into (6.1) we obtain
the following dispersion equation for transverse
waves for & and %k, small:
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K/ky =14+ 7
[Rﬁf(())

kz

= {3R,(0) + 4R, (0) + R..(0)}

3k2 {R.(0) + RI(0)}

k*(— 4k + 15k2)
15k:

(=k* + k5 + 10k) [°
+ 15 /; TR,(r) dr

1 ic2
3 B0 +

rR,(r) dr
]

2 2 w
4 B L 10k) .0 dr} + O,

(6.9)
Next, by using the expansions of D and M in (6.2),
we obtain the dispersion equation for longitudinal
waves when & and k, are small, in the form

k<2) = “‘Wzkg[Rne(O) - %{3}3»»(0) + 4Rm(0) -+ R“(O)}
— (2/3k3) {R1L0) + RINO)} — o5(K° — 5k5)
X { fo R (r) dr + fa ) dr}:] + 0. (6.10)

Now we shall solve each of the equations (6.7)-
(6.10) for k as a series in appropriate powers of 1.
To solve (6.7) we write k = ko + kyg? + kop + -+,
insert this expansion into (6.7) and equate coeffi-
cients of powers of 5 to determine k; and k.. In this
way we find for high-frequency transverse waves

k= ko[l + 1*(2k) " {—R.L(0) — 2RL(0) — RL(0)}}

— (3n/16ko) { —R.(0) — 2R11(0) — RIAO)}M + -
(6.11)

There are four solutions represented by (6.11) cor-
responding to the four fourth roots in the second
term on the right. The square root in the third
term is the square of the fourth root in the second
term. We see that the difference between %k and k,
is proportional to ! which is of larger order of
magnitude than the random inhomogeneities in ¢,
u, and o. The difference to the order shown in (6.11)
depends only on the second derivatives of the cor-
relation funections at zero separation, which is not
unreasonable for short waves. We note that R2/.(0) <0
and the real parts of the other R”(0) are also non-
positive. If the positive fourth root is chosen in
(6.11), then the real part of k exceeds that of k,
and the propagation speed is reduced. But then
when ¢ = 0, k is real and there is no attenuation
to the order shown. If the pure imaginary fourth
root is taken, then there is attenuation of order 5!
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when ¢ = 0 and a reduction in propagation speed
of order ». The attenuation and change in speed are
both due to seattering. The solutions corresponding
to increased propagation speed or to growing waves
must be discarded as being spurious.

To solve (6.9) wewrite k = ko -+ kyg” + kan* + - - -,
insert into (6.9), equate coefficients of powers of »
and determine %, and k,. Thus we find for low-
frequency transverse waves

k=t~ [ 2R10) + 2 RO + B0 + B0
"‘;0 ‘/: (IIRMM + IORIH + ].IR")T dr]

+ & [—k— L {ZR (0) + 2R,.(0) — —l—R"(O)}
o | ot T g, 2w wel0) = 32 B
+ B "R, — Rt ROrar | 4L 1)

In (6.12) k, denotes the coefficient of 4°. From (6.12)
we see that k — k, is of order 5 which is of smaller
order of magnitude than the random inhomoge-
neities in the medium. We also see that when ¢ = 0,
k is real to the order shown in (6.12) so the attenua-
tion due to scattering does not appear to this order.
The phase speed is reduced by the scattering since
Re k > Re k,.

For longitudinal high-frequency waves, we solve
(6.8) by the method used for (6.9) and obtain

k = kJfl + »°k;*{R}0) + R!0)}
+ (37'%0") {R,.(0) + R..(0) + (1/3ko)

X [4R}1(0) + R.(0) — 3RI(0)]}
X {RL(0) + RUO)]] + (6.13)
From (6.13) we see that % is real when ¢ = 0 so

there is no attenuation due to scattering to the
order shown. However Re £ < Re k, so the phase
speed is greater for this solution than for the case
n = 0. Therefore this solution is spurious. For
longitudinal low-frequency waves, the solution of
(6.10) for k is of order 4~* which is large rather than
small. Therefore it is spurious, since (6.10) was
derived on the assumption that ¥ was small. Thus
we have found no satisfactory solution of the disper-
sion equation for longitudinal waves.

APPENDIX I: ASYMPTOTIC EVALUATION OF
M4, AND N.;; FOR LARGE &, AND k.
The asymptotic evaluation of M .4, and N .4, for
large k, and &k can be carried out by first defining
the integrals
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(1) _ 1.2 7 af

M =k f RG, - L ar, (A1)
PO 1(621'_191)

I = ko£ RG, 7~ \ok? % ok dr, (A2)
@ _ g2 [ _ Lﬂ)

I =2 fo R(GJ G a3

The double subscripts, which are to be attached to
R and I‘”, have been omitted for convenience. In
terms of these integrals, the expressions (3.10) and
(38.11) for M and N are

Mopy = Ifxa'; + IEIS) - Igﬂ); (A4)
Naﬂ'y = (1) Ifﬁ; — I(z) (A5)

Thus the evaluation of M and N is reduced to the
calculation of the three integrals I‘”.
Substitution for Gy, G», and f into (A1)—(A3) yields

lkor

1<”_+kk f R 5~ (sin kr — kr cos kr) dr
0

lkor

~ f R = (sin kr — kr cos kr) dr
(1]
1 , eikor X
~ %l (sin kr — kr cos kr) dr, (A6)
© ikor
I = kif R (3(sin br — b cos br)
— k*® sin kr} dr
skor
- 3sz f R S5~ {3(sin kr — kr cos kr)
— K%’ sin kr} dr
2 © ikor
— 5 [" RS (3(sin by — kr cos kr)
L)
— k** sin kr} dr, (A7)
@ _ 1 [Tpe™ g
I = e j; R = {3(sin kr — kr cos kr)
— K%’ sin kr} dr
1'k0 chr
f RS (3(sin kr — kr cos k)
— k** sin kr} dr
2 @
+ % f R &' sin kr dr
0o
|kof
f R - (sin kr — kr cos kr) dr — R(O)
(A8)
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In (A6)-(AS8) six basic integrals occur. They are

J, = f R & cos kr dr, (A9)
0
Jy - f R ¢ sin kr dr, (A10)
(1]
® ikor Sin k‘l"
Jy = fo Re - dr, (A11)
Jy = i Re*rl (sin ke _ cos lcr) dr (A12)
* A r\ kr ’
Jo= [ Re* 1 (sm b cos kr> dr (A13)
y o ?\ kr ’

Jo= | Re™ ;15 {3(8“1 Er _ cos kr) —krsin kr} dr.
(A14)

These integrals can be evaluated asymptotically for
large & and k, provided R(r) has a power series
expansion about the origin.
To illustrate the procedure, let us consider J, and
assume that
R(r) =

> ZR™(). (A15)

From (A9) and (A15) we have

o= [ (B - RO) — RO}

xl(smkr_ coskr)dr
r\ kr

+ R(0) f iwer 1 (s‘zrk’ — cos kr) dr

+ R/(0) f "'"(sm’" — cos kr) dr.  (Al6)
By replacing the trigonometrical terms in (16) by
their exponential representations and evaluating
some of the resulting integrals, we obtain

— rR'(0)}

Jo= -—576 {R(T) — E(0)

X ;_12 (G + k) &®07 — (6 — kr) ™07} dr

ot 1&}
i
s ko iko }
TR — R

Now successive integration by parts yields the fol-
lowing asymptotic expansion of J, for large k and k,:

1 R(O){l L

+ R’(O){% cot” (A17)
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~ 'Lko "l .’&
Jo = R(O){l + =- % C ’ik}
, ko 1Ko K’R’'(0) .
+ R (0){ cot™ % + P k‘g} + & - By (A18)

By applying the same method to the remaining
integrals we obtain the following asymptotic expres-
sions for them for large k and %,:

ikoRO0) (K + K)R'(0)
(&* ~ k) & — ko)®

ko(K2 + 3EDR(0)
+ T (kz — k(z))a ’

JIN’_

(A19)

g KRO) _ i2kkRO) _ HE — 3E)R(0)
TR Wk F -k
(A20)
o0 o OB
kRgO) ik AP
Jo & [k +(1 kz) cot 'ik]

’ "fko -1 ko
+R(0)|:1 + =2 % cot k]

+R—i—2k°)[ op Koyt ] (A22)

__ K'R(0) [1 iko ( k’) - ko:l
e i R W) o %
0 [s (-3l
+ 9 3 A + 1 kz cot ik
70 2
I_E_L[ _..k2 k2+3_.1’__k° txko] (A23)

We now use the above results for the J; in (A6)-
(A8) to obtain the following asymptotic expressions
for I” valid for k and k, large:

o[t
R(0) [ K(6* — 3K)
+EO[RE=ER] o
= om0 4t |
R'(0) iko(8k* — 2’k + 3ka)
+ 2k0 [— kz(kz )2

+3k 1+k2 cot %

o]

(A25)
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@ 5ky — K ] ® A [ 2%k ] 9
R'(0) [_ dka(k® + k2 ( ) - ko] 31k} ,:kz(kz + 3k5)(3k* — ky)
BT P —k) T \L TR ot T o 30 — )’
R'(0) [k"(k‘* — 3k2k2 — 2k3):l 1,_19 oy ]

When the results (A24)-(A26) are used in (A4) and
(A5), the asymptotic expressions (4.1) and (4.2) for
M .5, and N .4, are obtained.

Integrals similar to I‘” occur in the dispersion
equation for the propagation constant derived in
our previous paper.' They are

@ _ 12 [ L_a_ix,_l )
I -kof R<f+rzkak @ —>G)dr, (A20)

1
19 = f R z,fc (Gl —G’z) dr, (A28)
® _ 32 l(@i_lﬂ)( _1 )
I —kofo R (Eh -2 d) e - 1a,)ar
(A29)

If R(r) has a power series expansion about the origin
and if, in addition R’(0) = 0, these integrals can
also be evaluated asymptotically by the procedure
just described. The results are

2(k* — 2k%2
1(4) ~ I: ( 3(k2 kk;;; 4k )]R”(O)

73 1 k2 - ko)
+ ik [21& (k2 2 %tk

_ (K* + 3ks)

- T o, (A30)

w | K4k — 1) ,,, iko [k’(k’ + k)

I [31«20# JR O - @ —ry
+ ;—’: cot™! k"]R”’(O), (A31)

These results are used in Sec. 6, where the solutions
of the dispersion equations are considered.

APPENDIX I
The following corrections should be made in Ref. 1:
Eq. (37) 8(r) should be &(r)/4xr".
In the sentence after Eq. (75), (4.32) should be (63).

Egs. (76)-(79)  — € {p})/pi should be added to the
right side of each of these equations.

Eq. (91) —I5(x — x’)/3k} should be added to the
right side.

Eq. (93) —8(r)/12xk%? should be added to the
right side.

Eq. (103) 0F /dk should be af/ok.

Eq. (117) &' should be ™.

Eq. (118) G.(r)""kr should be G, (r)k " 'r.

Eqgs. (121) and (122) The % should be omitted
from the right side of each of these equations.

Eq. (123)  14{(¢!)*)! should be
(DML + doo/wel] ™
Eq. (124) The £ should be 1.

In the first sentence of Appendix I, the word “is”
should follow ‘“use”. In the next to last equation
of Appendix II, the term — (a/k) cot™ (8/k) should

be — (a/k) cot™ (a/k).
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Three-dimensional polynomials which occur as coefficients of the exponential in the wavefunctions
of the harmonic oscillator are used in nuclear physics and kinetic theory of gases. A generating function
for these polynomials is used to simplify the calculation of several integrals. These include the inte-
grals involving products of two and three polynomials and the coefficients of the Talmi transfor-
mation. Explicit formula in terms of recoupling coefficients of angular momentum theory are obtained.

N the course of an investigation into the method

of solving the Boltzmann equation by means of
polynomial expansion of the distribution function
we had occasion to derive the formulas referred to
in the title. Our derivations are simpler than the
ones published so far and do not involve the use
of group theory. The results also have a simple
structure and would perhaps be more suited for
the formal study of the quantities involved. Because
of its applications in nuclear theory and in kinetic
theory of gases, the following may be of interest
to mathematical physicists in general and is offered
with little reference to any particular physical
situation.

I. PRELIMINARIES

We are concerned with the orthogonal poly-
nomials constructed from the components of three-
dimensional vectors denoted by the usual bold-face
symbols, a, b, 1, r;, -+ , etc. The polynomials are
fully specified by a set of three indices n, I, m. The
last two indices indicate the irreducible tensor char-
acter of the polynomial. For the algebra of irre-
ducible tensors we follow the notation and phase
conventions given in the book by Fano and Racah.'
According to this book an irreducible tensor can
be standard or contrastandard depending upon the
way it transforms under rotations of the coordinate
system. The standard tensors are characterized by
a superscript in round brackets and the contra-
standard ones by a superscript in square brackets.
The prototypes of these tensors are the spherical
harmonics which are defined in terms of the rota-
tion matrix © as follows

10, ¢) = (21 + 1/4n)*DEN0, o) (1.1)
This differs from the more common definition ac-

1. Fano and G. Racah, Irreducible Tensorial Sets (Ac-
ademic Press Inc., New York, 1959).

cording to the convention of Condon and Shortley.?
In the usual notation® the relationship is

Du'(8, 0) = ' Y18, ¢). (1.2)

We have
n*=9n = (=)l (1.3)

The coupling rule for spherical harmonics con-
sequently becomes (e.g., Ref. 3)
f[nl:](o; ﬂo)wjnl:](oy (P)
= > o(LLD)(lmbm, | I my + ma)DYL .06, ©)
1
1.49)
where

_ alatls—l (2Z1 + 1)(2[2 + 1) i
0’(l1l2l) =1 l: 47|—(2l + 1) :I

(1,010 | 10).
(1.5)

The Clebsch—Gordan or Wigner coefficients de-
noted here by (l;m,l;m, | Im) or (Im | lym,lym,) are
the same as those of Condon and Shortley® and
usually employed in angular momentum theory.®

The addition theorem of spherical harmonics for

cos 8 = cos 6, cos 8, + sin 6, sin 6, cos (¢, — @)

has the form
4 1
P(cos §) = ﬂ_}r_—l m;l D5 (05, )9 (6, ¢2). (1.6)

The following forms of the usual plane-wave
expansion will be needed:

P = 3 i i~ 2iab)L @D (B)

3
-3 2 (@)D @)
T + DT + 1 D e

2 E. U. Condon and G. H. Shortley, The Theory of Atomic
Spect)ra (Cambridge University Press, Cambridge, England,
1953).

8 M. E. Rose, Elementary Theory of Angular Momentum
(John Wiley & Sons, Inc., New York, 1957).
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By 4 we denote the angular variables associated
with the vector a. Differentiation with respect to
a vector variable a will be written as d/da or V..
The polynomials constructed from the vector r will
be denoted, e.g., by ¢ (r) or ¢V (r) depending
upon their tensor character. For the sake of brevity,
we sometimes write n for the set of indices n, I, m
in which case, e.g.,

1 glal

(1.8)

No confusion can arise since the positions in which

the indices n oceur are quite different from those

in which the vectors a, r, - - - , ete., occur.

We shall sometimes use the abbreviation
@+ nt =1

16

(1.9)

The Talmi transformation®*™° arises when one ex-
presses the functions of the position vectors r; and
r, of two particles in terms of their center of mass
and relative coordinates R and r. For unequal
masses the relations between the vectors are

I’R = oir; + oy, r=r —1, (1.102)
r, =R+ (ao/T)r, 1, =R — (&n/T)r; (1.10b)
I’ = of + a3, v =t + oz’ (1.10¢)

The quantities o} and o} are proportional to the

masses of the particles, I'* is proportional to the
total mass, and 4° to the reduced mass. These rela-
tions hold also in kinetic theory work but the trans-
formation is taken to apply to the velocities rather
than to the positions.

II. GENERATING FUNCTION FOR
THREE-DIMENSIONAL POLYNOMIALS

Consider the polynomials ¢! (r) defined through
the generating function
G(a, r) = e—a’+2n'r

= i ;‘0 P ("‘)” a”"”@,f,”(é.)g,’,,"”(r).

n=0 -] n!

2.1

4 1. Talmi, Helv. Phys. Acta 25, 185 (1952).

8 R. Thieberger, Nucl. Phys. 2, 533 (1956-1957).

¢ K. W. Ford and E. J. Konopinski, Nuecl. Phys. 9, 218
(1957-1958).

7 M. Moshinsky, Nuel. Phys. 13, 104 (1959).

8 T. A. Brody, Rev. Mex. Fis. 8, 139 (1959).

® R. D. Lawson and M. Goeppert-Mayer, Phys. Rev. 117,
174 (1960).
( 'go\)/ V. Balashov and V. A. Eltekov, Nucl. Phys. 16, 423
1960).

A, Arima and T. Terasawa, Progr. Theoret. Phys.
(Kyoto) 23, 115 (1960).

13 T, A. Brody and M. Moshinsky, Tables of Transforma-
tion Brackets (Universidad de Mexico, Mexico City, 1960).

18 M. Moshinsky and T. A. Brody, Rev. Mex. Fis. 9, 181

1960).

( 14 T, A, Brody, G. Jacob, and M. Moshinsky, Nuecl. Phys.
17, 16 (1960).

15 B. Kaufman and C. Noak, J. Math. Phys. 6, 142 (1965).

186 Yy, F. Smirnov, Nucl. Phys. 27, 177 (1961).
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Since the generating function is a scalar, £*"

must transform like a spherical harmonic. The parity
property, £ (—r) = (=)'t (r), is appropriately
reflected in the relation

G(a, —1) = G(—a,r). 2.2)
Using the identity
a(3/9a)G(a, r) = a-(d/9a)G(a, ) (2.3)

= —23‘(3. - I')G(a, l'),

one can show that

(r’ — 2a éa; — 3)G'(a, e i,
2.4)

Vi{Ga, ey =

from which, on using (2.1), it follows that

(=V* + 7 EM) = (220 + 1) + 3l L,
(2.5)

This shows that, apart from the normalization,

exp (—3r))tl" are the wavefunctions of the 3-

dimensional harmonic oscillator. We shall write
o*\
e = N3 e

= Ru(an)D' (8, ¢).

The function ®,,(er) then agrees with the usual
definition of the radial function if the constant N,;
is chosen such that

(2.6)

f Y an) Pt (ar) dr = bpnr S11r Bpme.  (2.7)

The explicit form of £ is obtained by using on the
left-hand side of (2.1), Eq. (1.7) and the relation
(Ref. 17, p. 189)

€ j13(—2iar)
+hre N1+ = —a’)* +
= (—)l ‘(zar) ¥ g Fn(—_l_—l)_l_—%)L}, i(7‘2). (2.8)
Accordingly,
2r'T(n + 1)
I'n+1+ 3%

The Laguerre polynomials L¢ occurring here have
been defined in Ref. 17, p. 188. This definition is
the same as that of the Sonine polynomials S™

El(r) = L@, (29)

1" A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G.
Tricomi, Higher Transcendental Functions (McGraw-Hill
Book Company, Inc., New York, 1953), Vol. II,
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used in kinetic theory work, e.g., in the book of
Chapman and Cowling.'®* The use of this function
provides the link between the two subjects.

If A(r) is any function of r, possibly containing
differential operators, then the integral

[ ereermams @ ar

can be obtained by evaluating the coefficient of
x"(a)x&" ¥ (b) in the integral

(2.10)

f G, DAMGD, I dr,  (2.11)
where
@ = CLamp@.  @uz

The integral (2.10) is related to the matrix element
of the operator A(r) with respect to harmonic
oscillator wavefunctions. It is often more convenient
to evaluate the integral (2.11).

When 4 = 1, (2.11) becomes
x? exp (2a-b), (2.13)
from which, on using (1.7), it follows that
[ ereeomu @ ar
_ 27°T(n + 1)
————_I‘(n oy S117 S (2.14)
Hence in (2.6)
2 20’ (n + 1) @.15)

"TTnt i+

The main advantage of the generating function
arises from the separability of its arguments, be-
cause of which many integrals can be evaluated
in the form (2.11). We list these properties

G(a, G(b, 1) = G(a + b, 1)e™™,  (2.16a)
G(a, 1)G(b, n)G(c, 1)
= G(a + b + ¢, )@tV (2.16b)
From (1.10),
G(a, TR) = G(% a, alrl)G(% a, a,r2), @.17)
G(a, y1) = G(% a, alrl)G(% a, —-azrz), (2.18)

183, Chapman and T. G. Cowling, The Mathematical
Theory of Non-uniform Gases (Cambridge University Press,
Cambridge, England, 1939), also 2nd ed. (1952).
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6@, ex) = 6(2 s, I‘R)G( a, ), (2.19)
G(a, auty) = ( a, I‘R)G’( o —w), @20

f e dr = [ dr=at (22)

It is convenient to introduce the weight funection
(o /m)} exp (—ar’); w(r) = w(l,r) (2.22)

with the aid of which an arbitrary function of r
may be expanded as

f(r) = wle, r) ; 1™ (@)t (o),

wla, r) =

(2.23a)

1) = Ni? [ de )™ o).

The quantities f’(a) are linear combinations of a
finite number of moments of the function f(r) and
oceur in kinetic theory of gases when functions of
velocity are expanded near the local equilibrium.
This expansion is quite different from the expansion
in terms of harmonic oscillator wavefunctions which
may be used in shell model theory,

) = A9 (o),
W) = [ dr o9 (o).

(2.23b)

(2.241a)
(2.24b)

There is a third possibility, also utilized in shell
theory*:

fr) = E £ ), (2.252)

™ f wr)fE)E™ (1) dr. (2.25b)

For the special case f(r) = f(r)PL ' (#), we have

9 = b bume [ WOIOPLEN b (220
which may be further expressed in terms of the
Talmi integrals* I,(f) by using the power series
for L ("),

™ = 8110 B 22;: A@l, pLKH, (2.27)

Lp) =20+ 007 [ e fordr,  (@29)
o = ) e
(2.29

O = mery oo
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III. INTEGRALS INVOLVING TRIPLE
PRODUCTS OF &’s

In view of (2.25), the evaluation of (2.10) often
involves an integration of products of three £’s. From
the Wigner—Eckart theorem or Eq. (1.4) we can write

fw(T)E.(:,'“)(r)E["'h](r)flm x](r) dr

= K(ﬂ3;n2n1) = (llm, lgmz I l3m3)K(n3l3;n2l2nlll).
3.1)

This may be considered a definition of the symbols
K, to evaluate which we have to pick out the co-
efficient of x'*'(c)x™(b)x™*’(a) in the integral
[Egs. (2.16b) and (2.21)]

f w(r)G(c, H)G(b, r)G(a, 1) dr

= exp [2(a‘b 4+ b-c + c-a)]. 3.2)
In expanding the right-hand side according to (1.7),
the angular parts can be reexpressed by means of
the following formula:

X (TR @D D)

my’ me' ms

X @(h )(b)w(l. )(a)w(la )(a)
= E Z (l1m1 2 My l lama)W<ll ;Z ;Z)

l1,l2,ls m1,m2,ms

X lea(l' U)ol U L)o(l 1 1)

”’](c)Q“”(b)Q“‘)(a). (33)
Both sides are evidently scalar and the formula
represents the effect of a recoupling as evidenced
by the appearance of the coefficient W which is
the same as Wigner’s 6-j symbol [Fano and Racah,'
Eq. (11.7)}.

Finally,

Kl nalana ) = (=) "0y na! ng! LD,

X X ol U Lol 1 LYol U 1)

A l)[NNN}
A4 '

nilnilngl

X W( I 34

The summation variables are I{, I, and I} whose
values are restricted by the functions occurring in
the sum. The values of n/ are given by the three
relations obtained by equating the powers of a, b,
and ¢,

2ny + L= 2n; + I + 2n3 + I,
2n, + b = 2n + I{ + 20 + 1],
2ny + 13 = 2nf + I{ + 2n; + L.
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It follows that for given n;, [;, the sum 2n! + I} = p!
has a fixed value which depends only on the former
numbers,

21’; = P; + Py — Py P = 2n; + l;‘,
(7, 4, k) cyclic permutation of 1, 2, and 3.

(3.5)

Thus, the quantities in the square brackets in (3.4)
actually are

[N @D = 20330l — U + 2)]
X TE, + U +3)117.  (3.6)

The restrictions above establish also a relation be-
tween the p; (hence n,) values. Since p, + p, =
ps + 2p, and pi > 0, it follows that the integral
vanishes unless

p; + pi = 08, (7, k) cyclic permutation

of 1, 2, and 3. 3.7

This is a symmetric relation between the free indices
of independent polynomials on the left-hand side
of (3.1). This may be called a scalar triangular
relation corresponding to the fact that the sum of
two sides of a triangle is always greater than the
third. This is to be contrasted with the vector tri-
angular relations which hold between the numbers
l; in virtue of the Wigner coefficient.

IV. RELATIONS INVOLVING MOSHINSKY’S
COEFFICIENT B(nl,n'l',p)

This coefficient is defined by means of the
formula’ **-**

f Cu) V(O dr = 5 B, 'ty (V).
4.1)

The explicit form of B has been obtained using
the explicit power series for ® functions. This co-
efficient occurs in calculations of nuclear shell theory
and has been well tabulated.””™** It is related to
the triple product integral of the last section—a
relation which also shows the role of the W-coeffi-
cient in this coefficient.

Let the Talmi integral of the function N, ,r*L}*}(r*)
be denoted by I,(nl). By (2.28)
LD = 2T + "N [ 7 LA dr.
0 4.2

Performing the angular integrals in (3.1) and con-
verting the radial parts to the form (4.1) by using
(2.6) we obtain the relations

K(ngly;naly mily) = Nott Nt Nosruo(l 1 1)

X Z B(n,l,, nyl;, p)I(n,l). (4.3)
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Also
2 B(nsly, nals, p)1,(nuly)

= Z B(nyly, nily, p)I(n,ly)

Z B(n,ly, nyls, p)I(nsls).

(4.4)

These relations may be used to calculate the co-
efficients K, since B’s have already been tabu-
lated'*™** and I,(nl) can be calculated easily.

On the other hand, the coefficient B may also
be expressed in terms of K’s. The integral

[ wermo s ar

may be evaluated in two ways for the special case

when f(r) = f(r)9L . Using (2.25), (2.27), and (3.1)

one gets

(Limy Ly | lymg) 2 K(ngly; naly nil) A(nols, p)I().
Performing the angular integrals first and then

using (4.1) on the radial part, one gets for the same
quantity

(Limy bmy | Iama)e(l, 1 1N, N.a.i,

X Z B(nl, ngls, p)I,();
hence the relation
B(n,ly, nsls, p) = INoyi Nuroo(ly I 1]

X > K(ngls; naly nil) Alngla; p). (4.5)
With (3.4) it shows the role of the W-coefficient
in the formation of B. Of course, I, must satisfy
the triangular restrictions, I, + I, < I, < |l; — 1,
if this relation is to hold. The sum over n, is re-
stricted among other things by I, and p. It serves
eventually to eliminate I, on the right-hand side.
A symmetric expression in [, and [; is obtained by
setting i, = I, + L.

V. TALMI COEFFICIENTS FOR UNEQUAL MASSES

In nuclear physics where the harmonie oscillator
functions can be applied, the particles in general
have the same mass. Hence that is the case most
often studied. However, Smirnov'® has drawn atten-
tion to the problem of separating the center-of-mass
motion of several nucleons in which harmoniec oscil-
lator functions of different masses may be used.
In kinetic theory the case of unequal masses arises
in the study of transport properties of gas mixtures.
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Talmi coefficients*™"® are defined by the following
relation:
T ) P ()
_ T {(I‘)NLM () z,ml}
NEMmtn A pnlm | (a)nlam,

X ie “(TR) Yo (). (6.1)

Various notations have been used for this quantity.
We use the one which is most descriptive. We shall
also use the abbreviated form T(I'N, vn | an,, a,n,).
Sometimes the scale parameters on one or both sides
will also be dropped,

T('N, yn [ a;lly, osl,)

= [ VR0 i) ¢ e R dr.

5.2
Using (2.6) and (1.10) we may write
- T(rN, yn | oy, apny)
T(PN, ’Yn I alnl, a2n2) NNLNnINn;hNn,l,
(5.3)
T(FN, "Yn | alnl, aznz)
= [ w(r, Bruty, ne™ RE ()
X f[n‘l(alrl)f[n’](azrz) dR dr. 5.4)

It follows that
Elnxl(a‘r )Eln,](azrz)

= NL;"MT(PN v |a;n,, apn )i ™ (FR)EIM('YI) (5.5)

The dependence on the numbers m can be sep-
arated in two Wigner coefficients and the 7T-co-
efficient can then be expressed in terms of the
transformation brackets of Moshinsky,”"*'*~** which
has been often investigated for the equal-mass case
and for which tables have been prepared.

T(Nn |nn,) = 29 (Im LM | M) | bm, Lmy)

% il‘H’—I—L(nl, NL, A |n1l1, nzlz, )\>, (56)

To obtain explicit formulas for T note that from
(2.19) and (2.20)

G(a,, a,1)G(a,, aory) = G(a‘ a,, I‘R)G( a,, ~yr)

X G( a,, I‘R)G( a,, —'yr). (5.7
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Then from (2.16b), (2.22), and (3.2)

[ w(r, Byuty, 6@, au)Glas, aur)
X G(A, TR)G(a, 1) dR dr

= exp [21: (alaI'A + azag‘A + a28:°8a — alaz'a)].
.8

In virtue of (5.4), then, T is obtained by picking
the coefficient of x‘**’(a,)x™* (a.)x'™ (A)x'*'(a) in
the right-hand side. This procedure is similar to
the one described for the case of triple product
integrals. The right-hand sides of (5.8) and (3.8)
are thus the generating functions for 7 and K co-
efficients. Multiplying by appropriate spherical
harmonics and integrating over all angles, one ob-
tains, because of (1.4), a product over four Wigner
coefficients which is to be summed over the m
numbers of four I’s. This gives rise to an X-coeflicient
Z (llml LIMI [ llml)(lllmll LIIMII I l2m2)
M

X (Um’ U'm” | lm)( /M’ L"M" | LM) = LLIL
vl
X 2o (m LM | M) | bomy Lma)X | LY LY L.
by
L L A
(5.9)
From (1.7) and (2.15) the nonangular factors are

Nuzr Nyvowoo Naro Nuvogrr P
N'! NI 2t o'

x (a,al A)P ’(azazA)P ' '(agala)"(—alaza)” ’

where P = 2N -+ L, ete.
Comparing the powers of a,, a;, 4, and a, re-
spectively we have

P +p =p,

P’ 4 p" = D2}

(5.10)
P4+ P’ =P, p +p’ =0p,
so that P + p = p, 4 p;or
2o+ L+ 2+ L=2N+L+2n+1. (511)

This is referred to as the equation for conservation
of energy in nuclear theory literature and also
follows from (5.1) by using the differential equation
(2.5).

Collecting all the terms we get finally

T[(I‘)NLM (al)nlllml}
()nlm (e)malom,
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= (=)™ 0y g N1l LLLL
X E (_)l"(al/r)zN'+L'+2n"+t"(az/r)zN"+L"+zn'+l'

s [Novne N poe Novwy Noowe: TP
Nl NV 217 a

X o(VL'L) o(I’'L'"l) o(V1'"]) o(L/L"'L)
vovl

X X|L’ L L|(mLM | M) | Ly, Lmg). (5.12)
Ll A

The sum is over all the primed variables and A.
The restrictions on the sum are those arising from
the functions occurring in the expression and the
conditions (5.10) and (5.11). Because of the latter,
(5.10) fixes only three out of the four variables
N’, N”, o/, n” for a given set of l-values. A sum
over all allowable values of the one independent
one must be performed. This expression is fully
symmetric under the indices of T-coefficient and
involves only standard functions. The derivation
given here and the formula (5.12) may be compared
with those given previously in the literature,*™*® even
those for the equal-mass case. Many of the results
of previous workers have been expressed in terms
of the transformation bracket defined in (5.6). An
expression for it is obtained by comparing (5.6) and
(5.12).

Other less symmetric formulas can be derived
for the T-coefficient. In one form T is expressed
as a sum over to K-functions and one X-function.

The following special case is useful when it is
required to transform the functions of one vector
variable:

I‘ N N4ntny nl! NIBVLN:I

Nlinl

o n,

T = (4m}(-)

Y 1n ago

o, 2N+L s 2n+1
X (—P—) (?) o(lL L)(Im LM | Iym,). (5.13)
This is most easily derived by considering the
generating function integral (5.8) without the term
depending on r,, ie., put a, = 0. Of course, it
follows also from (5.12). For the case a; = a, = 1,
Moshinsky has given a formula [Ref. 7, Eq. (60))
for the quantity (nl, NL, A | 0l,, 0,, A\) which may
also be derived from (5.6) and (5.12). Since all the
numbers » and [ are either positive or zero; the
requirement [L' — /| < I, £ L' + I’ together with
Eq. (5.10) and n, = 0 gives N' = o/ = 0 and
l, = L' 4 V. Similarly for n, = 0, N = n' = 0,
and I, = L - ", The rest is straightforward.
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VI. SYMMETRY RELATIONS, SUM RULES,
AND RECURSION FORMULAS

By putting a, = 0 in (5.8) instead of a, and using
(5.13) one finds

T(TN, yn | ayn;, ,0)
= (=)(en/a)*™** 7" 'T(IN, yn | 2,0, an,)
= (/) "' T(I'n, yN | eyny, a20).
Similarly,
T(I'N, v0 | an,, aony)
= (=)"(an o)™ 7 T(TO, YN | ayny, aol).
(6.2)

There does not seem to be any such simple relation
when all indices are nonvanishing.

From the integral (5.4) it is seen that the change
of scale (a;, a;) — (Bay, Ba,) can be compensated
by a corresponding change (r,, ;) — (87'ry, 87'15);
since the integral remains unaltered by the latter
we have

T(T'N vn | a;n, a,n,)
= T((BT)N, (8y)n | Ba)ny, (Ba)ny).  (6.3)

In particular for the equal-mass transformation,
a = oy = Q,
T((2')N, 2")n | an,, ony)
= T(@HN, @ hn | I, In)).  (6.4)
The right-hand side is the standard form in which
equal-mass transformation is calculated. To establish

a relation between the equal-mass and unequal-
mass case we note that from the identity

6.1)

G(a, ar) = exp [(&® — 1)a’]G(oa, 1) (6.5
it follows that
) = 3 o, wndE @, (66)

ea, n'nl) = (;‘,)(1 — )"V (6.7)

Then from (5.5)

> E «(27'T, N'NL) 2y, n'nl)

N=N' nwg’

X T(I‘N; yn l oy, aly)
= Z Z elau, ni ml) elaz, ningly)

7y’ =0 ny’ =0
X T@N'LM, 27%/Im | Injlym,, Inyl,m,).
(6.8)

The simplest form of sum rules are, of course,
the orthogonality relations in which a product of
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two T-coefficients is summed over common indices
(N, n) or (n,n,). These follow from the completeness
of the ¢ functions. A variety of other relations
may be obtained by the use of the generating func-
tions. For example, in Eq. (5.8) one may set A =
a = a, = a,; then the right-hand side becomes
a scalar. By comparing the coefficients of a power
of A on the two sides one has the result that product
of a T-coefficient with W-coefficient and two Wigner
coefficients and summed over an appropriate hum-
ber of indices is equal to a constant. It is now clear
that other sum rules result by setting a different
set of vectors equal in expression (5.8). Similar
sum rules for the K-coefficients can be obtained.

In numerical evaluation of these complicated ex-
pressions, especially for constructing tables of values,
it is often more convenient to work with recursion
relations. For Talmi coefficients such recursion rela-
tions have been derived using the corresponding
ones for Laguerre polynomials and spherical harmon-
ics.’*'**!* Since we now have generating function
for composite polynomials the recursion relations for
£ or ¢ may be obtained more directly. The normal-
ization of f-function is especially useful for this
purpose as it avoids many square rooted coefficients
in such formulas. We give some brief examples.
Let the contrastandard components of a vector a
be denoted by

ol = (Fia, + a,)/V2, ai"! (6.9)

Then taking account of the phase conventions and
using (1.4) we have

o' %@ = —(n + 1)

]
X (Zl _ll_ 1) I—1m—v 1| ImxS ()

= 1q,.

t
+ (25 ::-_ }) I+ 1m—»l|Imx,""(a), (6.10)

and using the gradient formula (e.g., Ref. 3, p. 124
with appropriate phase changes),

Vixa'@) = @n+ 20+ 1)

X (5rog) @ = 1m 4 b | I
-2 %—i)ia +1m = | im0 (a).
(6.11)
The generating function yields
Vie@,n = @' - 206, 1,  (6.12)
VG, 1) = 2a!"G(a, 1). 613
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Hence comparing the coefficients with the help of
(6.10) and (6.11) we immediately get

V[llE[nl] = 2( > (lm 1v | l —1m + y)£:+£—l]
B 2"(23 i ;) (Im |1+ 1m -+, (6.14)
Pl l *(l bll—1
1) Umbll=1m+)
X [El";l—ll _ [n:l,l-l]
3
+<2§i;>(lmlvll+1m+y)
X [—ngmB 0 4 (o + 14 DENTY]L (6.15)

Of course, these expressions can be calculated by
using the definition (2.9) and corresponding formulas
for LS, ete., but the caleulations would be rather
long. The calculation of relations involving scalar
operators such as rd/dr or r* are even shorter as
will be seen from the following:

4°Ga, 1) = (2a + a") (2& + )G(a ) o

, 3 2
= (4a +4a - +6+ V..)G(a, 7);

KAILASH KUMAR

i a d
r—G@=r-—-G=a (2a+—)G
or or da (6.17)
(2(12 +a 9 G,
da

a’xn’ = —(n + Dxa " (6.18)
a2 = @n 4 xSV (6.19)
VA = =2 (@ + D@n+ L+ 1) = (I + D]

X %0, (6.20)

The generating function (2.1) may also be ex-
panded in Cartesian coordinates in which case it
generates products of three Hermite polynomials
in z, ¥, and 2z (e.g., Ref. 17, p. 194). Such a prod-
uct can be expressed as a linear combination of
g 9, ¢). The coefficients of this expansion are
related to the transformation brackets (n.n,n, | nlm)
which have been discussed in connection with the
nuclear shell model.”®'** The use of generating func-
tion may be expected to simplify these calculations
also.

13 Z. Pluhat and J. Tolar, Czech. J. Phys. B14, 287 (1964).

20 B, Chac6n and M. de Llano, Rev. Mex. Fis. 12, 57
(1963).
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Analyticity Properties of the Scattering Amplitude

A. MiNnGguzz1

Istituto di Fisica della Universita’ di Bologna, Istituto Nazionale di Fisica Nucleare - Sezione di Bologna, Bologna, Italy
(Received 1 June 1965)

Analyticity properties in three variables, energy, momentum transfer, and ‘‘squared mass” are

deduced from single-variable dispersion relations,

NALYTICITY properties of the scattering am-
plitude in more than one variable are proved
as a consequence of the PT invariance, the micro-
causality condition, and the stability of the ele-
mentary particles. The scattering of equal-mass,
uncharged particles is discussed; the extension to
arbitrary stable particles presents no difficulty. The
tools of the proof are:

(1) For every physical value of the momentum
transfer ¢, there exists a function 7,(s), holo-
morphic in the center-of-mass energy sin a strip
Im s > 0 near the physical axis, so that

lim T.(s + ¢
=0t
is the scattering amplitude.’

(2) For every physical value of s, there exists a
function T,(f), holomorphic in ¢ in an ellipse
(“small Lehmann ellipse’’), so that

lim T,(¢ + 1)
1—0
is the scattering amplitude.’

Mandelstam has postulated a representation of
the scattering amplitude, the double dispersion rela-
tions, and has proved analyticity properties in two
variables in the set

lst(s + ¢ — 4u°)| < 2884°.

From (1) and (2), by straightforward application
of a theorem, conjectured by Wightman® and
proved by Zerner, we prove the existence and
uniqueness of a function 7'(s, ) holomorphic in s, ¢
in an open set of C* of which T,(¢) and T,(s) are
restrictions.

1 A, Minguzzi, Nuovo Cimento 32, 198 (1964).

? H, Lehmann, Nuovo Cimento Suppl. 13, 57 (1959).

3 A. S. Wightman, “Axiomatic Field Theory” in Theoretical
Physics (International Atomic Energy Agency, Vienna, 1963),
note on p. 38.

4 M. Zerner, “Quelques résultats sur le prolongement
analytique des fonctions de variables complexes” (Seminar
in Mathematical Physics, Université d’Aix-Marseille).

8 = 8§ + i’ + 2w + 7],

Proof: The proof of Zerner has been carried out
when the analyticity domains in (1) and (2) are
replaced by the half planes Re s > 0, Re ¢t > 0,
respectively. We now do his proof with the modifica-
tion necessary to cope with (1) and (2). Let us take
the compact in R?,

F=1s,2:44 <8< 80 —2<s— 47,

where x is the mass of the particles and S an arbi-
trary real constant. Every (s, {) &€ F belongs to
the physical range of the elastic scattering process
of which s and ¢ are the center-of-mass energy and
the momentum transfer. Let us also consider the
sets in C* X R':

A, =[s:|Res — 8| < &;0 < Ims < e)]
X [t:Imt=0;|Ret— 1] < el
A, =t |Ret — t| < e;0 < Im? < e
X [s:Ims=0;|Res — 8| <&l
(30, %) & Int (F),

and the sets 4/, A/ in which strict inequalities only
occur. By a proper choice of the e, (Re s, Re f) &
Int (F) and [s: [Re s — 8| < ;0 < Im s < €] is
contained in the strip of holomorphy of 7', (s), for each
[Ret — t] < &;[t: |Ret — o] < &;0 <Imt < &
is contained in the smallest Lehmann ellipse when
IRe s — so] < €. (The reason we restrict ourselves
to a compact set is due to the shrinking to zero
of the Lehmann ellipse when s — «.) Let us call
f(s, t) the function defined in A = 4,UA, by

f(S, t) = Tt(s)) (S, t) E An
f(S, t) = T,(t), (S, t) € 4,

and suppose that it is continuous in 4. Let us do
the change of variables,

= W, + iwi,

e + i1

M)

P =t + ifw’ — 2w+ 7], T
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The points (w,, w;), images of Im ¢ = 0 (Im 8 = 0),
are lying on the two branches of the hyperbola
w, =121 +w]—r)hfw = -1 +w -7l
For every value of (r,, 7;), when 0 < 7, < 1, the
points of the w-plane

[we,w; 1w, =1 — (1 4+w! — r)¥; —(r) < w; < (7)1
U [w,, v tw, = —1 + (1 + w? — )}
bl (7r)§ S Wy S (Tr)’]

are lying on a Jordan curve T',. T, shrinks to zero
when 7z = 0. 7 will be allowed to move only in
the set A for which I', C A. Let us call g.(w) the
restriction of f(s, ¢) to T',. For each value of 7,

G = [ £ @

is an analytic function of win R,, T, being the bound-
ary of B,. We now prove also that G.(w) on T, is
equal to ¢g,(w). This is true if and only if, for every
h(w) holomorphic in an open set containing R,, we
have

L) = fr hw)g.w) dw = 0, for 7 € A.

Now: (a) L(r) = 0 when 7 = 0; (b) L(r) is con-
tinuous in A; (¢) L(r) is holomorphic in the Int (A).
The last statement will be proved later and it will
be seen to follow from the holomorphy in A and
A}. From (a), (b), and (c¢) it follows that L(r)
vanishes in A. We conclude that G.(w) for each
7 € A is an analytic function of w &€ R, and
G,(w) lver, = g.(w). G,(w) is uniquely determined
from g¢,(w). Let us prove also that G,(w) for each
value of w is holomorphic in 7. If w = w, 7.(1)
is the real part of that r value, so that ¥ € T, .
When 7, > 7,.(&) the denominator in (2) can never
vanish; G, () is also continuous in 7. G, (W) will be
holomorphic in = when 7, > 7,(w) if it is true that

$ @ dr =0

for each Jordan curve. The proof of the last step
is the same as the proof of the point (c), with the
choice

h() = (¢ — @)
By means of the Hartog theorem, G, (w) is an analytic

function in an open set of C* in (w, 7). Since from
(1) w and 7 are polynomials in s, ¢, it follows that

T(s, 8) = Grnlw(s, 9],

A. MINGUZZI

is analytic in the image u(s,, f,) of the open set
in ¢* in which G,(w) is holomorphic. 7T,(t), T.(s)
are its restrictions. Provided that 0 < € < ¢, it
is easy to see that

[s:|Res — 8| <€l;0 < Ims < ¢f]
X[t:|Ret— b <e;0<Imt<e]

is contained in u(s,, ,). By repeated application of
this procedure to each of the open sets covering F,
the proof is concluded.

We can also establish a more general result: in
Ref. 1 it was proved also that the scattering am-
plitude is an analytic function of the “squared ex-
ternal mass” pin a strip 0 < Im p < |8], Re p < 44”
(stability condition) for each physical pair s, &
Since the theorem of Zerner holds for an arbitrary
number of variables, it follows that there exists a
function

T(sl tl p)’

holomorphic in some open sets of C*, whose value
on the boundary

lim T(Res + t¢, Re t 4+ 7, Re p + t¢)
€, e’ 0+
-0

is the scattering amplitude.

Proof of (¢): From the continuity of L(r), the
holomorphy of L(r) follows if

fL(T) dr=0

holds for any rectangle in the r-plane with its sides
parallel to the axis. Let us choose an infinitesimal
rectangle whose center is r{, 7{"”. We have

f L(r) dr
= —2dr[f(n”, ¥ + dr) — {7, 7" — dn)]

+ 22 dTiU(T:O) + d‘l’,, 7';0)) - f(TE-O) - dT,, 1_§0))] ’
@

where f(7., 7;) is conveniently written

—ra+2(rp)t
d:
. dz, d——;’; hlw.(zz, 7), wi(zs, 7)]

f(Tr) Ti) = ‘/‘—f‘—z(rr)
x g[xl(xm T)v yl(xZ; T); Tay Y2 = 0]

~r1+2(re)t

+ dxl 3_;—0; h[wl‘(xll T); wi(xl! T)]

—ri=2(re) ¥

X glz1, 41 = 0; 2a(21, 7), 4a2(21, 7)], @
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where
glzi(xa, 7), Y1(22, 7); X2, Y2 = 0] = T..(8"),
glz, y1 = 0; 2(21, 7); Y21, ] = To(¥).

An elementary proof of the vanishing of (3) is the
following. The limits of integrations in (4) and the
arguments of dw/dz, ., h, g depend on 7., 7. (3)
vanishes due to the continuity of the integral func-
tion when the limits of integrations are varied. The
contribution to (3) coming from (8/9r,,,)(0w/dz,,2)
can be proved to vanish on account of

*w, 3w,

az’wi - .
aTi 8:&:1,3 aTr axl.z

an 6131,2 !

9w,
aT, axl .32

and

THE SCATTERING AMPLITUDE 681
Finally, the contributions to (3) coming from the
variation of the arguments of 2 and g are propor-
tional, respectively, to

oh

oh
+ v 6’wi ’

ag i dg .
ow,

02,2 oY1,z

The first vanishes on T, and the second vanishes
almost everywhere on T',, on account of the analy-
ticity properties of k and g.
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Continuity of Bound and Unbound States in a Fermi Gas: A Soluble Example*
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Considering a gas of independent fermions in the presence of an attractive localized potential, one
can show that the properties of the system as a whole are smooth (analytic) functions of the strength
parameter of the potential, even at those values where new single-particle bound states appear. Thus
for the system as a whole, the transition from ‘“‘unbound”’ to “bound’ states is continuous and the
concept of a bound state cannot be made precise. This is illustrated here for a simple mathematically
soluble model—noninteracting spinless fermions moving in the presence of & delta-function potential in
one dimension. Some related physical ideas are also presented.

N an article on electrons in transition metals,
Mott discussed the question of the existence of
bound states in a potential embedded inside a Fermi
gas and reached the conclusion': “In terms of a
many electron wave function, the question whether
a bound state exists does not admit of a precise
answer.” A mathematical discussion of this problem
does indeed lead to the concept of the continuity
of bound and unbound states in a Fermi gas as
demonstrated recently.” The proof given for short-
range potentials (in three dimensions) is necessarily
abstract. The purpose of this article is to present
a simple example—one-dimensional spinless fermions
moving in the presence of a single delta-function
potential. It is well-known that the attractive delta-
function potential in one dimension has always a
bound state, and the lowest single-particle level will
show a nonanalytic behavior as the strength param-
eter of the potential A becomes attractive. One has
here a particularly fortunate opportunity to study
the detailed analytic behavior of the properties of
the Fermi gas while the potential is present, since
the delta function is mathematically so simple.

We shall first formulate the problem in fairly
general terms for a general class of potentials. We
shall then restrict ourselves to the delta-function
case, and show the following: Although the lowest
single-particle level shows a nonanalytic behavior
at A = 0 as the size of the system goes to infinity,
the ground-state energy and the single-particle den-
sity matrix of the Fermi gas remain analytic func-
tions of A in a finite strip containing the entire
real axis.

* This work was supported in part by the National Science
Foundation.

I N. F. Mott, Advan. Phys. 13, 325 (1964), p. 360.
(1926?)" Kohn and C. Majumdar, Phys. Rev. 138, A1617

1. FORMULATION OF THE PROBLEM

The formulation of the problem for one dimension
is slightly different from that for three dimensions.*
We consider a system of N noninteracting fermions
in the presence of an external potential AV (z), A
being the strength parameter of the potential. The
complete description of the system is given by the
quantum mechanical density matrix of N particles;
x5

(&1, T2y ++ - Tn| pw |2], 25y - -+

= ‘Il*(x;’ xé?

(1.1)

Y(r,, Z,, --- xy) is the wavefunction of the N-
particle system. For noninteracting fermions in an
external potential, this is just the ordinary Slater
determinant made up of single-particle eigenfunc-
tions of the potential. The density matrix py can
then be completely written out in terms of the
one-particle density matrix p,:

- xI,V)‘I/(xI; Lyy + xN)_

(%1, X2y -+ Zn| py |at, T4, -+ TH)
(331] Pi |:c{) <x1| U1 |x£) SRR CA WA lev}
_1 <1’2| P1 lxi> (le py ls) - (Za] lxz,v)
=¥ i i i , (1.2)

(a:Nl P I.’L‘{) (xzvl p1 |«’C§> T (xzv| L |x1'v)

where, in our case of real boundary conditions,

N
(x| pr |27) = 21 ¢:(x")¢(x). (1.3)
The sum over ¢ goes over the N single-particle
orthonormal real eigenfunctions ¢; occupied and
therefore occurring in the Slater determinant. The
eigenfunctions in the absence of the potential are
solutions of the equation (A = 1, m = 1)

(@y¢/da’) + Ey(x) = 0, (1.4)
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with the boundary conditions that the wavefunec-
tions be zero at the walls of the one-dimensional
box, £ = +£3L. In the presence of the potential,
the eigenfunctions satisfy

(@*y/da’) + Ev(x) — \V(@)¢(2) = 0,

while the boundary conditions remain unchanged.
We assume V(z) to be short-ranged and sufficiently
well-behaved (for instance, Lebesgue-integrable).
Now we construct functions which are solutions of
(1.5), ¥(z; E, \), satisfying the boundary conditions

YGLE, N =0,

1.5)

VGL;E,N =1 (1.6)

Since the boundary conditions are independent of
), it follows from a theorem of Poincaré’® that for
fixed E and =z, ¥(z; E, \) is an integral function
of A. We can now obtain eigenfunctions ¢.(z; E, \)
of our problem from this family of functions ¢ by
satisfying the other boundary condition

¥(—3L;E,N) = 0. 1.7

Equation (1.7) is actually an eigenvalue equation,
and will give a set of eigenvalues E;(A) with a set
of eigenfunctions ¢;[z; E.(A), \] which, however,
are not normalized. Since this is a Sturm-Liouville
problem, the eigenvalues will be in general non-
degenerate.* ¢.[z; E;(\), A\] need not be integral
functions of A, for E;()) is not fixed, but is a function
of \. We define also the normalization

iz
NWQLM=[“%mEﬂLMM- (1.8)

By normalization we obtain the real orthonormal
eigenfunections ¢; used in (1.3).

To determine the analytic behavior of p, as a
function of \, we now write {z| p, |z) as a contour
integral :

1_2::1 ¢:(x")¢:(x)
= 3 Gz B, Nyde’; B, )
i=1 N[Ei()\)7 )‘]

_ 1 Y@ E, VD@5 B, N o5
2wt Jo 57 N(E,NE — EMN]

(xl [ lzl)

1.9

The contour C encloses only the first N eigenvalues

3 H. Poincaré, Acta Math. 4, 215 (1884); R. Jost, and
A. Pais, Phys. Rev. 82, 840 (1951).

4+ R. Courant and D. Hilbert, Methods of Mathematical
Physics (Interscience Publishers, Inc., New York, 1953),
Vol. 1, p. 293.

683

ImE

E - Piane

En) Enet

ReE

E; - EIGENVALUES
4+ ~ ZEROS OF N(E,>) OR BRANCH POINTS
OF THE EIGENVALUES AS FUNCTION OF X

Fra. 1. Contour C for (z| pr |2') in Eq. (1.9). u is the fixed
chemical potential of the electron system.

on the real E-axis for a certain real A ; the singularities
coming from the zeros of the normalization N(E, )\),
as shown below, lie off the real axis and are not
included inside C. The contour C crosses the real
E-axis at the chemical potential u, which is fixed,
and is closed on the left (Fig. 1). Of course we will
ultimately take the limit ¥ — », L — «, keeping
N/L constant. It may be noted that we have used
two “unstarred” functions, ¥(z; E, A). The ad-
vantage is as follows. When we make A or E complex,
the functions ¢(x; E, \) are integral functions by
Poincaré’s theorem, but the complex conjugated or
“starred” functions are not. For real A, the expres-
sion (1.9) reduces to the correct expression for the
density matrix, because we have taken real boundary
conditions and the eigenfunctions are real.
We now go back to the normalization

N(E, N = f_ ZLL VB, de.  (1.10)

For fixed A, this is an integral function of E. The
singularities of (1.9) in the E-plane, besides the
poles E;(\), are the zeros of N(E, 7). It is easy to
find these zeros. Consider two eigenfunctions ¥, and
¥,, fulfilling the boundary conditions as above,
which satisfy

(d2¢1/dx2) + Eyy(x) — NViu(z) = 0,

(1.11)
(d2¢2/ dxz) + (E + BE) ‘Pz(x)
— (A 4+ N Vi(x) = 0.
Then we have
iL 1L
oFE i dz — O . Vi, de
-3L —3L
= [l — ¥t (L12)
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Since by the boundary conditions, the right-hand
side vanishes, we have

a o, / 3L ,
z= [, v f_“ Vi da,

= N(E, N / f_ i V(@) ¥i() da.

Thus the zeros of N(F, )\) correspond to d\/dE = 0
(cf. Ref. 2). In orther words they occur at the
branch points of the eigenvalues E,(\) regarded as
a function of A\. For real A and real %, the normal-
ization is never zero; this ties in with the fact that
the eigenvalues of the Sturm-Liouville problem are
simple. This fact was used in writing (1.9) as a
contour integral by keeping A real.

Now we make A complex. By Poincaré’s theorem,
the eigenfunctions ¥(z; E, A\) are integral functions
of E for any definite (z, A\). But the eigenvalues
E,;(\) wander off into the complex plane. It is known
from some considerations of Hadamard® that
(z| p,(\) |z’) will have a singularity in the A-plane
when two poles of the integrand in (1.9) in the
E-plane, one from inside the contour C and another
from outside it, tend to coalesce at some value of A
and the contour becomes ‘“pinched’” between these
singularities. We have to consider two possibilities:
(1) Two poles E;(\) may coalesce or (2) a pole
E;(\) from inside may approach a zero of N(E, \)
which was outside. Since the zeros of N(E, \) are
coincident with the branch points of E,(\) we do
not get any additional singularities from the second
case, and will simply investigate the coalescence
of two poles E,(\) from two sides of the contour.
This, therefore, requires the knowledge of the move-
ment of the eigenvalues E; as a function of A. For
almost any potential this would be difficult; only
in the case of the delta function have we carried
out the investigation completely.

So far as the ground-state energy is concerned,
we have a formula similar to (1.9):

1
E—-—H

1 dE
‘2m'ch.ZE—E.-(x)’

where the contour C is the same as before. By using
the eigenfunctions themselves in evaluating the
trace, one can avoid explicit appearance of the func-
tions ¥ in the numerator. The problem of determining
E;(\) remains the same as before.

(1.13)

1
B = 2—15.ch'1} dE

(1.14)

5 J. Hadamard, Acta Math. 22, 191 (1898); J. Tarski,
J. Math. Phys. 1, 154 (1960).

CHANCHAL K. MAJUMDAR

2. ONE-DIMENSIONAL FERMION SYSTEM WITH
A 3-FUNCTION POTENTIAL

Consider now a system of spinless fermions of
mass 3, enclosed in a one-dimensional box of length
L, —iL < z <iL. The eigenfunctions with rigid
wall boundary conditions are sine waves:

¢u = (2/L)}sin (2mnz/L);
p=Q@m/L), =n=123, .

We have chosen the odd solutions; a completely
analogous discussion can be given for the even solu-
tions. The energy of the N-particle system is ob-
tained by simply putting in the particles in accord-
ance with the Pauli enclusion principle up to the
Fermi energy. The Fermi momentum is defined by

ke = 2xN/L. 2.3)

It is supposed that N — «, L — «, keeping the
ratio N/L constant. The ground-state energy of the
N-particle system can be calculated in this way
to be

(2.1)
(2.2)

L i 2 2
Bo=gt [ pap= Vi, @4
T Jo
so that the energy per particle is iky. Now we
imagine that we have at the origin a short-range
potential, in fact a delta-function potential of
strength parameter \. It is known that this potential
has always a bound state and the lowest single-
particle level cannot be an analytic function of A,
and has actually a singularity A = 0. However, we
consider again the N-particle system and compute
the ground-state energy E,(\) as above. We propose
to show that E,(\) has in fact a region of analyticity
in the A-plane, namely, a strip of finite width con-
taining the entire real A-axis.
The Hamiltonian for the system is

H= > CC, + 22 Vlrils (25)

A will be a complex number in general. The fermion
operators satisfy the usual anticommutation rules

{Cw C:’} = 55+ (26)
The equation of motion is
[C:r H] = ‘—G,C: — A Z Vc :41' (2-7)

Let |¥,) be the exact state of energy E,, and [¥)
that of energy E. Then

| CtH — HC )
= —e(¥| CF [W) — ) Z Vo-o(¥| C7 [¥0),
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F1a. 2. Solution of Eq. (2.13) for the eigenvalues.

L
\ X .repulsive

AN

="

or

(@ — &X¥| C; o) = A ; V,-¥| C; o), (2.8)

where
w =E — E,. 2.9
Putting
T C; [To) = 15, (2.10)
we get

(w - ep)fn =\ Za: Vp-afa' (2-11)

Since we take the potential to be a delta~-function,
we put

Ve = 1/L. (2.12)
Hence
(w - ev)fv = ZA qz’fﬂ
and the eigenvalue equation becomes
L 1
N = Z sy (2.13)

Schematically the solution of (2.13) is shown in
Fig. 2. For repulsive potential nothing particular
happens—all the energy levels are pushed up a
little. For negative real A, i.e., attractive potential,
there is always one solution below the unperturbed
eigenvalues. The behavior of the eigenvalues « as
a function of real A is shown in Fig. 3. In the limit
L — =, for the attractive case, there is a bound
state for any )\ with energy proportional to \?, while
for repulsive potential there is no such splitting off
of a state from the continuum. These are well-known
facts.

The unperturbed energies ¢, = p*, and using (2.2)
we get

= 1

; w — (2mn/L)*

_ L*3Le* cot 3Lb) — 1
-8 GLoY ’

L _
A 2.14)
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or

AL _ L'y
8  iLw! cot GLo?) — 1

In (2.14) we make use of the well-known partial
fraction decomposition of the cotangent® and ! is
defined to be the positive square root.

Equation (2.15) gives the strength parameter X\
as a function of w, the energy variable. The problem
now is to obtain the inverse relation w as a function
of \, w = f'(A\) = F(A). Clearly w is a multivalued
function of A; for real A, the eigenvalues of physical
interest are obtained (Fig. 3).

To ascertain the presence of algebraic singularity,
we want the roots of

d\/dw = df(w)/dw = 0. (2.16)

If we assume these zeros of f(w) to be simple, the
values of \ obtained from (2.15) from these zeros
represent branch points of order one. At such a
branch point, two sheets of the Riemann surface
of the function w = F(\) are connected. A general
argument that the zeros will be simple can be
supplied® and we verify explicitly that they are
simple in Fig. 8 where only double points appear.
Now

/(@) = 3L°/{3Le* cot GLo*) — 1}°
X (L% cosec® Lot — 2 + 3Lo? cot 3Lot). (2.17)

Put w = k*, the upper-half k-plane is, by definition,
the physical sheet. Setting 1Lk = Z, we have to
solve

= f(w). (2.15)

L*Z%¢csc®Z — 2+ Z cot Z
4 —— =
f@ =g~ Zetz =17 0.

(2.18)

The numerator and the denominator diverge to-
gether, so the infinities of the denominator are
excluded. In the numerator, Z = 0 is obviously a
solution, but at that point the denominator also
vanishes. Besides Z = 0, which is not a true solution,
all the other solutions are obtained from the zeros

F16. 3. The eigen-
values plotted as a
function of Re A.
These define the
different sheets of
the Riemann sur-
face of the function
w = w(\).

¢ E. C. Titchmarsh, The Theory of Functions (Oxford Uni-
versity Press, London, 1939), p. 113.
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of the numerator:
wZ)=2"—2+Zcot’ Z + Z cot Z = 0. (2.19)
Obviously

u(—2) = u(Z). (2.20)
Also v is a real analytic function” so that
w(Z*) = u*(Z). (2.21)

This means that all the zeros of (2.19), if they exist,
must come in groups of four, that is, =Z; and
+Z* are simultaneously roots of (2.19). We are
interested in the roots of the upper-half plane only,
which corresponds to the physical sheet. Clearly,
it is enough to investigate the roots in the first
quadrant.

Except Z = 0, there are no other zeros of (%)
on the real or the imaginary axis, so all other zeros
must be complex. For real Z = x, u(z) shows a
series of minima between infinities at nx but re-
mains positive. By the usual argument of function
theory,® one expects that the function will decrease
at right angles to the real axis at these minima and
the zeros may be expected to straddle the real axis
in the complex Z-plane. Also the minima are succes-
sively larger in height as one proceeds along the
real axis (Fig. 4), hence the zeros will be probably
moving away from the real axis.

For any fixed value of z, there cannot be any
solution to (2.19) for sufficiently large values of
Im Z = y; for,

i(z+iy) + —i(z+iy)
. e
cot Z = 1

ei(:+iu) _ e—i(z+iy) v

and
—2 + 977 # 0.

Thus, sufficiently far from the real axis, there are
no zeros.

The location of complex zeros is always a com-
plicated problem. In our case, the existence of the
complex zeros as solutions of Eq. (2.19) is assured
by Picard’s theorem.” We note that u(Z) is a

' [ 1
! i i
§

ulx) ] l\J Fie. 4. The func-
] | ! tion w(z) has no
! : : other zeros except
I 1 ] . the one at the
: ;‘ :l | origin.

[¢]] 3 2r 3w 4r
X —e

7 Reference 6, p. 155.
8 Reference 6, p. 167.
¢ Reference 6, p. 277.
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meromorphic function of Z, and therefore by
Hadamard’s theorem,'® can be written as the
quotient of two integral transcendental functions
of Z. The zeros of the integral function in the
numerator are the zeros of the meromorphic fune-
tion. We know that this integral function has a
zero at Z = 0. Now Picard’s theorem states that
an integral function that is not a polynomial will
take every value, with at most one exception, an
infinity of times. Clearly 0 is not an exceptional
value'' and thus «(Z) has an infinite number of
zeros.'”

We can find out the distribution of zeros for
large |Z| as follows. Write (2.19) as

ZeotZ + 7% es® Z = 2,
or
Zcesc’ Z 4+ cotZ =2/Z =~ 0. (2.22)

for large |Z|. (Notice that, by definition, Z is pro-
portional to L and we will make L — «.) Thus the
roots are approximately given by

ZceseZ +cosZ =0,
or

Z = —sin Z cos Z;

putting W = 27 we get
simW = —W. (2.23)

Decomposing into real and imaginary parts, W =
xl + iyl,

—z/, (2.24)
—y'. (2.25)

sin 2’ cosh ¢’ =
cos ¢’ sinh ¢y’ =

We have to solve the two transcendental equations
simultaneously. The solutions are the intersections
of the two curves

() 2’ = cos™ (—y'/sinhy’),

(ii) y' = cosh™' (—a’/sin '),

(2.26)

and are given qualitatively in Fig. 5.

10 Reference 6, p. 284g.

u Reference 6, p. 278.

12 Actually what we have proved is this: If there are zeros
as solutions of (2.18), they are obtained from (2.19). But we
have not shown the existence of complex zeros of (2.18) as
yet. The function (2.18) is itself a meromorphic function. An
extension of Picard’s theorem states that a meromorphic
function takes every value, with at most two exceptions, an
infinity of times {see R. Nevanlinna, Le Théoréme de Picard—
Borel, (Gauthier-Villars, Paris, 1929)]. We have not shown
that the zeros of (2.19) are not canceled by some zeros of the
denominator, that is, zero may still be an exceptional value
of (2.18). In order to settle this point, if not for the sake of
completeness, we have to draw the Riemann surfaces of
Figs. 8 and 9 to convince ourselves that double points indeed
appear at the expected solutions of (2.19).
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y (kL)~Plane
x = Double Points
ox X x * "
L L 1 1 ) 1
-6r-497 -2 O 2r 4r 67
(i) \ [ < x .
i) 1 \ ! x x
\ ] \ I
\ / \\ /
N \N P
) . 2y C - Fia. 6. Structure of the (kL)-plane showing double points.

Fi16. 5. Schematic solution of (2.26).

The branch points occur for

2 (An — Dir

or T~ nr — . 220
Using the definition of 2, this gives
L Rek ~2nr — ir. (2.28)
Writing the first of Egs. (2.25) for large ¢/,
1¢" sin 1’ ~ —z’. (2.29)

Hence, when 2’ is sufficiently large, the solution
of (2.29) gives

y'~lna’ (2.30)
or 1
y>~3inz.
This gives the asymptotic relation between z and
y for those values of Z which are solutions of (2.19).
To determine the branch points in the A-plane, we
go back to Eq. (2.15) written in terms of Z: For
large y, cot Z ~—1, and

WL =2Zcot Z — 1 ~2"/—iZ — 1 ~1iZ

=iz —y. (231
Hence
1 ~ p = 1
o sLImA~z = 3L Rek 2.32)
ImAN~4 Rek.
Also
Rea~ —8y/L~ —8Inz/L ~ —0(ln L/L).
(2.33)

Similarly from the values (—z + 4y) in the Z-plane
we get the complex conjugate branch points in the
A-plane:

ReAx = —0O(In L/L),

Im\ = —4 Re k.

(2.34)

The interesting result is that, asymptotically, the
imaginary part of X\ is independent of L, the length

of the box. The distribution of the double points
in the Z-plane and the branch points in the M-plane
are schematically shown in Figs. 6 and 7.

3. STRUCTURE OF THE REIMANN SURFACE"

The next problem is to construct the complete
Riemann surface w = F(A\) and to establish the con-
nectivity of the different sheets. We have found
no other way than to plot out a portion of the
Riemann surface explicitly and examine it. For this

purpose we write (2.15) as
N=ZYZcot Z — 1). 3.1)

Putting Z = z + 4y, and separating real and
imaginary parts of A, we have

Re M = r cos 8 = (AC + BD)/(C* + D?),
Im N = rsin § = (BC — AD)/(C* + D°),

where

3.2

A = (#¥ — 9" sin z cosh y — 2y cos z sinh ¥,
B = 2xysin z cosh y + (#° — ¥°) cos xsinh y,
C = z cos z cosh ¥ + ysin z sinh ¥y — sin z cosh y,

D = y cos z cosh y — zsin zsinh y — cos zsinh y.

(3.3)
io
A= Plane
—~ 2 —&x = Bronch Points
With Cuts
x|
- [s]
x|
[y L

~i®

Fic. 7. The A-plane showing the branch points with cuts.

13 H. Weyl, Die Idee der Riemannschen Fldiche (Teubner,
Stuttgart, Germany, 1923). F. Klein, On Riemann’s Theory
of Algebraic Functions and Their Integrals (Dover Publications,
Inc., New York, 1963).
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First we plot out the r = constant and § =
constant contours, and obtain the double points
[Figs. 8(a)~(¢c)]. Incidentally the plot demonstrates
that the assumption of simple zeros [Eq. (2.16)] is
valid. One also notices that the periodic structure
of the double points is of great help in constructing
the Riemann surface. Finally, in Figs. 9(a) and 9(b)
we have plotted parts of the first and second sheets
of the Riemann surface Z(\’). This is enough to
find the behavior of the function w = F(Q\). The
z = constant lines in Fig. 9 clearly show the linking
of the sheets across the cuts.

Obviously for real A, we can arrange the sheets
in a definite order (Fig. 3) as there is no crossover.
We number them as 1, 2, --- , starting with the
lowest unperturbed eigenvalue. We also number the
branch points in the order of their increasing imag-

First Sheet of the Riemann Surfoce
22

x=-50
»x:=4.0
y=20

¥=3.0]
x:-3.0 ys1.0

x:2-20

xr-10

~K0.0 -50 00

Second Sheet of the Riemonn
Surfoce Z*Z(\)

5.0

+10.0

1-6.0 y=3.0 y=20
x*-54

% =~8.

Fic. 8. (a) The Z-plane with constant r-lines, Notice the

(It))) The Z-plane with constant @-lines,
These are orthogonal to the constant r-lines. (¢) The Z-plane
with contours for real and imaginary parts of the funection

two double points.

A = N(Z).

H i
ZERO FOLE S ZERQ POLE ZERQ 10

R —

(e)

o u
Re A
(b)

Fia. 9. (a) The first sheet of the Riemann surface, Z = Z()\'),
Note the single cut. The scales along Re A’ and Im A are
not the same, (b) The second sheet of the Riemann surface
Z = Z(X\'). Note the two cuts. The lower one is the same cut
as in (a). All the higher sheets have similar appearance.
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inary parts in the upper-half \-plane as 1, 2, --- .
The associated complex conjugate branch points are
1,2, .-, respectively.

At the pair (1, 1°) the first sheet containing the
eigenvalue ¢, is connected to the sheet that contains
€. Clearly the pair (N, N’) connects the branch
containing the eigenvalue ey to that containing ey, ;.
Also every sheet, except the first one, has two pairs
of branch points, one conjugate pair connecting it
to the next lower one and the other conjugate pair
to the next higher one.

Starting from A = 0, w = ¢, if we go around the
branch point 1 (or 1’) and come back to A = 0,
we reach w = €. Any other path not containing
these branch points brings us back to ¢,. Similarly,
proceeding from «w = ey,; and A = 0, and going
around the branch point N (or N’) to A = 0, we
arrive at v = . If we go around the branch point
N + 1) or (N + 1), we arrive at ey... In Fig. 9
we have drawn the cuts connecting the first to the
second sheet and the second to the third sheet.
Starting at A = 0, @ = €, and going around both
the branch points 2 and 1 back to A = 0 along a
positively oriented contour, that is, a path that keeps
the branch points to its left, one clearly ends up
at €. A traversal of the same path in the reverse
direction leads however to ;.

4. CONTINUITY OF BOUND AND UNBOUND STATE

We are now ready to examine the analyticity
of the ground-state properties in the A-plane. Con-
sider Eq. (1.14) first. We have the first N eigen-
values inside the contour C (Fig. 1) and we want
to determine the smallest value of N for which the
contour is pinched.” From the structure of the
Riemann surface described above, we know that
the only coalescence we will have to consider is
that of the Nth root with the (N 4 1)st root.
It follows from (2.32) that the critical value of \ is
of order kg, as the imaginary part is O(ky). Note
that the result is independent of L, the length of
the box, in the limit L — .

The branch points responsible for the singularity
are the Nth and N'th branch points of the Riemann
surface, and they are away from the real axis by
a distance O(kg). This leaves a strip of finite width
parallel to the real axis in which one can analytically
continue from the positive-\ to the negative-\ side.

Similarly we can apply the above argument to
the single-particle density matrix (1.9). Combining
this with our discussion in Sec. 1, we conclude

15 It is convenient at this point to think of the even solu-
tions of (1.5), in order that Eq. (1.13) may apply unchanged.
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that the density matrix p,(\) is analytic in a strip
of finite width enclosing the real A-axis. Obviously,
there is a possibility that the density matrix has
a larger region of analyticity. For instance, if the
limiting singularity in the energy Eo(\) happens to
be a zero of N(E, A) in (1.9), this generates a double
pole for (z| p, |2’), and we can move the contour
around it. This possibility has not been completely
settled.

5. CONCLUSIONS

With the mathematical formalism finished, we
turn to its physical interpretation, and expatiate
on some examples already mentioned in Ref. 2. The
existence of a continuity of state between liquid
and gas is of course universally known. In a classic
paper on phase transitions, Yang and Lee'® demon-
strated that this could be interpreted as analyticity
of pressure and density in a finite strip in the com-
plex plane of fugacity enclosing the entire positive
real axis (the physical region). We have simply
reversed the procedure to show a continuity be-
tween bound and unbound states by finding the
analytic behavior of E,(\) and p,(A) in a domain
in the A-plane including the physical region.

An example of great heuristic value is the well-
known phase transformation of metallic Cerium."®
Solid face-centered-cubic Ce shows a phase trans-
formation with a critical point.'” Both the phases
involved (@ and v) have the same structural sym-
metry; otherwise such a continuous transition is not
possible.”® The classical expanation of this transi-
tion, due to Pauling and Zachariasen,'® asserts that
in the y-to-a transformation, the bound f-electron

For odd solutions one can derive the equation
3L

EN(E,\) = — f Y dz.
_}L

For real A and therefore real E, N(E, \) cannot vanish, and
the zeros lie again in the complex plane. We have not been
able to find their locations. Since the ground-state energy is
analytic in a finite strip in the M-plane, it seems plausible that
a similar result holds for the density matrix p, even for odd
solutions. Considering the peculiar nature of the delta func-
tion (an “ideal element’ in the function space), we are not
surprised to face such a difficulty. On the other hand, it is
extremely fortunate that is does provide an example of a
pathological as well as of a normal situation.

18 G, N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952).

16 A, Jayaraman, Phys. Rev. 137, A179 (1965). We are
indebted to Dr. T. Geballe for drawing attention to this work.

17 For a complete phase diagram, see K. A. Gschneidner, Jr.,
R. O. Elliott, and R. R. MeDonald, J. Phys. Chem. Solids 23,
555 (1962).

18], Landau and E. M. Lifshitz, Siatistical Physics
(Pergamon Press, Ltd., London, 1958), p. 260. .

19°L,, Pauling [quoted by A. F. Schuch and J. H. Sturdi-
vant, J. Chem, Phys. 18, 145 (1950)]; W. Zachariasen [quoted
by A. Lawson and T. Y. Tang, Phys. Rev. 76, 301 (1949)].
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becomes unbound (4f — 5d promotion). The critical
point marks the end of this transition of the f-elec-
tron, when the degree of ionization 4f — 5d is 50%.
Here in complete analogy with the liquid—gas case,
one can think of a continuity between bound and
unbound states. It must be emphasized, however,
that we are using this as an aid to comprehension
rather than a fait accompli. Phase transitions are
cooperative phenomena and depend critically on
electron correlations—a fact not taken into account
in our demonstration above. In the presence of weak
electron—electron interaction, our conclusion about
the analyticity of F,(A) and p,(A) will not be affected
and a continuity between bound and unbound states
persists.

It is easy to see that the existence of the limit
N — o, L » =, keeping N/L constant, is crucial
to the result. If we simply let L — « without the
concomitant N — o, we get the usual results of
the potential theory. It is known that the use of
a finite box and then the limit L — o, N — =,

CHANCHAL K. MAJUMDAR

N/L constant, is a physicist’s way of handling the
nonseparable Hilbert space appearing in the many-
body problem.*® Perhaps a more sophisticated math-
ematical treatment would establish our result almost
trivially from this basic fact.

Note added in proof. Dr. S. Vosko has kindly
pointed out that a different example of the con-
tinuity of bound and unbound states may be found in
D. Butler, Proc. Phys. Soc. (London) 80, 741 (1962).
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The set of Gelfand states corresponding to a given partition [A; - - - k4] form a basis for an irreducible
representation of the unitary group U,. The special Gelfand states are defined as those for which
{h1 -+« kol is a partition of n and the weight is restricted to (11 « -+ 1). We show that the special Gel-
fand states constitute basis for the irreducible representations of the symmetric group S, and use
this property to construct explicitly states in configuration and spin-isospin space with definite

permutational symmetry.

I. INTRODUCTION

HE symmetric group plays a fundamental role

in many branches of physics and particularly
in atomic and nuclear shell theory. The construction
of states that are bases for irreducible representa-
tions (BIR) of the symmetric group is therefore
an important task on which much work has been
done."

The purpose of this paper is to show that recent
developments in the BIR for the unitary groups,
i.e., the Gelfand states’™ allow us to discuss the
BIR for the symmetric group from a simple and
fruitful angle. We shall introduce the concept of
special Gelfand (SG) states and discuss their prop-
erties under permutation showing that they are
BIR of the symmetric group. We will then use this
concept for the explicit construction of states with
permutational symmetry, illustrating our technique
by the discussion of states in configuration space,
as well as in the spin-isospin space of supermultiplet
theory.®

II. GELFAND STATES

The work of Gelfand,” and later of others,®*
indicates that the BIR for the n-dimensional unitary
group U, are given by the Gelfand states

e, 1<r~s<n, 6))

in which the sth row [A,,] gives the irreducible rep-
resentation of the subgroup U, in the chain U, D
Ui D -+ U, D -+ D U, which defines the bases.

* This work was supported by the Comisién Nacional de
Energfa Nuclear, México.

1 An excellent summary of many of the aspects of the work
done on the symmetric group is given by M. Hamermesh,
Group Theory and its application to physical problems (Addison-
Wesley Publishing Company, Reading, Massachusetts, 1962),
Chap. VII and also Chaps. X, XI.

2 [. M. Gelfand and M. 1. Zetlin, Dokl. Akad. Nauk, SSSR
71, 825 (1950).

3 M. Moshinsky, J. Math. Phys. 4, 1128 (1963).

+G. E. Baird and L. C. Biedenham, J. Math. Phys. 4,
1449 (1963).

» E. P. Wigner, Phys. Rev. 51, 106 (1937).

The Gelfand states have been constructed ex-
plicitly®* in terms of polynomial expressions in the
creation operators a,, applied to a vacuum state
|0). The a,, can be considered as vectors in an
n-dimensional space. We shall interpret® s=1, --- ,n
as the component index of this vector while u will
be the index distinguishing between vectors. We
introduce the annihilation operators a*’ satisfying
the commutation rules

’

[a“’.ly a,f,] = 85, o, ) (2)

and with their help we can write the generators of
U, as

C'= > e, s8=1--n (3
M

The Gelfand states (1) are eigenstates of the
operators C:, s = 1, --- , n with eigenvalues w,
given by**'’

W, =:4ﬁ: hrs - iif hra—l' (4)

r=1 re=1

The set of eigenvalues (w, - -
of the state.

The Gelfand state for which k,, = h,, for all
1 < r < s < nhas, from (4), the weight (A, - - * Aua),
i.e., is of highest weight.>*'" This state will be
denoted by |A,,) and its explicit form is

[hrn) = Nh (D (A - (A1 [0)
®

- w,) gives the weight

where N is the normalization constant®'*

NG = | T IT th — B 42 =1 [

o x[ﬁ(hﬁn—r)!]_* ©)

r=]

6 We use here an interpretation of the indices g, s opposite
to that employed in Ref. 3. This proves useful when we con-
struct states with permutational symmetry in Secs. V and VI.

7 J. Nagel and M. Moshinsky, J. Math. Phys. 6. 682 (1965).
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and A is the determinant
; (_1)"ipa:lna:m v a:rlr) (7)

where P stands for a permutation of s,, 85, + - - 8,

A.‘,’...., .
Bapaseopur T

III. LOWERING OPERATORS

To obtain all the Gelfand states (1) from the
highest-weight state (5), Nagel and Moshinsky” in-
troduced the concept of the lowering operator. Spe-
cifically, the lowering operator L], 1 < r < s < nis
a polynomial function of the generators C;', r, 7’ =
1, -+, sof the U, group that transforms a Gelfand
state of highest weight in U,_.,, characterized by
the partition [A,,_,] into a Gelfand state, again of
highest weight in U,_,, characterized by the partition

[Ars-1 — 6,.). The explicit form of the lowering
operator is®
a—-r-1 a—1
L = 2 C.Ch - C¥
P=0 dap>q@p~1>°Qe>d1=r+1
F) -1
X I1EZ I] Bw  (8)
i=1 g=r+l
where
E,=0—-Ci+qg—p. 9

The lowering operators L] and the %,, are only
defined for 1 < r < sand 1 < r < s, respectively.
We shall introduce though, for convenience in the
following discussion, the definitions

Li=1, hu.=0, (10)

With the help of the lowering operators, the
general Gelfand state (1) is obtained from the
highest-weight state (5) by the expression

s=1,-+,n.

|hn) = {N(h,,)(L:)h“ 'I-Il (L;)hrn—hrl L.
X ﬁ (L:)hn—h,,_,

r=1

;[':Il (LZ)"'"""’”“} R, (11a)

where N (h,,) is a normalization constant that, from
the discussion in Ref. 7, has the form

il m—1
— (h:rm—l - ham—l + q ""1’)’
N(h’.) - {mI;IZ [027-1 (hpm - hqm—l + Q - p)!
x II

(hvm—l - hqm 4 qQ—p — 1)1]}*
a>pel (hp,,. — hem + ¢ — p — 1), . (llb)

The operators L, with the same lower index s,
but with different indices r, when acting on highest

8 Note that the appearance in (8) of the reciprocal operators
E, .~ is spurious as they are canceled by the operators E.
in the next product. The notation is compact and so we shaﬂ
use it in preference to stating that the last product in (8)
must not contain factors E,,,.
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weight states of U, commute, and so their order
in (11) is irrelevant. The operators L; with different
lower indices s do not commute, and so care should
be taken to apply them in the order indicated in
(11a).

IV. SPECIAL GELFAND (SG) STATES AND THE
BIR OF THE SYMMETRIC GROUP

Let us now define the SG states of U, as the
states (1) for which (a) the representation [h,,] of
U, as a partition of n; (b) the states have weight
(11 ... 1),

From (4) we see that the condition (b) implies that

hpn—l = hﬂn -

6?"0!7

(12)

hzm—Z = hpn‘l = Opramyy t

and from (a) and the restrictions®* imposed on the
representations [A,,], we see that the set of numbers
(1ry -+ - r,_,1,) has all the properties of a Yamanouchi
symbol.® We see that the SG states are fully char-
acterized by [h,], (r,) (where we drop the index n
in [A,.]) and from (11) they are given by

l[h,,](?",,)) = “:hl Tt hn](lrz ct 7'»))

= N((hJr, )ALy --- L -+- L) |hy),  (13)

where N is a normalization coefficient given by (11b)
when the A,, are particularized to the values (12).

The Gelfand states are BIR of U, and therefore
also bases for an, in general, reducible representation
of the symmetrie subgroup 8, of U,. The SG states,
which are a subset of the set of Gelfand states
satisfying (a), will also be a basis for a representa-
tion of S, as the set of operators C%, C3, --- , C?
is only permuted by the elements of S,. From the
appearance in the SG states of both [A,] which is
a partition of » and (r,) which has all the properties
of a Yamanouchi symbol, we expect the SG states
to be BIR of 8,.

To prove this point we shall first determine an
operator function of the generators C:, s, s’ =
1, - -+, n, whose effect on the SG states is the same
as that of a permutation.

We start by noticing that because of (a), the
SG states are given by homogeneous polynomials
in the a,, of degree n acting on the vacuum state,
while because of (b), the polynomials must be of
first degree in each value s = 1, --- , n of the
index s .Therefore the SG states can always be
written as

* See Ref. 1, p. 221. We use notation (1rg «.- r,) for the

Yamanouchi symbol rather than (r, --- r,1) as it is a more
natural one for expressions such as (13).
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2

Byt thn

I[hza](rv» = ‘fi;i(f:)a:.x a::z e a:nﬂ ‘0>7 (14)
where the A’s are some constants.

Let us now apply to the states (14) the operator
(rs) = C.C; — 1. (15)

Taking a typical term in the summation (14), we
immediately see from the definition (3) and the
commutation rules (2) that the operator (rs) inter-
changes the indices » and s in this term. Therefore
the operator (rs), when acting on SG states, behaves
as a transposition. As all permutations can be ex-
pressed by products of transpositions, we see that
the effect of a permutation on a SG state can be
reproduced by an operator which is a polynomial
functionof C;, 7,8 =1, -+ , n.

We can now ask what is the representation of
the symmetric group S, with respect to SG states.
Clearly we can restrict ourselves to representa-
tions of transpositions and in fact, only to the trans-
position (n — 1, n) as the other transpositions
n—2,n—1),(n — 3, n—2) --- (12) are given
in terms of the generators of the subgroups U,-,,
Upsy -+, U of U, and so are obtained when
we discuss the representations of S,_,, S,—z, <+, Sy,
respectively.

The representation of the transposition (n — 1, n)
is given by the matrix

H([h,](r,’,)] C:_lc:—l -1 I[h,,](’l’,))”- (16)

To evaluate the matrix elements, let us first write
T, = 1, rh_, = § 50 that the Yamanouchi symbols
become (17, - -+ r,-87) and similarly for (r2). Notic-
ing®'*'!° then that the matrix elements of C%™ are
independent of the representationsof U,_3 D -+ D
U, D U,, and diagonal in those of U,_,, and that
C"_, is a raising generator’ with the Hermitian
property Ca_, = (C32')*, we obtain

<[h1 cee h”](]_ré ISP r"‘_zs'r')l
X (C7'Ch-r — 1) I[hl e hJ(Arg -
|k

. -1 hz - 6m-
S ar’r 6:'; (1 + 6”) <hp — Bﬂf — 6,,

7‘,,_287'»

h, | )2

X C:'1 > —1 +8r’n as’r(1+6“)_l

hp - 6zvr - 5,,

10 J. Nagel and M. Moshinsky, Rev. Mex. Fis. 14, 29
(1965).
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|k b |
hy - 61”‘ n—1 hp
X <h'p - 81" - 6111 C” hp — O — 5w
o
, b |
hp - 617: n—1 hv ks
X h,—' 5,,,. _ 5,, Cn h,,— 5,,,. _ 6P°I> pI-I1 ar.‘rn
(17)

where the appearance of (1 + 4,,)”" is due to the
factor } that we have to put in the general formula
(17) if it is going to remain valid for r = s.

From the analysis of Gelfand and Zetlin,*>"*'*° we
see that the matrix element of C27" required in (17),
is given by

h, h, |
h

hr - 617' » >
hP - 6177' - apt hp - apr - 6pa|

n—2 n—1 }

= [(hr.n - 1) I;Il (hr.p + &, + 51::) H (hr.p)] )

. pHEr (18)
where

heo=h, — h, +5—7r. (19)

Using (18) we could immediately write down the
explicit expression for the matrix of the transposition
(n — 1, n) with respect to the SG states. This
matrix turns out to be identical to the coorrespond-
ing one in the irreducible representation of S, derived
by standard methods.” For example, when r, s <
n — 1, r # s, we get from (17) and (18)

(1| (n — 1, ) |[B](r))
= (hr.-)—l 6rr’ 6.:’ + [1 - (hr.l)—z:]* 61‘-' 6"’; (20)

which coincides with the corresponding case in Eq.
(7-111) of Ref. 1, p. 221.

We conclude therefore that the SG states are
BIR of the 8, group.

V. CONFIGURATION-SPACE STATES WITH
PERMUTATIONAL SYMMETRY

When we are dealing with systems of identical
particles, all observables are invariant under per-
mutations and so it is important to construct n-
particle states with permutational symmetry,* i.e.,
states characterized by the partition [A,] of n and
by the Yamanochi symbol (r,).

1t There is & misprint in a phase factor in the formula of

Gelfand’s paper that is corrected in Refs. 4 and 10.
12 See Ref. 1, pp. 243-249.
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In this section we shall show how to express,
as special Gelfand states, the configuration-space
states with permutational symmetry.

The single-particle states in configuration space
will be denoted by

Yulr), (21

where r is the position vector of the particle and
u characterizes the state, i.e.,

w o= (k.kk.), (22a, b)

depending on whether we are dealing with particles
in a central potential with radial quantum number
», angular momentum [/, and projection m, or free
particles with (k.k,k,) being the components of the
momentum, etec. We shall limit our discussion to
problems in which the number of single-particle
states is finite, say p and so, choosing an appropiate
enumeration convention, we have uy = 1,2, --- | p.
We introduce now the correspondence'®

hulr) © ag 10), (23)

where s is the particle index, a,, are commuting
creation operators of the type discussed in Sec. II,
and |0) is the vacuum state. An n-particle wave-
function formed from products of the ¢’s corresponds
to the state

p = (vlm), ete.,

(24)

where (s;s; -+ s,) is a permutation of (12 --- n)
while the u’s can take any of the valuesu=1,2, - - - , p.

We can use well known techniques, such as those
of Young symmetrizers,’* to build up linear com-
binations of the states (23) that have definite per-
mutational symmetry though, in general, the states
formed in this way do not give an orthonormal
basis. In this paper we will construct the states
by the procedures indicated in the previous sec-
tions. We notice first that from the a}, a**" we
can define the following operators

a+ a::s: et a:nht I0>7

#1812

n P
wiel __ + _u's’ u’_z + u's a’___z + ne’
C.' ' =a,d"°, € =2,0a,0"" C,=2 0a,".
=1 =1

(25a, b, ¢)

From (2) we obtain the commutation relations of
the operators and show that they are the generators
of the groups U,,, U,, U,, respectively.'*

With respect to U,,, a,, corresponds to a single
vector of dimension pn, and so the set of all linearly
independent states (24), with arbitrary u,, s., form
a BIR for the completely symmetric representation
of U,, characterized by [n]. The unitary group U,,
" 18 M. Moshinsky, Nucl. Phys. 31, 384 (1962).

4T, A. Brody, M. Moshinsky, and I. Renero, J. Math.
Phys. 6, 1540 (1965).
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admits as subgroup the direct produet U, X U,
whose generators are given by (25b, ¢), and so we
can characterize further our states by the represen-
tations [k,,], 1 S A< pof U, and [h,], 1 <p<n
of U,. It is well known®'® that, to be contained
in the representation [n] of U,,, both [k,,] and [A,.]
must be the same partition of =, i.e.,

hin = klp’ han = k2m e (26)

We can further characterize our states by the
representations [k,,], 1 <\ < u < p of the subgroups
U, in the chain U, D U,y D -+ WU, D -+ Uy,
and by the representations [4,.], 1 < r < s < nof the
subgroups U, in the chain U, D U,_, D --- U, D
--- Uy, ie., our states become Gelfand states with
respect to both the U, and U, groups, and could
be represented by

(x5 [Bea]) @7)

The highest-weight state in the set (27) is obtained
when

’ (28)
hra = hfﬂ)

and its explicit expression®'® is given by (5). An
arbitrary state (27) can be obtained from the one
of highest weight by means of lowering operators
both for the U, group, i.e., L], as well as for the
U, group, i.e., £, where the latter are given by
a definition identical to (8) when we replace C*'
by e,

As indicated above, the states (24) correspond
to n-particle states formed from the y,(r,) only if
(s; --- s,) is a permutation of (12 --- n) and so
their weight is (11 --- 1). We see therefore that
when we expand the states (24) in terms of the
states (27), we need only concern ourselves with
those of the latter type that are SG states of U,.
Assuming, then, that we have, at most, p single-
particle states, the most general n-particle state with
permutational symmetry is given by

3

[hl [N hn]
klp—l e kp—lp-l 3 >
.......... (17-2 [N rn)

2 L4
= {m(kkn)(£ll)k” )‘II (£g)k“—’“' "o )‘II (£2)k)‘ﬁ_k)\ﬂ—l
=] pry

X N({h)(ry)) Ly Lg® - - L,'."} ko), (29)

where we have dropped the index n in [h,,], the
state |h,) is given by (5) and [k,,] = [&,] as in (26).
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The £), L, are the lowering operators and 9U(k,,),
N([h,](r,) the normalization coefficients of the groups
a,, U,, respectively. The operators L, £, commute,
as from (2),

[C:, e} = 0. (30)
While the states (29) form a complete set, their
characterization with respect to the chain U, D
U,_, D -+ U, has no particular physical signif-
icance. We would like rather to choose a chain of
subgroups of U, that would be related with sig-
nificant physical observables. For example, if we
are dealing with single-particle states in a common
central potential, i.e., u = (¥lm) it is very con-
venient to characterize the states by the total
arbital angular momentum of the n-particle system
and by its projection.
It can be easily shown that the operator of
angular momentum £, ¢ = 1, 0, —1 can be given
in terms of the generators of U, by the expression

g, = 2 2 {0+ DI (im'q lmyein’},  (31)

i m,m’

13,15

where (|) is a Wigner coefficient of the ordinary
rotation group. The operators €, satisfy the usual
commutation rules and so are the generators of a
R, subgroup of a,.

We would like now to find linear combinations
of the states (29) with definite [k,](r,) but variable
[k, 1 € N < p < p that would be eigenstates of ¥,

and
1

82 = Z (_"1)',3«8—«’
e=-1

with eigenvalues M and L(L + 1), with L integer.
We have no problem for &, as from (31) we see
that it is expressed only in terms of the generators
erin = ¢4, while from (4) we see that the Gelfand
states are eigenstates of these generators. As the
matrix elements of the €% with respect to Gelfand
states have been obtained by Gelfand and Zetlin,”"*"*°
we could immediately obtain from (31) the matrix
elements of €, and so finally determine the matrix

GARGRLIW]
= H; ;(—1>°< {0] R Tonad(Fors| R IRAD[]. (33)

The diagonalization of this matrix would provide,
besides the eigenvalues L(L 4+ 1), i.e., the irreducible
representations L of R, contained in a given rep-
resentation of U,, the eigenvectors with whose help
we could construct the linear combinations of the

5 M. Moshinsky, “Group Theory and the Many Body

Problem,” in Physics of Many Particle Systems (Gordon and
Breach Science Publishers, Inc., New York, 1965).

(32)
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states (29) that are eigenstates of £° and &, ie.,
the states

LM ; [h,)(r,)), (34)

where « 1s an index or set of indices that distinguishes
between states with the same angular momentum L,
projection M, and permutational symmetry {h,](r,).

The index or indices « could be correlated with
eigenvalues of other operators formed from the
@ that commute with the 2, and among them-
selves. Some of these operators can be easily found
if there are chains of subgroups of U, that contain
R;, but the problem of finding a complete set of
operators is, in general, a difficult one.'® _

The states (34) are expressed in terms of homo-
geneous polynomials of degree n in the g, acting
on |0), but they could be immediately translated
into the usual notation in terms of the single-
particle states ¥,(u,) by means of the correspondence
(23).

Example: States of permutational symmetry in the

p-shell

As an example of the previous developments, we
consider the problem of the determination of n-
particle states of definite permutational symmetry
and orbital angular momentum when the single-
particle states »lm are restricted to a particular »
and to I = 1. The single-particle states are then
characterized by m = 1, 0, —1 and can be enu-
merated as follows:

(35)

The states of permutational symmetry correspond~
ing to (29) can then be written as

h1h2h3 [h1h2h30"' O]l

Uy Uz 5
! ’ Araryrs

)
51

hy by by
= 99wy [(L)"TT(E)M T (LT

U
X N([hﬁ](rn)) Li L;’ e L:;n

X N(hy by B)(AD" (AR (A™ [0),  (36)

( gl(; X)I Bargmann and M. Moshinsky, Nucl. Phys, 23, 177
1961).
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TaBre I. Characterization of the generators of Us by their
Racah tensor prperties with respect to Rs.

% ==cl+e2+ec

f= —(e} + e}, & = (e} —ed), 2y = (e} + e?)

1 1
Q@ =c} o= '\75("@2 +¢e}), =‘\76‘((’3i —2¢§ + ¢}),

1
Q. = 75(@% —e3), Q. = ¢},

where we used (26) and the notation %k, = wu,,
kes = Ug, ki, = v,. The N(hhshs) is given by (6)
while the other normalization constants can be ob-
tained from (11b). The lowering operators L] simplify
considerably'” when they act on states in which only
the first three terms in the partition are different
from zero. The 7, in the Yamanouchi symbols are
restricted tor, = 1, 2, 3.

To obtain states equivalent to (34), we first give
in Table I the linear combination of the generators
e* of U that are Racah tensors' of rank 0, 1, 2,
denoted, respectively, by 3¢, &, Q..

From (31) we see that the €, are the operators
of orbital angular momenta, and from the fact that

Q= Z (_1)7<11qq, ’ 27') a-, 8« ga’ (37)
is a scalar, we conclude that
2, ¥, Q (38)

are three commuting operators. These operators
were shown to characterize completely the states
that are BIR of U, in the U3 D R chain.'®

The states (36) are eigenstates of 2, with eigen-
value

= —hl—hz—h3 +u1 +u2+vx- (39)

The matrix of ¢® with respect to the states (36)
was obtained explicitly in Ref. 15, and by a similar
procedure to the one followed there one could ob-
tain the matrix of Q. As these matrices commute,
we obtain from their simultaneous diagonalization
the completely defined eigenvectors with whose help
we could construct the linear combinations of the
states (36) that are eigenstates of @, ¥, &, i.e., the
states

L ; (A1 (r,)),

where we denote by « the eigenvalue of Q.
17 P, Kramer and M. Moshinsky, Nucl. Phys. (in press).

(40)
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One can also obtain the states (40) by directly
evaluating the states in the U; O R, chain'® that
are of maximum weight in U, and then, applying
the operators L] as in (36).

V1. SPIN-ISOSPIN STATES WITH
PERMUTATIONAL SYMMETRY

The construction of spin-isospin states with per-
mutational symmetry can be done along lines very
similar to those discussed in the previous section.
The only difference is that now the single-particle
state is x,,(s) where ¢ = §, —1% is the spin index,
r = }, —1 is the isospin index, and s is the particle
index. The single-particle states are then charac-
terized by the indices o¢r and can be enumerated
as follows:

M 1 2 3 4
(41)
(@) G G- (-3 (-1 -
We establish the correspondence
XW(S) (_)a:a [0> (42)

and see immediately that the states with permuta-
tional symmetry are given by (29) when p = 4.

To obtain states characterized by definite spin
and isospin, we first give, in Table II, the linear
combinations of the generators €% of i, that are
Racah tensors of definite rank with respect to spin
and isospin.

From (31) we see'® that S,, ¢ = 1, 0, —1 are the
operators of spin; T, § = 1, 0, —1 are those of
isospin; while B,; is a Racah tensor of rank 1 with
respect to both spin and isospin with projections
¢, G, respectively. The trace of the generators of
U, is denoted by M and is a scalar'® with respect
to both spin and isospin, as it commutes with S,, T;.
The operators

= SR,
0 = 8°S, R R*? + R RE'TT,.
- e“’q"566,6"SGRG’E’RG”E“TVH

(43a)

(43b)

in which repeated indices are summed and where
the €“'?"’ are the completely antisymmetric tensors,
are clearly scalar with respect to both spin and

isospin and so commute with
Sz, SO; sz TO- (44)

Furthermore, &, ® commute,'® and so we could use
18 M. Moshinsky and J. Nagel, Phys. Letters 5, 173 (1963).
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TarLE II. Characterization of the generators of U4 by their Racah tensor properties with respect
to spin and isospin.

N=-ecl+e+ed+ el

1 1
S = —72'(@:3 + e3) 8o = %(ei + ef — e} — e S = 2 (& + €))
1 1
Ti= ——5 (e + ) To = }(e} — € + ¢ — ¢eb) Ta=_2(+¢e)
1
Ry =} ¢! Buw = ~Z5 (6 — o) Rioi = ~} ¢
Bon = -‘}—(32 — e3) Ry =131(el —e —cd+ed) Eyy = L (e; — ¢})
‘\/8 1 3 4 1 2 3 4 - ‘\/8 2 4
1
Bou =163 Roio = g (e} — € Baa-}e}

these six commuting operators to characterize the
states that are BIR of al, in the A, D SU; X SU.
chain, where the S, refer to the spin and isospin
spaces.

From the general analysis of Gelfand and Zet-
lin,>*** we could obtain the matrix elements of
CY u, u = 1, --+ 4 with respect to the states (29)
with p = 4, and so, in principle, obtain the matrices
of the operators (43), (44), with respect to these
states. From the simultaneous diagonalization of
these commuting matrices we obtain the eigen-
vectors with whose help we construct the linear
combinations of the states (29) that are eigenstates
of these six operators, i.e., the states

|E OSMSTMT; [h,,] (7',,)), (45)

where we denote by £, 8 the eigenvalues of =, ©.
The determination of states of the form (40) and
(45), besides being conceptually simple, seems to
be highly mechanizable. Therefore we plan to have
programs for electronic computers that will con-
struct states with definite permutational symmetry.

Note added in proof. It is interesting to relate the
states with definite permutational symmetry ob-
tained in this paper with those derived by the stand-
ard projection technique,' i.e.,

\I"(’::])(r;’) = 7[:’] ; Dupl(sB)?rp)(rp‘)\[/I(rl) lAbn(rn )
(46)

where P stands for an arbitrary permutation of the
vectors I,, -+- , I,, D is the IR [h,] of dimension

19 Ref. 1, pp. 111-113 and pp. 246 and 247.

I,y and with its rows characterized by the
Yamanouchi symbols (r,), (r2), and ¢,(r,) is a single-
particle state with s being a state index. If we assume
that all the single-particle states are different, the
state indices can be denoted by 1 -+ n.

Replacing P by B~ in (46), and making use of
the unitary and real character’ of the D’s, we can
also write

[Ap] Ling) ths}
Vi ey = n! %D B

X B < dalta).  (47)

From (46) we conclude that ¥{»] ., is a BIR of
the S, group for the vectors r,, - - - r,, characterized
by [A,] and corresponding to the row (r,). From (47)
(taking into account that P acting on 1, --- T,
has the same effect that P acting on the state indices
1 .-+ n), we conclude that ¥{}*} . ., isa BIR of the
8. group for the state indices 1 « - - n, characterized
by [h,] and corresponding to the row (r}).

We now note that, if in Sec. 5 p = n and the weight
in U, is also (11 .-+ 1), the state (29) can be char-
acterized by the Yamanouchi symbols (), (r,) with
respect to the groups U, and U, respectively, i.e.,
we have the state

Th,) (), [h) () (48)

If we establish the correspondance (23) between
a,; 10> and the wavefunction ¢,(r,), we see that the
states (48) will be linear combinations of the wave-
functions

‘pux(r'x) e 'l/un(ru b

where both (u; ++- p,) and (s, --- s,) are permuta-



698

tions of (12 -:- n). Furthermore the states (48)
are BIR of S, characterized by [k,] with respect to
both the particle indices and state indices, with the
rows of the representation being (r,) and (r) respec-
tively.

The states (46) and the states (48), in which we
use the correspondance (23), are then clearly equiv-

M. MOSHINSKY

alent, and so we could construct the standard pro-
jection states by applying lowering operators in the
explicit fashion indicated in (29).
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A formal general proof of the statement of Goebel and Sakita is presented on the basis of the Bethe—
Salpeter formalism; namely, it is shown that the poles of a proper vertex function cannot appear in the
corresponding scattering amplitude. Some related conjectures are also verified. An exactly solvable
example is presented and discussed in this connection.

1. INTRODUCTION

N criticizing the work of Geshkenbein and
Ioffe’ concerning an upper bound on the cou-
pling constant, Goebel and Sakita® pointed out, on
the basis of the nonrelativistic theory, that the poles
in the a channel of the proper vertex function I'(s)
of three particles a, b, ¢ do not appear in the scat-
tering amplitude of the two particles b and c.
Subsequently, this statement has been verified in
an extended Lee model by Drell, Finn, and Hearn,®
and in the case in which I'(s) has no branch cut
below the elastic threshold by Jin and MacDowell.*
The latter* have proposed the conjecture that the
poles of I'(s) will lie on a Regge trajectory of the
b-c scattering amplitude.

The purpose of this paper is to present a general
proof of the statement of Goebel and Sakita on the
basis of the Bethe—Salpeter formalism. We also
verify the proposition of Jin and MacDowell. The
general proof is given in the next section, and an

* This work performed under the auspices of the U. S.
Atomic Energy Commission.

1B, V. Geshkenbein and B. L. Ioffe, Phys. Rev. Letters
11, 55 (1963); Zh. Eksperim. i Teor. Fiz. 44, 1211 (1963); ibid.
45, 555 (1963) [English transls.: Soviet Phys.—JETP 17, 820
(1963); bid. 18, 382 (1964)].

2 C. J. Goebel and B. Sakita, Phys. Rev. Letters 11, 293
1963).
¢ 38, D. Drell, A. C. Finn, and A. C. Hearn, Phys. Rev.
136, B1439 (1964).
( 4 Y) S. Jin and S. W. MacDowell, Phys. Rev. 137, B688
1965).

exactly solvable example, which exhibits the Regge
behavior, is discussed in the final section.

2. GENERAL PROOF

We consider the scattering Green’s function G
of two particles b and ¢, in which an elementary
particle @ can appear as an intermediate state. On
the basis of the Bethe—Salpeter formalism, G satisfies
the integral equation

G =K'+ K + 4)G, @.1)

where K™ denotes the product of the propagator
of b and that of ¢, and I + A is the irreducible
kernel (i.e., the sum over all Feynman graphs for
b 4+ ¢ — b + ¢ which contains no b + ¢ intermediate
states) in the operator notation. The part A is
characterized by the property that it contains at
least one one-particle intermediate state of a. Hence
A can be written as

A = AK'Z, 2.2)

where A denotes the irreducible vertex part for
a — b + ¢, which contains neither ¢ nor b + ¢
intermediate states, while A is related to the process
b 4+ ¢ — a, and K" is the “free” propagator® of a
in the sense that it has no b + ¢ intermediate states.

5 If the particle a can be converted into other virtual states

without passing through the b -+ ¢ state, K, must include
such radiative corrections.
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tions of (12 -:- n). Furthermore the states (48)
are BIR of S, characterized by [k,] with respect to
both the particle indices and state indices, with the
rows of the representation being (r,) and (r) respec-
tively.

The states (46) and the states (48), in which we
use the correspondance (23), are then clearly equiv-

M. MOSHINSKY

alent, and so we could construct the standard pro-
jection states by applying lowering operators in the
explicit fashion indicated in (29).
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A formal general proof of the statement of Goebel and Sakita is presented on the basis of the Bethe—
Salpeter formalism; namely, it is shown that the poles of a proper vertex function cannot appear in the
corresponding scattering amplitude. Some related conjectures are also verified. An exactly solvable
example is presented and discussed in this connection.

1. INTRODUCTION

N criticizing the work of Geshkenbein and
Ioffe’ concerning an upper bound on the cou-
pling constant, Goebel and Sakita® pointed out, on
the basis of the nonrelativistic theory, that the poles
in the a channel of the proper vertex function I'(s)
of three particles a, b, ¢ do not appear in the scat-
tering amplitude of the two particles b and c.
Subsequently, this statement has been verified in
an extended Lee model by Drell, Finn, and Hearn,®
and in the case in which I'(s) has no branch cut
below the elastic threshold by Jin and MacDowell.*
The latter* have proposed the conjecture that the
poles of I'(s) will lie on a Regge trajectory of the
b-c scattering amplitude.

The purpose of this paper is to present a general
proof of the statement of Goebel and Sakita on the
basis of the Bethe—Salpeter formalism. We also
verify the proposition of Jin and MacDowell. The
general proof is given in the next section, and an

* This work performed under the auspices of the U. S.
Atomic Energy Commission.

1B, V. Geshkenbein and B. L. Ioffe, Phys. Rev. Letters
11, 55 (1963); Zh. Eksperim. i Teor. Fiz. 44, 1211 (1963); ibid.
45, 555 (1963) [English transls.: Soviet Phys.—JETP 17, 820
(1963); bid. 18, 382 (1964)].

2 C. J. Goebel and B. Sakita, Phys. Rev. Letters 11, 293
1963).
¢ 38, D. Drell, A. C. Finn, and A. C. Hearn, Phys. Rev.
136, B1439 (1964).
( 4 Y) S. Jin and S. W. MacDowell, Phys. Rev. 137, B688
1965).

exactly solvable example, which exhibits the Regge
behavior, is discussed in the final section.

2. GENERAL PROOF

We consider the scattering Green’s function G
of two particles b and ¢, in which an elementary
particle @ can appear as an intermediate state. On
the basis of the Bethe—Salpeter formalism, G satisfies
the integral equation

G =K'+ K + 4)G, @.1)

where K™ denotes the product of the propagator
of b and that of ¢, and I + A is the irreducible
kernel (i.e., the sum over all Feynman graphs for
b 4+ ¢ — b + ¢ which contains no b + ¢ intermediate
states) in the operator notation. The part A is
characterized by the property that it contains at
least one one-particle intermediate state of a. Hence
A can be written as

A = AK'Z, 2.2)

where A denotes the irreducible vertex part for
a — b + ¢, which contains neither ¢ nor b + ¢
intermediate states, while A is related to the process
b 4+ ¢ — a, and K" is the “free” propagator® of a
in the sense that it has no b + ¢ intermediate states.

5 If the particle a can be converted into other virtual states

without passing through the b -+ ¢ state, K, must include
such radiative corrections.
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We also consider the b -+ ¢ scattering Green’s
function G in the absence of the particle a. It satisfies
G =K'+ K'IG. 2.3

Now, assuming the existence® of (K — AI)™* and
[K — MI + A)]* for small \, by analytic continua-
tion in X\ we may write

G=K-D7", (2.4)

and
G=K-1-4)"

= (G — A7

= (1 — GA)™'@

=H+ G, (2.5)
where

H=GA(1 — GA)™'@
= GAK;'A(1 — GAK;'})7'G. (2.6)

Since

a(l —Ba)™ ' =1 — af) e 2.7

for two arbitrary operators « and B, provided that
(1 — aB) ' and (1 — Ba)™ ' exist, (2.6) is rewritten as

H = GAl — KJ'AGA)T'K'AG
GA(K, — AGA)'AG
TAT.

I

I

(2.8)

Here

' = AG

are the proper vertex functions, and
A, = (K, — AGA)™! (2.10)

is the modified propagator of a. From (2.5) and (2.8),
we see

I' = GA, (2.9)

G = TAD + G (2.11)

The graphical interpretation of (2.11) will be
obvious.

Now, let s be the invariant square of the total
4-momentum, and suppose that G has a pole at
s = 8p!

G — 7;¢B$B + é.

R (2.12)

Here ¢5 denotes the Bethe-Salpeter amplitude for
a bound state B of b and ¢ in the absence of @, and
8 If they do not exist, one should introduce a cutoff in

order to make them exist. The cutoff should tend to infinity
in the final stage.
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@ is nonsingular at s = s,. Then (2.9) and (2.10)

lead to
r = @a@eh) 4 gy,
o 2.13)
p - {Aos)ds | 1
P ="""" "+ 16,
and
A= [K _ iEen)@sh) _ m}—r
$ — Sp
= i(s — 5)[@20) 7 (Abs) " + O(s — s5)].
(2.14)

Here we have assumed that A¢; and therefore A
are nonvanishing. Hence

H — _i¢B$B + g,

Pote. (2.15)

where H is nonsingular at s = sz. ThusG = H + G
has no pole at s = sp. This is nothing but the state-
ment of Goebel and Sakita,® but we should add
some comments.

(1) The existence of a pole in T does not neces-
sarily imply a pole of G, namely A may have a pole at
s = 8. Then A! has a double zero at s = s, so
that both H and G are nonsingular there.

(2) In the above proof, the assumption that A¢g
is nonzero is very essential. This assumption is
equivalent to the statement that B has the same
quantum numbers with a. This justifies the proposi-
tion of Jin and MacDowell.* For example, if one
considers the case in which a, b, ¢ are scalar, then
the cancellation cannot occur for the poles of G
which correspond to the bound states having angular
momentum [ # 0. Thus the Regge trajectories of
G are the same with those of G. Correspondingly, the
high-energy behavior of G in the crossed channel is
governed essentially by that of G because H tends
to a constant.

(3) Okubo and Feldman’ analyzed the Bethe-
Salpeter equation for bound states of a scalar nu-
cleon and a scalar antinucleon in the ladder-chain
approximation. In that case, they found that the
Bethe-Salpeter amplitude is proportional to the
proper vertex function. A general proof of this
statement immediately follows from (2.11) because
the poles of A’ other than that of the particle a
represent true bound states of b and ¢. Let s} be
a pole of A/, which will tend to sz as A — 0, and

Zs = —q¢ lim (s — sf)AL. (2.16)

s—s8p’

7 8. Okubo and D. Feldman, Phys. Rev. 117, 279 (1960).
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Then the Bethe—Salpeter amplitude is given by
Z}T with s = s}.

(4) The bound state obtained above is quite akin
to an elementary particle. It does not lie on a Regge
trajectory and has @ nonzero Z-factor if (2.16) is ac-
cepted as a definition of a Z factor. Thus it provides
an interesting counterexample to the usual criterion
for bound states.

(5) If the particle @ itself is a bound state, all the
above reasoning no longer holds. In this case, it
is not clear how to define the proper vertex function
T. If a is spinless, the improper vertex function may
be defined by®

f d'q G,

where g denotes the relative momentum of b and ¢
in the initial state. The poles of (2.17), of course,
correspond to bound states of b and c.

(2.17)

3. EXACTLY SOLVABLE EXAMPLE

In this section, we consider an exactly solvable
example which exhibits the Regge behavior. Let
b and ¢ be two scalar particles having unit mass.
They exchange massless scalar particles with scalar
coupling g. Then the integral equation for G in the
case of vanishing total 4-momentum is

6. 9 = g {50 — 0 + [ aw

/'t
X [—-(p - 7)
in the ladder-chain approximation. Here, ¢ and p
are the relative momenta in the initial and in the
final state, respectively; X = ¢*/(47)%, \, = ¢2/(4r)’,
and g, and m, denote the unrenormalized (abc)
coupling constant and the unrenormalized mass of
a, respectively. For simplicity, —7e has been omitted
in all denominators.
We also consider the following auxiliary integral
equations:

A/ Tt
my

Y T

G, 9 =a—_1—?wli—-54(p— Q)+1%

W) = (_l——l_pz)—z [1 + %f d'p’ _—(Z—,)p')z:l'
3.3

8 1. Sato, J. Math. Phys. 4, 24 (1963).

NOBORU NAKANISHI

Then it is evident that

vo) = — [ 2460, 9. (3.9
The solution to (3.2) is known already®:**:
Gp, 9 = —(1 = )’[¢'e — 9
+ /"D — 9, 1°, 1. (8.5)
where
(> — o* v, ©)
=2 e =T 69

with

o, ¢) = F{—»v,» + 1;2; —[0 — 9)/yd — N},
3.7

and
r=0M+DH -1 (3.8)
Since G(p, ¢) = G(g, p), (3.5) with (3.6) leads to

o = - [ av 66,9
=( - qz)-2|:1 + X fol dy %] (3.9)

Using p in place of ¢, and assuming p* < 1 for the
moment, we obtain

y@) = (1 —p)7°
® Fl—=y,v+1;2; —2)
X {1 +2 [ a A+ o + (1 = p”)]} » 3.10)

a result which is identical with a formula given by
Okubo." But, according to Okubo and Feldman,’ it
is convenient to employ an integral representation

_o [ zo(x) .
V@) = 2 fo oy (3D
Then it is straightforward to find"

p@) = F(—»,v + 1;2; —2) (3.12)

from (3.3). The equivalence between (3.10) and
(3.11) can be easily seen by substituting (3.11) in
the right-hand side of (3.3).

We are now ready to solve (3.1). Making an
ansatz

G@, 9 = 4@ ¥(9) + G, 9,

% N. Nakanishi, Nuovo Cimento 34, 795 (1964).
10 N. Nakanishi, Phys. Rev. 138, B 1182 (1965).
1 8. Okubo, Progr. Theoret. Phys. (Kyoto) 10, 692 (1953).

(3.13)
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and using (3.2), (3.3), and the first equality of (3.9),
we obtain

a = —i(Z/my)a + i\ /x*my, (3.14)
where a quantity
2 = 0w/ [ d' v
_ ” ¢(z)
- [ o reer D

is the proper self-energy of a. Substitution of the
solution o of (3.14) in (3.13) yields

G, 9 = I'(p)AiT(9 + G, 9,  (3.16)

with
L) = T(p) = [ig./(2n)"l¥(@),  (3.17)

and
AL = —i/(mg + iZ). (3.18)

Here the divergence of Z should be removed by
mass renormalization. Evidently, (3.16) corresponds
to (2.11).

Though our model does not contain the variable s,
we can still consider the poles of I'(p) in terms of
v. It was shown that G(p, ¢) has a simple pole at
v = N, where N is a positive integer. Its residue
is given by’

lim ( — N)G(p, 9)

_ ‘;{:l (-D*L + DNV + DN — L — D!
& 2O + L+ D)1
X (pz)u(qz)u‘Cli(pQ/(pz92)})fNL(p2)fNL(92) ’
(3.19)

where C¢ (2) is a Gegenbauer polynomial, and fy. (p?)
is the radial part of the Bethe—Salpeter amplitude,
which is given by

n_ L2 1
fNL(p) - t (L + 1)1 (1 - pz)L+3

2
X CEth_, (i—i—‘—%) (3.20)

The appearance of various angular-momentum states
in (3.19) is due to the degeneracy at zero energy.
The integral in (3.11) can be easily carried out':

12 A, Erdélyi et al., Tables of Integral Transforms, (McGraw-
Hill Book Company, Inc., New York, 1953), Vol. II, p. 400.
For explicit derivation, see N. Nakanishi, Phys. Rev. 137,
B1352 (1965), Appendix A.
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_me+1) 1
V) = sinm (1 ~ p°°
‘Fl—v + 1,y 4+ 2;2; —p°/(01 — p°)].  (3.21)
Hence™
() — _ 2= g (M)
l,l—r»zli' @ N)\“]’) = 1= pz)a Ci-1 1 — p2
= i(—1)"fxo(?"). (3.22)
This is of course equal to
~[ dqtim6 - M6, 0, @2)
as is seen from (3.19) together with
[ datula = —(-0". @29

Likewise, we may calculate the residue of = in the
following way:

lim 6 — M2 = (/) [ &' lim 6 — M)
= —2\. (3.25)
Thus, from (3.17), (3.22), (3.18), and (3.25), we have
H@, 9 = TOANQ
= LB | gy g, (320

where H(p, ¢) is nonsingular at » = N. Therefore,
the L = 0 part of the residue of G(p, q) exactly
cancels with that of H(p, ¢) in G(p, g) as it should.

The high-energy asymptotic expansion of G(p, ¢)
in the crossed channel was already given elsewhere.’
The high-energy behavior of G(p, q) is exactly the
same with that of G(p, ¢) apart from a constant
term. Thus the poles of I'(p) are related to the high-
energy behavior of G(p, ¢).

Note added in proof. Dowker [Nuovo Cimento 33,
110 (1964)] presented a consideration similar to our
proof of the cancellation of a vertex pole, but in his
paper the external-mass dependence of the ampli-
tudes was not taken into account. The author ap-
preciates his notice.

13 M. Abramowitz and I. A. Stegun, Handbook of Mathe-
matical Functions with Formulas, Graphs, and Mathematical
Tables, (National Bureau of Standards, Washington, D. C,,
1964), p. 779.
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Solutions in powers of 1 —z of the differential equation associated with the hypergeometric function
»Fp-1 are derived and the function is continued analytically in terms of these solutions. The analytic
continuation is derived in a simple way from an expansion which is well suited for the purpose and
which is valid for all values of the argument z. The usefulness of the :F; functlon in studying certain
hypergeometric functions of two variables is emphasized.

INTRODUCTION

N a previous investigation of the analytic prop-
erties of the Appell function F,(a, by, b,, ¢, z, y)*
it was shown that all solutions of the partial dif-
ferential equations associated with the F, function
which are expressible in terms of the Appell function
F, and Horn’s function G, could be obtained in an
elementary way by expanding known solutions in
oF, functions and then using transformations and
analytic continuations of the latter functions. In
this way, new solutions as well as connections be-
tween the various solutions were obtained and ana-
lytic continuations of the F; function to the whole
domain of its variables were derived.

The success and simplicity of the method inspired
an attempt to derive solutions of the equations asso-
ciated with the Appell function F,(a, by, b, ¢4, ¢5, 2, ¥)
in the same way. It was then found that higher-order
hypergeometric functions had to be taken into ac-
count. The lack of simple representations of the
analytic continuations of these functions to the
neighborhood of # = 1 caused considerable diffi-
culties which difficulties gave the incitement to the
present investigation.

In continuing 7, functions and functions of higher
order we are concerned with the neighborhood of

= 1 only, since the behavior near the singularity
at infinity has long been known and offers in fact
no difficulties.

In the first section of this paper we derive an
explicit analytie continuation of the function F,_,
in the neighborhood of x = 1. In deriving this result
we use certain convenient expansions of hypergeo-
metric functions in series of hypergeometric func-
tions of lower order. These expansions have the
advantage of being valid for all values of the vari-
able z. With the aid of these expansions, a hyper-
geometric function can be expanded in hypergeo-

* This work was carried out under the auspices of the

Swedish Atomic Research Council.
1P. 0. M. Olsson, J. Math. Phys. 5, 420 (1964).

metric functions whose properties are well known
and can be taken advantage of in order to derive
solutions of the differential equation associated with
the function as well as connections between the
various solutions and their transformations.

The intimate relations between some of the Appell
functions and ;F, functions are revealed by the fact
that the former functions, provided that they are
finite, are ;F, functions in one variable if the other
variable is equal to unity. Relations of this kind
are given in the last section. They suggest strongly
the usefulness of the ;F, function in the theory of
certain hypergeometric functions of several vari-
ables frequently occurring in mathematical physics.

ANALYTIC CONTINUATIONS

A simple way of obtaining analytic continuations
of the hypergeometric series

Gy Qgy 0, Ay, T
pr—1<bl’ bz, e, bﬂ_1 )
(@1)(82)n * -+ (a,)a7"
Z % (00)a(b2)n + -+ (bpy)un!’ lz| <1, 1)

is to expand it in functions of lower order and
then make use of the analytic continuations of the
lIatter functions. We carry this out in detail on ,F,
functions only and merely outline the fairly straight-
forward generalization to functions of higher order
at the end of this section.

There exist many expansions of ¥, functions in
terms of .F, functions but most of them are in-
convenient for our purpose. There are, however, also
expansions which deliver the desired result in a very
direct way. We show that

Qy, 0y, O3, T
3F2(1; 29 3;)

bl; bz
T(b)T(b.) — (b, — a)u(bs — @1)a
F(al)r(bl + b —a) i (b + by — a,).n!
X JF\(as, a3, by + b — a, + n, I), 2
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and that this expansion converges absolutely if
Re a, > 0 for all finite values of z except possibly
z = 1, where the function on the left-hand side
(Ihs) may be infinite. Since the ;F, function is sym-
metric in the parameters a;, an expansion of the
type (2) exists as soon as the real part of any of
the parameters o, is positive.

The convergence follows easily from the estimate

(bl - al)n(b2 — Q)
(b, + b, — a)).n!

~ T(b, li(b;;lrﬂ(:: = Z;n [1 T 0(%)]

and from the asymptotic behavior®
2F1(ay, a5, b, + b, — a;, + 1, 7)
~ 1+ 0(1/n).

The equality can be proved by expanding the
right-hand side (rhs) of (2) in a McLaurin series.
The derivatives of the expansion may be calculated
by term-by-term differentiation

(by — a)a(by — ay)s
g (b + b, — a,)an!

X oF(as, a3, by + b, — a, +n, x)

— (a2) m(@3) m zw: (by — a)alby — ay)n
(b, + b, — a)m o (by + by — a; + m).m!

X oF\(a; + m, a3 + m, b, + b, — a, + m+n, x),

oFi(az, 3, by + by — @, +n,2) =

+ A2 xa;—b;—b:+1(1 — x)b,+b.—u,—ar-aa<1 - x_)

X 2F1(1 — gy, 1
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from which we obtain the derivatives forz = 0
(bl — l)n(b2 - al)n
I: nz=(:) (b1 + b, — a,).n!

X JFi(as, as, by + by — a, + n, .’I:)]

x=0

— (@2) m(as) m (b, — a)u(b: — a))a
by + b — a)m == (by + b; — a; + m).n!

_ T, + by — a)T(a1) (21)n(85)n(ds)m
L'(b,)T(b2) (0)m(bo)m

since

(by — a))a(by — ay),
= (b + by — a, + m)n!

_ F(al -+ m)r(bl + b —a +m
N T'(b, + m)T(b, + m) ’

provided Re a, > 0.

From the derivatives at z = 0 it is easily seen
that the McLaurin expansion of the rhs of (2) is
identical with the hypergeometric series (1) forp = 3
which proves the expansion.

Since the ,F, functions are analytic functions in
a plane cut from z = 1 to z = + «, the ;F, function
is analytic in the same domain.

In order to obtain also an explicit analytic con-
tinuation in the neighborhood of £ = 1, we replace
the ,F, functions in (2) by their analytic continua-
tions in this neighborhood.

We have®

Ale(az,a3,a1+a2+a3_"bl_‘bz_n'l"]. l—x)

z

— a5, b +b;—a, —a; —a; +n+1,1 —2),

where
4 = T, + b, —a; + )T, + b, —a, —a, —az +n)
v I‘(b,+b2—a1 _a2+n)r(bl+b2_a1 _a3+n)’
and
A _r(bl+b2—a1+n)r(a1+a2+a3_bl_‘bz_n).
2= I'(a,)T(as)
Using
I(a + n) = T(a)(@)n,
(=1D"T(a)
Ta—m="1"0, "

2 Q. Perron, Sitzber. Heidelberg. Akad. Wiss. Math. Naturw. K1. Abhandl. 84, 3 (1917).
3 Bateman Manuscript Project, Higher Transcendental Functions, edited by A. Erdélyi (McGraw-Hill Book Company,

Inc., New York, 1953), Vol. I, p. 109.
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we obtain
F (al, az, az, x) =F (au Qq, as, x) ThIT(b)T(a, + a; + as — by — by) (an as, as, .’I:) @)
32 by, b, ® b1, ba I(a,)T(az;)T(as) by, by !
where
A1y 3, O3, T
(g e ?)
T(b)T(b)T(by + by — a, — @, — ay) S (b — a)u(bs — a))a(by + by — @, — a3 — Q3)n

- T(@)T(b, + bs — a, — a)T(by + b, — a, — @3) a5 (b + by — a, — agdu(by 4 bs — ay — az)an!

X Fiaz, as, 0, +az +03 — b, — by —n+1,1—2),

and

@y, Q3 O3, T by
E( 1y Y2y W3, >=xa by b.-l-l(l

bi+bs—ar—as—as
b b, z) >

n=0
x 2F 1(1 - az, 1
The second series (5) converges absolutely for

u‘<1’

since, as we have seen,

Rea, > 0, Rez > 3, @

by — a)a(bs — a1)a

— a3, by + b3 —ay,—a,—a; +n+1,1 — 2),

=)
(b1+bz—a1-—a2——a3+l),,n' z

Rez > 4. (5)

or Rez > §,

2F1(1_ag,l‘—aa,b1+b2_al_ag_a3+n+1,1_'x)N1+0(1/n),

and we conclude that the first series (4) also con-
verges absolutely for Re 2 > % provided Re a, > 0,
since its terms are the dlﬂerences between the terms
of two series which converge under these conditions.
The two functions (4) and (5) are solutions of the
differential equation associated with the ;F, function
in (1). This is not difficult to prove, but follows
directly from a result derived by Ngrlund*

al’ az; a3: z — I‘(bl)r(bz)
an( by, by ) - I'(a,)I'(a;)I'(as) #(@)

I‘(b,)I‘(bz)I‘(a1 +a, +a;— b —by)
I'(a;)T(a,)T'(as)

HEN

where ¢(z) is a regular solution at the point z = 1
of the differential equations associated with the ;F,
function. For the function Ngrlund gives the integral
representation*

= P(al + a2 + az — bl — bz) fﬁ;}sm :t) dt

) ey 2 t—z

¢(z)
0<exl,

where z lies on the right of the path of integration.
The function £(z) is an irregular solution for which
Ngrlund gives expansions of the type

4+ N. E. N¢rlund, Act. Mat. 94, 289 (1955).

)bx'*'b:—a:—'dn-ﬂa

tz) = xl'b'(l -z

(bl aa + l)n(bl aa + l)n‘ — n
Z O sy k)

_nyl—ambl_aayl )
X8F2<b1—al—as'l'l,bx—az—as‘l'l ’
11—z <1,
as well as integral representations.

Clearly the two functions (4) and (5) can be iden-
tified with the solutions ¢(z) and £(z), respectively,
and are thus solutions.

If Re (b, + b, — a, — a; — a3) > 0, the hyper-
geometric series (1) converges also for x = 1 and
we obtain from (3), (4), and (5)

a1, 83, G, 1)
(o
= T(b)T )Ty + by — ay — @, — a3)
r(al)r(bl + b —a, — az)r(b1 + b, — a; — ay)
bl_aly bg—'al, b1+b2‘—a1_a2—aa, 1)
bi+bi—a,—a, bi+b.—a,—a, ’
Rea, > 0,
Re(bl‘I‘bz_al '_'az_ag) >0,

a result that was first derived by Thomae.® It con-

8 J. Thomae, J. fiir Math. 87, 26 (1879); also G. H. Hardy,
Proc. Cambridge Phil. Soc. 21, 192 (1923).

X 3F2(

(©)
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tains all known two-term relations between ,F,
functions of unit argument. Further relations can
be obtained by repeated application of the formula
and by permuting the parameters a; or b,.

Both sides of (6) are analytic functions of any
one of the parameters but they are not defined in
the same domain by their series expansions. We
can take advantage of this fact by using (6) to

al, ag, aza, x
F ”( b,, by )

r(bl)r(b2)r(bl +b—~a—a — aa)

= r(al)r(bl + bz b al - az)r(bl + bz - al - a3) z

—as i (by — a1)a(b; —
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obtain analytic continuations of ;F, functions of
unit argument as functions of the parameters.

Defining the ,F, function of unit argument in
this way it is permitted to use (6) to transform
the series obtained. This can be used to simplify
the expansion of the Fp function. It is first trans-
formed by carrying out an Euler transformation on
the ,F, functions which gives, e.g.,

a)a b + by —a, — a; — AN
(by + b — ay ~ G2)a(by + b2 — a; — ag)an!

n=0

XzFl(al_!_as_bl—-b’_n+1:a3;al+az+aa—b1_b2 ’m;I)

The series is a uniformly convergent series of analytic functions when Re ¢, > 0 and Re z > %
and may thus be differentiated any number of times. Its power series expansion is then easily derived.

@y, O, G3, T
FR( by, by )

T(b)T(bo)T'(by + by —

a, — G2 — @)

2 nz-;) ((11 +a;+as — b, — by + 1),.n!

(a5){ay, + a; — by — b, + 1), (x — 1)"

= P(al)r(bl + by —a, — a2)r(b1 + b —a ~ aa) z
bx“al,ba—anbx'*'bz"‘h"'az"'aa'—n,l) 1
X3F2( b+ by—a—a, b+ by—a—a—n ! Rez > 3

Applying now the transformation (6) on the ;F,
functions of unit argument, the above expansion can
be written in the simple form

o) <o SR

n=0
a;, A, 03 + n, 1
X ( by, by

Here as well as in the irregular solution, we may,
permute the parameters a; or b; arbitrarily since the
oF ; function is symmetric in these parameters and
the regular part of the function cannot be changed.

Since six distinet solutions of the equation asso-
ciated with the ;F, function which are expressible
in terms of ;F, functions are known, we obtain six
regular solutions by taking the regular parts of the
functions according to (3). Obviously any three of
them must be linearly dependent.

), Rez > 3. 8)

Ya(2) = 7 T(b)T(by)

n=0

There exists a slightly different kind of regular
solutions which are obtained not by taking the
regular part of a ;F, function, but by forming a
regular combination of two solutions in terms of
aF » functions which is possible since there exists only
one irregular solution. The expression

T'(a,)T(a,)I'(as) ay, Gz, O3, T
T(b)T(by) an( by, b, )

r(al - bl + 1)1"((12 ha b + l)r(ag - b1 + 1) —b‘
r(z —-b )F<b2 — b+ 1)

b,+1, z)

1—bi+1, a;—b,+1, a—

2—by, by—b,+1 = Y1o(),

X st("

which is the difference between two solutions, is
easily seen to be such a combination.
With the aid of (8) we may write

bl} b2

oy Z a - 1/x)» [r(a1 4+ n)T(a,)T(as) an(a1 + n, az, s, 1)

r(al—b1+n+1)r(a2—b1+1)r(aa—bl+1) F(al—b1+n+1 a;—b+1,a,—b,+1, 1)]
84 2

I‘(Z - bl)r(bz - b + 1)

by, ba— b, +1
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The expression within the bracket can be replaced by®

T — b)(a; + a3 — b, + NT(b, — b, + 1)

which is one of the many known three-term relations between ;F, functions of unit argument. This gives

T{a)T(a)T(a; — b, + DT(a; — b; + DT(as — b, + 1) - z”’: (a, — b1 + 1), (x - 1)
T(b)TQA — b)T(a; + a; — b, + DT(b, — b, + 1) z

1) F(bz_al""n,az—b1+l,a3"_'b1+l,1)
e a:+a;—b,+1,b,—b,+1

Yo(T) =

X an(bz -

The regular combination (9) has been derived in
a different way by Ngrlund and is subject to more
extensive study than the regular parts Fp which
we have considered here. The series (9) is slightly
simpler than Ngrlund’s expansion but can be iden-
tified with the aid of a Thomae transformation.
When Re a, > 0 we may expand the ;F, function
in (9). If we sum over » in this double series we
obtain an expansion in ¥, functions. Carrying out
a suitable transformation on the ,F, functions we
can derive

_ 1-b X (@ — b + Daas — b, + 1),
= X (@ + a; — b, + 1!

b+ 1,0, — by + 1, 2),
Rea: >0, |1 — z] < 1.

Y12()

X JFi(—n, a, —

This is an expansion in hypergeometric poly-
nomials, and can be found in the paper by Ngrlund.
The constant C appearing here is the same constant
as appears in front of the function in (9).

An instructive example of the analytic continua-
tion is obtained if we put b, = a; in the result (3).
All three functions are then ordinary hypergeometric
functions. Interchanging a, and a; we obtain from (3)

Fi(ay, @z, by, 2) = 27 EO (@)n <x — 1)

x

X JFila, + n, az, by, 1)

)T (e, +a — b

l) 1-56,
T(a)T(ay) (-

x)bx'—ax—ai

+

X2F1(1 a1—02+1,1—x),

which continues a ., function in the neighborhood
of x = 1. The ,F, functions of unit argument in the
regular part are defined by their hypergeometric
series when they converge, or by analytic continua-
tion of n from a domain of convergence. From the

'—al:l_aZ;bl_

¢ G. H. Hardy, Proc. Cambridge Phil. Soc. 21, 492 (1923).

a2+a3_b1+1,b2_

2.

T
1 2

b, +

Thomae transformation (6) we obtain the sum of the
series which converges if Re (b, — @, — a;, — n) > 0,

Fi(ay +n, as, by, 1)

_ P(bl)r(bl — 0
B P(bl - al)F(bl -

— az)(al — b + l)n
a)(a, +a; — b, + 1),°

which sum delivers the desired analytic continuation
in case the series does not converge. Inserting the
sum into the regular part we obtain

F (al, Qas, x)
R bl

e Z (al)n (__:_) 2Fila, + n, s, by, 1)
n=0

_ F(bl)r(bl — 0 — az)
h (b, — al)r(bl — ay)

x-a

X2F1<a1,al_bl+1;al+a2_bl ;x;1>

_ r(bl)r(bl —a — az)
B T, — a)T(b, — ay)

X 2F1(a1, a;, a + a, — b, + 1,1 — x);

and we have derived a well-known analytic con-
tinuation of the .F, function in terms of .F, func-
tions.?

Clearly we can expand the regular and the ir-
regular parts of a ;F; function in the corresponding
parts of a ,F; function

F (a,, as, a3, x)
" bl; b2

I'(b,)T(b,)
T'(as)T(by + b, — ay)

( - a3)n(b2 - a3)n
Z (by + b — as)an! FR(

al) a2, )

b, + b, — a; +n/’
(10)

a result that is obtained simply by replacing the

hypergeometric functions in (2) by their regular
parts. Introducing the notation
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F (al, a,, A, :E) X 2F1(1 —a;, 1 — a,, by —a, — a; + 1,1 — a:).
I
by, bs The expansions (10) and (11) are easily general-
_ ()T ()T + a; + @3 — by — b))  ized to hypergeometric series of arbitrary order.
T'(a,)T(az)T(as) We have
X E(al’ ;:2, 1?3’ x), F (al; Az, *** Ay, IE) — r(bp—l)r(bp—z)
1y V2 . >t bl’ b2; ot br—l r(ap)r(bp—l + bp-z - ap)
we obtain a corresponding expansion for the ir- = (b ). )
regular part p=1 — Qo)ulDp=2 " Gp)n
el P X nZ-O (bp—l + b»—2 - v)nn!
F (al, ag, O3, x) _ T(b)T(b,)
d b], b2 I‘(ag)r(bl + bz - ag) Gy, a’Z) et a?—l) z

X »—1 p—z(bl, b2’ eee b,,—3, bp—l + b,,_z — a4, + n>’
Re a, > 01 T # 1’ (12)

= (by — as)n(bz — aa)n ( Ay, 03, T )
X 2 0T b= ot P\b, + by — a4y + 0

where (1D which identity can be proved exactly as the proof
was carried out for p = 3. From this relation we
F,(al’ a2, x) obtain the regular and irregular parts of a ,F; func-
by tion in terms of the corresponding parts of a ;F,
_ TIT(es +a, — b)) 1o, 1 — p)brmees function, ete.
- T(a,)T'(a.) e 2 Consider, as an example, a ,F'; function. We have
F (an A3, A3, 4, :l:) - T'(b,)T'(bs) (b2 — @a)albs — G0)n F ( Qay; 03, @3, T )
v by, b, bs T(a)T(b, + by — as) =% (b: + bs — a.).n! e by, by + b; —a, +n
T'(b) T'(bs) o (b2 — a))u(bs — a0,

P(a4)r(b2 + by — a)) (by + b3 — as).n!

ai, G, O3, T Q15 Qg O3, T )]
>< [FR(bl, bz + b3 - a4 +n) + Fl(bl, b2 + b3 — Q4 + n )
For the irregular part we obtain the double series

FI( Ay, 03, 03, T ) - F(b,)I‘(bz)I‘(bg)P(al +a +a;+a,— b, — b, — bs) LT R

by, b, + b; —as +n T'(a,)T(az) T(a;)T(as)
- bitbatbs—a1—as—as—a, - (bz - a4)n(b3 _ a,,),. (:v - ].)'l
X(l x) nE-o(bl+b2+b3_a1—a2"03—a4+1)"’n! zr
X i (b, — a3)m(b2 + b — a; — a, + N, <:L‘ — l)m
m=o(b1+bz+ba—a1—az—a3—a4+n+1)mm! x

X JF(l —a,1 —ay,b +bs+bg—a,—a,—~as—a,+m+n+1,1—2).

Since the ,F, functions tend to unity for large values of m -+ n, the series converges as the simpler
series

i (bz - a4)n(b3 - a4)u (x - 1)" i (bl — aa)m(bz + b —a; — ad)m+n (-73 - l)m
=0 (bz + by — az — a’4)nn! X m=0 (b1 +b+b—a —a;—a; —a+ 1)m+nm! x !

which converges absolutely if

z—1

’<1, or Rez > 1.

Then the series

F (al, Az, O3, G4, 23) - I‘(bz)r(ba) - (bz - a4),.(b3 - a4)n < 01y G2, O3, & ) Rez > }
d by, bs, bs T(a)T(b; + b; — as) a=6 (b2 + bs — a,).n! ! by, b2+ by —as+n/’ 2’
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converges for Re 2 > % and we conclude that the

series

Qy, Gg, O3, A
FR(I) 2y W3y Y4y

:t) - T'(b,)T'(by)
bi: bz: bs

o r(‘h)r(bz + by — 04)

= (by — a4)n(bs — ay), ( Gy, G2, Q3, T )
X Z (b2+b3-—a4),.n! FR by, b+ b —a,+n !

Rea, >0, Rez> 3},

n=0

converges if Re ¢, > 0 and Re xz > %, since its terms
are the differences between the terms of two series
which converges under these conditions.

For z = 1 we obtain
F (an gz, A3, G4, 1) T'(b,)T'(bs)
® bl, bg, b3 I‘(a4)I‘(bg + bg ot (14)

(by — 04)a(bs — as)n ( Gy, Gz, 3,y 1 )
X §) (b2+ by — a4)nn! oF2 bly byt by —a,+nl’

Rea, > 0,
since, from (8),

F ( Gy, Gg, a3, 1 )= F( Qy, a2; aa, 1 )
Eblab2+b3_a4+n 3 2b1yb2+b3‘—0~z+n )

IfRe(b1+b2+ba_al"‘"az—aa—ag) > O,the
hypergeometric series of the ,F; function converges

for z = 1, and we obtain the value of the function
forz = 1,

F (al, Qg O3y Qs 1) I'(b2)T'(bs)

o b, ba, by T'(a)T'(by + by — ay)

Z (B2 — a4)u(bs — @4)s F ( @1, Gz, 3, 1 )
n=0 (bz + b3 - (1:4),;?%! st 2 b), b2 + bs bl 64 +ﬂ '

Rea, > 0,
Re(by+ b+ b3 —ay,—~ay,— a3 —ay) > 0.

(13)

The rhs converges for Re a, > 0, the lhs for
Re(®, +b; + b — a, — a; — a3 — a,) > 0. Since
the JF; function is symmetric in the parameters a;
or b, the parameters a; or b; may be permuted
arbitrarily.

From (8) we obtain

F (an Qg, U3, Q4, x)
)
bl; bz) b3

L(5,) L'(bs) o~ (bs — a0)u(bs — @),
~ T(@)T(b; + b — ay) (b2 + bs — as)an!

(al)m (x - 1) ( a; +m, a0, 1 )
,,;u 8F2 bl; bz + 63 - 04"'{“ 1]

e N (@) (2 = 1Y T'(b,)T(bs)
=" 2 m! ( z ) I(a)T(b; + b; — a)

PER O. M. OLSSON

5 3 (s = au(bs —ad. F( @i+ m, ay, a5, 1 )
=0 (b2+b3—a4)nn' a2 b;, b+ by —a.+n/’

where the change of the order of summation is
allowed since the series is absolutely convergent.
The rhs of (13) is an analytic function of, e.g., a,
when Re a, > 0. It is defined also for large values
of Re a, when the condition Re (b; -+ b, + b; —
a, = a3 — @3 — ay) > 0 is not valid and continues
analytically the lhs, which, so far, is defined by its
hypergeometric series only. In this sense we can
replace the sum over n, above, by a ., function
of unit argument.

Then
Gy 2, gy C4, = g % fﬁx_)g (x - 1)
FR( bi, ba, by ) >
731 + ny a‘z: (13, a47 1)
T Sl ST

CONNECTIONS WITH APPELL FUNCTIONS
Appell introduced the hypergeometric functions’
Fy(a, by, by, 1, €, 24, %2)

(a) m+n(b1) m(b2) nx"l'x;
() mc)am!n!

) |IL‘1| + lx2| < 1;

m,n=0
Fy(ay, @, by, by, ¢, 24, 22)

- (a‘l} m(az) n(bl) m( b2) ﬁx”;x;
Z (C)minm!nl

, ]l <1, lm,l <1,

(15)

as well as two other series denoted by F, and F,,
but we are concerned here with F, and F, only,
since they are the only functions that contain the
same number of parameters as the ,F, functions.
Later Horn made a classification of hypergeometric
series of two variables.® In Horn’s classification there
is, in addition to the F, and F, functions, only one
more function with five parameters. This function
is defined by the series

Hia, bc,dye, a0, 7)) = 3 <a)m—ug):7(3,.1(:!z)nx':x;,
(16)

The functions F,, F;, and H, satisfy certain sys-
tems of partial differential equations which, how-
ever, can be transformed into one another. The
solutions of one system satisfy, then, the other sys-
tems after suitable transformations. Appell has
given four independent solutions of the equations
associated with the F, function in terms of F, func-

m,n=(

m,n=0

7P, Appell and J. Kampé de Fériet, Fonctions hyper-
géomeir}gues et hypers Khénques (Gauthler-Vlllars, Paris, 1926).
orn, Math. Ann. 105, 381 (1931); also Ref. 3, p. 224,
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tions, but there are also solutions in terms of F,
and H, functions, which solutions are connected
with ;F, functions in the sense that they are ;F,
functions in one variable if the other variable is
equal to unity.

The connections between F, functions and F,
functions are easily established from the formulas
we have derived here. By summing over m in (15)
we obtain

Fy(a,, a,, by, b, ¢, z, z,)
= Z‘; (az)"(bz)"xz oFi(ey, by, ¢+ n, z,).

This series converges, as we have seen, for z, = 1
provided Re (¢ — a; — b;) > 0 and we obtain,
using (2) and the symmetry of the F, function,

Fa(al, Qq, b], bz, c, z, 1) = Fa(ag, a,, bg, bl, c, 1, x)

=r@mp—%—m)FG“mc—%—bmﬂ
T(c— a)T(c — b)) > *\ ¢ — a5,¢c— b, !

Re(c—a, — b)) >0. (17)

If also Re (¢ ~ a, — b;) > 0, the hypergeometric
series of the ,F, function converges for x = 1 and
we have

Fs(au Az, bl; b27 C, 1) 1)

- T()T(c — a; — by F (aly by, ¢ — ay — by, 1)
Tc — a)T(c — b)) * *\ ¢ — a5,c— b, !

Re(c—a, - bl) >0, Re(c_ag_ bz) >0. (18)

Here the lhs is invariant for interchange of indices
1 and 2 as well as for interchange of all the a’s and
b’s, which gives us the Thomae transformations ob-
tained in connection with the analytic continuation.

In order to establish the connections between H,
functions and ;F, functions we use an analytic con-
tinuation of the F, function®

T(e)I’ bl — —a;
Fy(a,, as, by, by, ¢, 71, 7) = 'i‘-g(gﬁ:—z—l; (—z1)

X Hya,—c+1, ai, 02, b3, 0, — b+ 1, 1/331, —2Z3)

QI — b)
T@)Tle = b) ™

XHz(b] _C+1, bl, ag, bz, b1

—bs

-+

—a + lrl/xu _‘-'1?2)-

In the expansion (16) of the H, function we may
sum over m,

* A. Erdélyi, Proc. Roy. Soc. (Edinburgh) A62, 378 (1949).
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(—z)™*
( z )—a: E (al

m=0

* Hy(a, b,+1,1/z,, —2J)

c + l)m(al)m(l/xl)m
— b+ D.m!

X 2Fi(az, by, ¢ — a, — m, x2).

_C'I'l ay, Gy, bz; o —

(19)

The series converges for Re 2, < % and for |z,| > 1
provided Re (¢ — a, — b,) > 0, since, for Re z, < %
we have'®

2Fi(az, b2y —ay — m, 22) ~1 4+ O(I/m).

We next put z; = 1. The functions on the rhs
are, however, many-valued due to the factors
(—z,)"* and (—2,)"", and, by letting #, — 1 from
above or below the cut from z, = 0 to 2, = o,
two different expressions will be obtained for the
F; function. We can then argue that one of the
H, functions can be eliminated and that there must
exist an expansion of the type (19) for the ,F,
function. We have, indeed, after a suitable change
of the parameters

a,, a3, 03, T
“F’( by, ba )

( —4a )"(1 l)n
=C g (b2 - lbl + ]_) n! 2F1(a2’ Qa, b, — n, x),
Rea, >0, Rez<i} (20

The result is easily proved in the same way as the
result (2) by expanding the rhs in a MecLaurin
series. This determines the constant

T(a, — by + DT(b)
(b, — b + DI'(a))

From (19) and (20) we obtain for an H, function
Hz(a, b, 6, d, e, 1, _xz)

_TI@E@re—a—1) F(e—a—b,c,d,xz)
T Te—aTe—b**\ 1—ag,e—a [/’

C =

Re(e —a — b) > 0. (21)

Provided that the ;F, series converges for x, = 1,
which is the case whenRe b —a —c¢c—d +1) > 0,
we have

Hia, b,c,d,e, 1, —1)

_T(T(e—a—0Db e—a—>becdl
—I‘(e—a)I‘(e—b)an( l—a,e—a )’

Re(e—a—1b >0,
Re(b—a—c—d-+1)>0.

10 O, Perron, Ref. 2, p. 11.



710

This result, as well as (18), holds in fact independ-
ent of how the two variables z; and z, approach
unity.

The case of an F, function of unit arguments
is more complicated due to the fact that we are
no longer dealing with unique limits.

£<a1) aza a3} x) _—
bl) b2 B

X Fy(b,

xa:—b:—bg+l(1 )b:+b.—a1—a:—a:

— X

_al,l—a2,b2’_

There are numerous similar examples relating not
only the functions F,, Fs, and H, to solutions of
the equations associated with the ;F, function, but
also higher-order hypergeometric functions which
are solutions of the equations associated with the
Appell functions. Certain higher-order hypergeo-
metric series have been investigated by Appell.®
However, the fact that the equation associated with
the 3F, function does not permit solutions in powers
of 1 — =z, which are hypergeometric series in the
sense that the expansion coefficients are quotients
of I functions as in (1), indicates that the equations

al,]._as,bl+b2_al'—a2—a3+1,1—l/x,]._x).

PER O. M. OLSSON

There are also connections between Appell func-
tions and other solutions of the equations associated
with the ,F, function. One immediate example is
the function £(z) in (5). Expanding the ,F, function
we obtain the double series defining the Appell func-
tion F;, and we may write

(22)

associated with the Appell functions considered here
have no solutions in terms of double hypergeometric
series in powers of 1 — z; and 1 — z,, whatever is
the order.

A classification of the hypergeometric functions,
based on the equations they satisfy, is in many
respects more natural than a classification based
on properties of expansion coefficients, but requires
an introduction of associated Appell functions which
do not seem to be hypergeometric in the sense of
the functions in Horn’s list.
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Transition Density Matrices*
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Spin-free transition density matrices are derived from spin-free kets which are symmetry-adapted
to the symmetric group and its algebra. The Dirac identity establishes that these spin-free density
matrices are identical to those obtained by integrating the spin from the full-spin density martices.
Derivations are first given for arbitrary primitive kets which may be geminals of higher polymals,
after which we consider products of orbitals, either orthonormal or nonorthonormal.

Correlation in the spin-free space is discussed and we show the influence of permutational sym-
metry on the probability of coincidence of pairs. A special case of this correlation is the well-known
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Fermi hole.

INTRODUCTION

EDUCED density matrices''* introduce con-

siderable economy in the description of systems
of identical particles. First- and second-order density
matrices contain enough information to compute all
observable properties of such systems. This rep-
resents an enormous saving over the full eigenkets
when the number of particles is much larger than 2.
Additional saving results if the observables do not
involve spin; for then one may use the spin-free'
density matrices. Computer programs can advan-
tageously use density matrix formulations in calcula-
ting matrix elements of observables. Besides their
economy of description, density matrices have in-
terest because of the possibility®'* that they can be
obtained directly from the Hamiltonian, thereby
circumventing the determination of the full eigen-
kets.

In this paper we formulate the spin-free transition
density matrices in the language of permutation
group algebra.® This enables us to exploit the per-
mutational symmetry without introducing an ex-
plicit form for the spin-free kets. That is, our kets
might be products of orbitals, geminals or higher
polymals. Before beginning the derivation of spin-
free density matrices, we present a brief review of
notation and the mathematical tools to be used.

* This research was supported by grants obtained from
the Robert A. Welch Foundation of Houston, Texas, and the
National Aeronautical and Space Administration.
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A,

Kets and bras of an N-particle system are denoted
by |U) and (V| and can be expanded in orthonormal
basis kets and bras:

1U) = .-% [{NYEN) | U) (1.1a)
and

{ul = “ZN; (U | @)@, (1.1b)
where

GWN) [ U) = (U | «@)*. (1.2)

Here [{(N)) and (¢(N)| stand for the N-fold tensor
product® of single-particle kets and bras:
K@) = [42) léz} -« liw), (1.33)
)| = Gyl -+ G| Gl (1.3b)
Bra-kets between these basis bras and kets are
chosen to be

@) | i(N)) = {

0 otherwise.

1 if 2, =4, foreach r, (1.4)

Particle numbers and coordinates never appear in
this notation. The order of single-particle kets takes
the place of particle numbers. The first ket in [Z(V))
represents the state of particle one, the second rep-
resents that of particle two, and so forth. In the
dual bra, the order is reversed as required for the
“adjoint of a product.”

B.

Density matrices are tensor products between
kets and bras and are denoted by either |UXV|,
|UY @ (V], or (V] @ |U). Such a “tensor” is called

6 The elementary properties of tensor products and their
use in many-particle quantum mechanics are discussed by
W. Band in The Mathematics of Physics and Chemistry edited
by H. Magenau and G. M. Murphy (D. Van Nostrand
C%mpany, Inc., Princeton, New Jersey, 1964), Vol. II, Chap. 8.
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a ket-bra and acts as a linear transformation on both
kets and bras; it sends the ket |W) into |UXV|W)
and the bra (W] into (W|U)(V|. One may interpret
|[UXV| as a transformation which annihilates all of
|W) except the | V) component which it projects onto
|U). By means of (1.1a) and (1.1b) such a ket-bra
has an expansion in basis ket-bras:

[UXV
= }:N) QDY) | UXV | @XM, (1.5)

$(N),i(

Successive application of transition density mat-
rices |UXV| and |W)(X| to bras and kets indicates
that transition density matrices form a linear as-
sociative algebra:

(IUXV]) [WXX| = |[UXV | WXX].

For example, the density matrix of a normalized
ket |U) is idempotent:

(IUXU)) [UXU]

[UXU | UXU|
|UXUI.

In fact, the homomorphism algebra’ of all linear
mappings of the N-particle ket space into itself is
spanned by a collection of such ket-bras.

Partial traces are linear operators on N-particle
ket-bras which we define by means of basis ket-
bras:

Tr™ (DX | = [E@Xi@)| ((m) | i(m))

where

(1.6)

i) = 1) léz) -+ [3),
|i(m)> = Iin-i»l) v I":N>.

We adopt the convention that ¢(n) stands for the
first n indices from #(N), and #(m) stands for the
last m indices where n + m = N. Thus Tr"|UXV|
is a transformation on n-particle kets and bras where
|UXV| was a transformation on N-particle kets and
bras. One also speaks of Tr™ as a contraction on the
last m indices or the last m particles of |UXV|. If
m = N, the contraction sends |U)(V| into a complex
number and we call Tr" the full trace or simply the
trace operator:

Tr" [UXV] = (V | U).

a.7)

(1.8)

7 A discussion of abstract vector spaces, tensor spaces,
contractions, homomorphism algebras, and related mathe-
matical concepts is to be found in the freshman text by
G. D. Mastow, J. H. Sampson, and J. Meyer, Fundamental
Structure of Algebra (McGraw—Hill Book Company, Inc.,
New York, 1963).
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C.

Sy denotes the symmetric group® of all N! per-
mutations of the N particles in any N-particle ket
or bra. The effect of an element P of Sy on an arbi-
trary ket is expressed in terms of the basis bras and

kets:
P= <p‘ Pa v ””>, (1.9)
12 .- N
P LIN)) = i) [55.) =+ liow),  (1.108)
G| P = Goul -+ (G, | (o] (10.1b)
It follows from the definition that
(U|P|V) = (V| P |U)*. (1.17)

D.

Ay denotes the Frobenius algebra®® of Sy and
consists of all linear combinations of permutations
with complex coefficients. A matric basis of Ay is
denoted by {¢,%;¢=1,2,-+- , M;r,s =1,2,--- f*}.
Partitions® of N, & = {1°*, 2%, --. , H*"}, are used
to label the matric basisand o = 1, 2, - - - , M means
that « ranges over all M partitions of N. Matric
basis elements have the following properties:

seh, = 8°%5,.60.

erlelu =

(1.12)

This is the matric basis multiplication rule in which
8°? and §,, are Kronecker deltas.

The invertable relation between the matric basis
and the so-called regular basis of the algebra is

=45 TPop, (1.13)
P=3 5 Pl (1

a=1 r,s=1

Here the expansion coefficient, [P],%, is the r, s
element of the f* X f* matrix of P in the ath ir-
reducible representation of Sy.

A unitary matric basis can always be found for
which the adjoint of ¢,%, defined to be

at — f_ ~11a*p—-1
era '—'N! ; [P ]M‘ (1‘15)
is given by
et = e2. (1.16)

8 D. E. Littlewood, The Theory of Grou
Matriz Representations of Groups (Oxford
New York, 1958).

® H. Boerner, Representations of Groups (North—Holland
Publishing Company, Amsterdam, 1963).

Characters and
niversity Press,



SPIN-FREE TRANSITION DENSITY MATRICES

Hence there is also a unitary irreducible representa-
tion:

[PI = [P7Y]5. (1.17)

E.

A quantum mechanical system of N indistinguish-
able particles must undergo no observable change if
the particles are permuted (equivalent to relabeling
the particles). It follows that observables correspond
to linear operators which commute with all the
elements of Ay. Consequently,’'® A, induces the
following structure on the eigenkets of any observ-
able operator, H.

(i) The matrix of H is factored:
(V; But| H |U; ars)
= (V| eliHer, |U)
(V| Heler, |U)
= 5"8,(V| e%.Hes, |U)
= §°°8,(V; awt| H |U; ows). (1.18)

In words, H has zero intersection between matric
basis projections of arbitrary kets |U) and |V)
unless the symmetries @, 8 match and the first
indices u, r are equal. Further, the matrix element
is independent of the first index u = r.

(ii) Symmetry-adapted kets are defined to be
those of the form

|U; car) = 2 (@).ef |U). (1.19)
Because of the factorization of (i), the eigenkets of
H assume this form. The partition, e, is called the
permutation quantum number of the state |U; sor).
The collection of all kets with permutation quantum
number o is called a permutation state. The zeros
8°? forbid mixing between different permutation
states. A permutation P transforms a symmetry-
adapted ket according to an irreducible representa-

tion of Sy:
P |U;oar) = 20 [PI7, [Ujoer’)  (1.20)
and similarly for the bras:
(U; oar| P = 2 (Ujoer’| P75, (1.21)

Matrix elements of H over these symmetry-
adapted kets are easily expressed in the following
form:

10 F. A. Matsen, Advances in Quantum Chemistry (Academic
Press Inc., New York, 1964), Vol. 1.
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(V; rar| H |U; oar)
.Z, ‘Z (N¥(V;ars’| H |U; ars)(o),

= ¢'Haq.

Here ¢ and + denote the column matrices of coef-
ficients (o), and (r), while H is the f* X f* matrix
of Eq. (1.18). For example, the normalization of
|U; sar) depends on the matrix element

(1.22)

(U; oar | U; oar) = ¢ Ad, (1.23)

where A is the matrix of the identity.

We treat a system of N electrons whose Hamil-
tonian contains no spin interactions.’’'® The Pauli
principle for spin-free eigenkets is: o has the form
{27, 177**} for electrons; no more than two electrons
may occupy the same orbital.

Permutational symmetry is connected with spin
through the Dirac identity. Briefly, the spin quan-
tum number, S, of electronic systems is related to
the permutation quantum number o = {27, 1¥7%?}
by the equation®

S =1iN ~ p. (1.24)
A spin-free N-electron ket with permutation quan-
tum number e, gives the same matrix elements of

spin-free observables as does its corresponding spin-
eigenket with spin quantum number S.

SPIN-FREE DENSITY MATRICES

Consider an n-particle operator on a system of
N identical particles. We denote such an operator
by @ and define it by the equation

(N—n+1) N

G = Z Z E Jirigroving

t1=1 1a>1 fa>in—1

@2.1)

where ¢, ..., is a transformation on the kets rep-
resenting particles 1, 2, ... n. Further gy,..., is
assumed to be symmetric in the indices 1, 2, --- n,
so that, e.g., go13...n = G123...n, €tc. The remaining
terms of G" are defined by means of the transposi-

tions
T £ 2 N
in=(7):
Girieerrin = (Gn) -+ (1:2)(511)

X gize.n(Ba1)(@2) - -+ (Zan).

When the abbreviation P;qy = (4,1)(%:2) --- (.n)
is used, this definition becomes

2.2)
It follows from (2.1) that G" commutes with every

_ p-1
Firigerein = Pi(n)glz-'-nPi(n)-
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permutation from Sy. The observables on our system
are linear combinations of operators of this kind.
For example, the Hamiltonian is H = H' + H®,
where H' represents the sum of one-particle energies
(kinetic and potential) and H® represents the sum
of interparticle interaction energies.

nth-order reduced spin-free transition density mat-
rices are suggested by the matrix elements of G*
between symmetry-adapted kets. First, from Eq.
(1.18), one may conclude that matrix elements are
independent of the index r in symmetry-adapted
kets (1.19) and therefore may be averaged. Second,
one forms the completely random average:

{V; rar| G" |U; oar)

= ;fl“ 2o (V; rat| G |U; cat). (2.3)

We next substitute (2.1), (2.2), (1.20), and (1.21)
into (2.3) to obtain

n 1 a
(V; rar| G" |U; oar) = _F ) (.Z‘(. E (‘Z Pim]st
X PiwlteX{V; 7’| gia-..n |U; cas). (2.4)

The sum on ¢ in parenthesis gives 8,,. regardless of
the summation indices %, %5, - - , %, so that we find

(V; rar| G" |U; oar)
= (N) l Z <V; Ta-S‘l Ji2: n IU; o-as>.

n/f 4
In words, this equation states that G* may be re-
placed by the single operator g;,..., (on the first
n particles) if a random average is made on the index
r and the result multiplied by (¥). The bra-ket of
(2.5) is the trace of a ket-bra:
{V; rar| G" |U; oar)

= Tr" (G" |U; oarXV; rar|)

=Tr (glz...,,(N) }1; Z Tr™ |U; oas)V; rasl)

2.5

n

= Tr" (g13..0P"[U; gar | V; rar]). (2.6)

Here we have introduced the definition of the nth-
order reduced spin-free transition density matrix:

PU;oar | V; rar]

= (ﬁ) ;1; D Tr™ (|U; 0asXV; rasl).  (2.7)
We use the convention of Eq. (1.6), that n + m = N.

In the notation of McWeeny' (which is similar
to that of Lowdin®), the reduced density matrix

R. D. POSHUSTA AND F. A. MATSEN

between states ¥y.pa-(1, -+ -, N) and ¢y v, (1, - - - N)
is defined

n . 4
pU;JarIV;-rar(]-y M (] 1,) e )n)

E(j:’)f o [ W, W)

X ‘lﬂ‘;ﬂar(l’y e ,n,,n‘l"l, e ’N)dTn+l .o 'dTN,

where 1, 2, ... stand for ordinary and spin coordi-
nates of particles 1, 2, --- . The spin-free reduced
density matix is

z:var[V;rar(lr R (N 1,, e n,) = ff [p'('/;darlv;rar

X (11 e )n,)]wr'-’wr dwl ot dw'u

where w! — «, means that the primes are removed
from the spin coordinates before integration. In
spin-free density matrices, 1, 2, - -- stand for ordi-
nary space coordinates only.

One can interpret the sum on s in (2.7) as a
random statistical average of the pure-state density
matrices

. ’
’n’l,...

(‘:) Tr™ |U; aasXV; res].

It should be emphasized that Eq. (2.7) is an nth-
order spin-free transition density matrix derived
from a spin-free ket. No change would result if one
began from a antisymmetric space and spin ket and
contracted on spin indices after finding the usual
nth-order density matrix. Equation (1.24) gives the
connection between spin quantum numbers and per-
mutation quantum numbers.

It follows from (2.7) that the various orders of
reduced density matrices are related by the recursion
formula

(N — n)P"[U; oar | V; rar]

= Tr' P""'[U; oar | V; rar]. (2.8)

Density matrices for arbitrary kets can be ob-
tained from Eq. (2.7), the density matrix of sym-
metry-adapted kets. Such symmetry-adapted kets
receive the most attention in the following sections
because they represent pure states (either of per-
mutational symmetry or spin eigenvalue). But the
density matrices between arbitrary kets can be
derived in a similar manner. Briefly, the resolution
of the identity into matric basis elements [Eq.
(1.14)] resolves |U) into its symmetry-adapted com-
ponents. The matrix elements of G" then become

VIe"[U) = 25 2(V;a'r'r’| G" |U; arr)

a,a r,r
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and by Eq. (1.18):

VGO = 2 2 (V;ar| G |U;arr). (2.9)
Since the components |U; arr) are symmetry-adapted
(with ¢ = a unit column vector with a single one
in row r), the definition (2.7) may be used to in-
troduce the nth-order density matrix:

vie )

= > D Tr" gig....P"[U; asr LV asr]. (2.10)
Thus, the nth-order reduced spin-free transition
density matrix between arbitrary kets is defined to
be

PUWU | Vl= X > PUsasr| V;asrl.  (2.11)
[Notice (2.11) is independent of s.] The sum on «
in (2.11) resolves P"[U|V] into symmetry compo-
nents. The density matrix between arbitrary kets
has ecomponents of each permutation quantum num-
ber. If |U) and |V) are replaced by symmetry-
adapted kets, (2.11) reduces to

P'[U; oar | V; 78u]
= 68, ,P"[U;0ar | V;rar].  (2.12)
EVALUATION OF SPIN-FREE DENSITY MATRICES

The properties of Ay permit us to express the
spin-free density matrices of Eq. (2.7) in more
elementary form.

The permutational symmetry of the adapted kets
|U; gar) and |V; rar) is used by substituting (1.19)
and (1.13) into (2.7):
PU;oar | V; rar] = f

1
X (Z Z, (n¥ Z [P15 . [Pl(e) )
X Tr™ (P | UXV |P'). 3.1)

The triple sum enclosed in parenthesis in (3.1) is
recognized as the matrix product ='[P’P]*8, where
[P}® is the matrix of P in the ath-irreducible repre-
sentation of Sy and ¢, = are the column vectors of
coefficients from (1.19). We define the following
expansion density matrices in terms of |U) and |V):

puvlP | Pl =Tr" (P [UXV|P). (3.2)
When these are introduced in (3.1), the transition

density matrix between |U; ocar) and | V; rar) becomes
P[U; oar | V; 7ar]

fa N1

Ninl 2,; PZ, % < [P’P]"epyy [P | P').  (3.3)
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Expansion density matrices consist of contractions
on particles » + 1 through N; consequently, they
have the property

povlP | P'] = phvlrP | P'a7’], 3.4)

where 7 is any permutation from S,, C Sy, the group
of all m! permutations on the last m particles. To
make use of this property, we decompose Sy in left
cosets relative to S,,:

N/m!

Sy = > P,S,,

!

3.5)

where P, is a left coset representative and P,S, is
the left coset generated by P,. In view of (3.5), we
are able to express a sum over the whole group Sy
as a double sum over S,, and the generators of dis-
tinct left cosets of S,. Thus, we write P/ = P,y
and (3.3) becomes

P'U; 6ar | V; rar] = (f*/N!nal)

N1 NY/ml m!

1 a n
X 2 X X+ PaPl ey [P | Pl (3.6)
P T .
By the property of (3.4), this becomes
P'[U; oar | V; 7ar] = (f*/N!nl)
X 35 X o+ PaPl'opinieP [P 6)
P x .

As 7 varies over S,, and P varies over Sy, the prod-
uct =P varies over Sy a total of m! times; therefore,

PU; oar | V; 1ar]

B N];n! ; zf: < [PP]"opiv[P | P4l.

(3.8)

This expression represents the simplest form of the
nth-order reduced spin-free transition density ma-
trix for arbitrary |U) and |V). For electronic sys-
tems, (3.8) gives the spin-free density matrices iden-
tical to those of pure spin states with spin quantum
numbers given by (1.24).

ORBITAL PRODUCT DENSITY MATRICES

In this section we enploy kets |U) and |V) with
the special form

|U) = |u@)), (4.12)
(V) = (VD) (4.1b)
where |u,) is a single-particle ket or orbital (not
necessarily orthonormal). The partial traces of ket-
bras between products of non-orthonormal kets are

given by the same expression (1.6) as for orthonormal
kets. This is seen by substituting the expansion of
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lu,) and |v,) in orthonormal orbitals,
) = 22 106 | w),

into the partial trace expression and using the linear
property of Tr™:

Tr™ [u(N))e(V)|
= Tr" “ZN; i(% i)W | u(N)X}p(N) | NG|

= T 3l | um)otn) | o))
X 3 (i) | u(m))o(m) | i)

= |u(m))o(n)| w(m) | u(m)).

Equation (1.6), the definition of partial trace, thus
applies to nonorthonormal orbitals as well as or-
thonormal orbitals.

Expansion density matrices between orbital prod-
uct primitive kets become, from Eqgs. (3.2) and (3.8),

povlP | Pl = Tr™ (P(w)P7'(0) Jus)ion| & luz)

X @ - @ lumdon]).  (4.2)
Here P(u) is a permutation on the ordered u-
orbitals and P;'(y) is a permutation on the »-
orbitals. The effect of Tr™ is to send the last m of
the single particle ket-bras |u, ){(v,| into the complex
numbers .|u,). Permutations P(x) and P;*(») on
Tr"(|u(N)){v(N)|) give the same reduced density
matrix as results from applying the permutations
before the partial trace. Hence, (4.2) can be written

pov[P | P;] = PwP7'(v) Tr™ (|u(N))e(V) )
= PW)P;'(v) [uln))o(n)| ((m) | w(m))
= PW)P7'(v) [u)o:] @ [uo)vs| & -+
& [ ¥a] @as1 |tnss) ++* (On [ux). (4.3)
and the nth-order reduced spin-free transition den-
sity matrix (3.8) becomes

P'[U; oar | V; 1ar] = N’;;! IR

X PP () lum))e(n)| @(m) [ u(m)).  (4.4)

As P ranges over Sy, the first orbital of {u(N))
ranges from |u,) through |uy) and similarly for the
second, third, etc., orbitals. Hence, the sums on
P and P, may be replaced by multiple sums on
orbitals:

P"U; gar | V; rar)
= 27 32 Yu(i(n) | i) i )vicm ],

$(n) i(n)

(4.5)

where each summation index %, ranges from 1

R. D. POSHUSTA AND F. A. MATSEN

through N and the prime indicates that no two in-
dices are equal. By [, ) is meant |u,,)|u,,) - -+ |uq,)
and the coefficient 43, (¢(n)[j(n)) is the sum of all
coefficients of |w;m ){¥;m| in 4.4. In Appendix A
we show that

Yor(in) | i)

D A (i(n)i(@)]“

- N!n' ‘(zm:) 1[ j(n)j(m) ‘j(vi(m) I"-’(M))9 (4~6)
where the double prime indicates that no two indices
of i(m) are equal and none is equal to an index of
i(n). j(m) is any arrangement of the integers which
remain from () after j(n) is specified.

If the single-particle kets and bras are ortho-
normal, the expansion density matrices |1;m Y{¥;m|
form a matric basis of the homomorphism algebra
of all linear transformations on n-particle kets and
bras:

(s )0iem D) [m Y0 cm |
= {lum))(’)z () l

0 otherwise.

if j(n) = k(n)

In this case, the coefficients v}, (2(n)|j(n)) may be
interpreted, as is done by Léwdin® and others, as rep-
resentations of transition density matrices on the ho-
momorphism algebra. The coefficient v,,(2(n)|i(n))
of the density matrix is interpreted as (%) times the
probability of finding n particles occupying the
space-orbitals |u.,), [u,), - -+, [us,). The off-diagonal
elements in the representation of the first-order
density matrix, vy,(7|j), are the bond orders, and
the diagonal elements, v}, (%|2), are the occupation
numbers of the space-orbitals. The unitary trans-
formation which diagonalizes v%,(¢|f) will transform
the orbitals into a set of natural spin-free orbitals
in analogy with Loéwdin’s natural spin orbitals.

Equation (4.6) can be simplified when the orbitals
are orthonormal. The A matrix of (1.23) becomes
the scalar matrix (f*/N!) 1, and |U; oar) is normal-
ized if é¢'é¢ = N/f°. The density matrix coefficients
Yop(t(n)]j(n)) vanish unless 7(n) is a permutation of
j(n): the sum on #(m) in (4.6) is replaced by the
single term

o trica)qa
in) | in)) = {0‘ /Ntnl) <G
0 otherwise

if 7(n) is a permutation of j(n). For example, let
[U) be the N-fold product of orthonormal orbitals;
then the first and second order density matrices over
|U; ear) are given by

N

P'[U; oar | U; gar] = 2 [ )|

im]l

4.9
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and

PLU; e | U o) = § 5 udud ®

1200 26| ()]s atul © ot
' (4.10)

Appendix B provides a simple example of Eqs. (4.9)
and (4.10) for the case of three particles in permuta-
tion state & = {2, 1}.

SINGLE-DETERMINANT DENSITY MATRICES

Symmetry-adapted kets for the permutation state
a = {1%} have the form

U (1) = 3 SPP [0, 6D

where e(p) is the parity of P and ¢ and r have been
suppressed because f*") = 1. Alternately, Eq. (5.1)
may be written

|U; (1*}) = @ |U), (5.2)
where @ is the antisymmetrizer. If |U) is spin-free,
then (5.2) represents a state with spin quantum
number 8 = iN. When |U) is any orbital product
(spin-free or not) ket [u(N)), (5.2) becomes

[U; {17}) = @ lu())
= det {u(N)}. (5.3)

The nth-order spin-free transition density matrix
between two such kets is given by

PU; (1%} | V; (1))
= Z Z Yor(i(n) | i) fim)piem s

i(n) i(n)

where

1or(i(n) | i(n))

=Ly [iilm)
= Wil 2% ‘<j<n)j(m)><v,~<m) | wscm)

1, [imim)
= Ninl 2 ‘(j<n)j(m)> H s, us)

and (v;lu;) is called an “overlap integral.” The
N X N matrix with these overlap integrals as
elements:

(5.4)

Dyy = {duwy(G | D)}, (5.5)

where
dov(j | ) = (i | )

is labeled by »; on rows and u; on columns. Now the
coefficient v%,(¢(n)|j(n)) is recognized as the cofactor
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which results when the rows labeled v, and col-
umns labeled ;. are struck from the determinant
of Dyy. This is the useful result first given by
Lowdin® for spin orbital wavefunctions.

Equation (5.4) applies to spin kets as well as
spin-free kets. Simply consider the orbital Ju,) to
be a spin-orbital, e.g., electron spin orbitals have
the form [u*) = |u)la) and |u”) = |u)|8). Then
[U; {17}) is a Slater determinant. Such a deter-
minant is not an eigenket of S unless the space
orbitals are doubly occupied. That is, |U; {1%})
(with spin-orbitals) is an eigenket of S only if
|u(N)) has the form |u¥)|u7)uh)lus) - - - . Regardless
of this shortcoming, single Slater determinants are
often used as approximate representations of eigen-
kets. Equation (5.4) may be used without change
for the density matrices between Slater deter-
minants, but the spin-free density matrices are found
by contracting on the spin in (5.4).

Permutational symmetry-adapted spin-free kets
may be coupled to similarly adapted pure-spin kets
(analogous to Clebsh—Gordon series for rotational
symmetry) with the result®'® that

Q)19 = T X Users 0509, (50
where |U) is the spin-free ket, |8) the pure-spin ket
(e.g., [6) = aBfef --+) and & is related to a by
[P]* = [P]°e(P). The nth-order reduced spin-free
transition density matrix between such kets now
may be expressed:

2

P[U8 | V]

Il

Z EP"[U ars | V;a'r's']

r,r’ s,8

f* fa'
X (0; &rs | 0; &r's")

= T ol oe)

X;E P'U;ars | V;ars'].

Since P"[U; ars | V; ars’] already contains an average
on the first index r, this becomes

= T LDl s

X P'U;ars | V;ars']. 6.7

Equation (5.7) expresses the resolution of P"[U6|V 6]
into pure permutation-state components. The
weights given each component depend on the spin
bra-kets:

(0 I 0; ss’) = — Z [P]u <0lP 10)

PYU6 | V6]
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Density matrices between Slater determinants re-
sult from (5.7) when

|U) = lu(N))

and

|6) = a product of orthonormal spin kets (such as
|e}|B)|a) - - - for electrons).

In this case, (6] P |8) vanishes unless
P |6) = |6)
and we find that

) N a
(6] 6; ass’) = YT (B,
where E’ is the idempotent

. 1
EO - = E Pﬂ’
n e
where P’ is a permutation which leaves |9) invariant
and n’ is the number of such permutations.

PU0| Vo) = 15 X 3 (B4

X P'[U;ars | V; ars’]. (5.8)

One may choose a representation in which [E’]* is
diagonal with ones at the upper left. This choice
gives for the nth-order spin-free transition density
matrix between two Slater determinants [cf. Eq.
(2.11)]

14t

PUg | Vo) = Z,—GY 2 PU;ars | V;ars]l. (5.9)

a a=1

H(?’re f*° is the number of ones in the diagonal of
[E°]".

When |6) is the spin factor of an electron Slater
determinant, f4° = 0 if @ < {n,, n} (or & >
{2%, 1"7**}) where n, and n, are the number of |a)
and |B) kets, respectively. Equation (5.9) then con-
tains every permutation quantum number except
those forbidden by the Pauli principle. By Eq.
(1.24), this is equivalent to a mixture of spin states
8 =3N,3(N - 1), 3(N — 2), --- (§) or 0. If |U)
is given the special form |w,) [u,) |ug) |us) - -- , one
finds |U; ars) = 0 if @« < {2} or {2tV 1}
This is the only single Slater determinant whose
spin-free density matrix can have pure permutational
symmetry.

CORRELATION

Probability densities of particles relative to some
fixed center and relative to one another are among
the quantities which can be computed from first-

R. D. POSHUSTA AND F. A. MATSEN

and second-order spin-free density matrices. Cor-
relation of particles is often discussed' by comparing
the probability densities of pairs with the product
of two single-particle densities. We will find it suf-
ficient to compute the pair densities alone and com-
pare the pair density of one permutation state with
that of another. As is usual, we confine our attention
to probability of coincident pairs, but we do not
find it necessary to resolve the probabilities into
factors for parallel spin (aa and 88) and for antiparal-
lel spin (aB). We find that the probability for coin-
cidence depends on permutational symmetry; as o
varies from {1} to {N} the probability of coinci-
dence increases from zero to a certain maximum.
This effect may be called permutation correlation
and the general lowering of density of particles
relative to one another which results from permuta-
tional symmetry may be called the permutation
hole. Such correlation provides a spin-free explana-
tion of the Hund rule.

Let p denote the operator which represents an
observation of any pair of coincident particles at
any position. Then p is a two-particle operator given
by

p= 2 pis,
4,12

where p;; is the operator’® for coincidence of particles
1 and j. For simplicity we consider correlation in
kets constructed from orthonormal orbitals. Equa-
tion (4.10) then gives the second-order density
matrix of a symmetry-adapted ket and hence the
expectation value of p is

D3* = Tr* (p,,P?[U; oar | U; gor])
=3 Z' CARCA NP AN T

bR (HIC TR
(6.2)

[If one were to ignore the uncertainty principle,
particles would be distinguishable (in principle) ex-
cept when they occupied the same position. In this
case, one could find the probability that a specific
pair of particles be coincident. For example, we
might find the probability that particles one and
two be coincident in a state represented by |U; asr).
Now if the representation of the transposition (12)
is diagonal one has either (12) |U; asr) = |U; asr) or
(12) |U; asr) = — |U; asr)(These two cases require
electron spin functions which are antisymmetric
and symmetric, respectively.) The probability of

(6.1)

I In the Schriodinger representation p;; is the Dirac delta
function &(r;;).



SPIN-FREE TRANSITION DENSITY MATRICES

coincidence of particles one and two is (U; asr| pi2
|U; asr). Since particles 1 and 2 are indistinguishable
when coincident, one may interchange them in either
the bra or ket, and if |U; asr) is antisymmetric
(“parallel” spins) under the interchange, the prob-
ability vanishes. This restricted example of correla-
tion produced by permutational symmetry is called
the Fermi hole. On this basis, the quantity D;* may
be considered to be an average Fermi hole for the
permutation state |U; oar)].

The operator p,, represents an observation of parti-
cles one and two at the same position—hence, they
may be interchanged and we find

@l ) pua |us) fuy) = Gyl sl pre ) Juy)
=R;.

Equation (6.2) may now be written

D =3 3 (1 + ]% a*[(; i)]ad)zz,,, 6.4)

or since (} 1) = ({ ) and B,; = R;;, it may also be
written

e = 3 (04 2o () e

The probability of coincidence of any pair of
particles depends on the values of E;;, on the per-
mutation quantum number @, and on the vector
8. There are {* independent vectors 8, each showing
its own value of D;%. Representative vectors ¢ are
those with only one nonzero component:

(6.3)

(6.5)

1 0
N\ !
8, = (]lz_) 0|, 6y = (]_V;_> 1|, ete. (6.6)
f o f

0

The average pair density for these f* independent
states is invariant under similarity transformations
of [( 1)]” since it involves only the characters

B 1 g
D; = - > Dy 6.7
= (Ma + i (6.9)
Here R is the average of the expressions R;;:
-1
= (Z)V) > R, (6.9)

Equation (6.8) gives the average probability of
coincidence of pairs of particles in permutation states
a. Yamanouchi'? has given an expression for x%/f*

12T, Yamanouchi, Phys. Math. Soc. (Japan) 19, 436
(1937).
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in terms of the partition « = {a', &*, -+ }. In case
{2°, 1¥7*"} as for electrons one finds

/= () ot —pov 49 + XD g0

{1}
—1and +1, respectively,

o =

From Yamansuchi’s formula, we find for & =
and a = {N} that x5/f" =
so that
0wt 0 - V)R

There is zero probability of coincidence of pairs in
permutation states @« = {1} and R for each pair in
states « = {N}. Between these extreme cases, D¢
has intermediate values.

In as much as D¢ indicates the degree of avoidance
of pairs of particles, it also indicates a rough measure
of the order of energy levels among permutation
states. If the particles strongly repel each other (as
electrons do) then the state & = {1"} tends to have
the lowest energy and « = {N} the highest. If the
particles attract each other (as nucleons apparently
do) the order is reversed. This ordering of energy
levels by x%/f% is the Hund rule for permutational
symmetry (or multiplicity for electronic systems).

APPENDIX A:
DERIVATION OF EQUATION (4.6)

A left coset of Sy relative to S,
P,8,. and consists of permutations

s = {((_m (m) )((n) (m>') _ ((@ (m)’)}
o i(n) i(m)/\(n) (m) in) i(m)/ )’
where (m)’ ranges over all m! permutations of the
last integers (m). Aside from order, there are (%)
choices for the n integers j(n) and each choice of
j(n) determines j(m) aside from order. The coset is
generated as (m)’ or equivalently j(m), is permuted.
A permutation of j(n) produces another coset; hence,

there are () n! = N!/m! cosets and

(n) (m)
S = (Z; (J(n) J(m)>s

where the order of integers in j(m) is arbitrary but
the integers themselves are determined by j(n).
Hence, in Eq. (4.4), the sum on P may be replaced
by a sum on ¢(N):
- ()
N/’

and the sum of P, may be replaced by a sum on j(n):

- (1)

is denoted by
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TasrLE I. Matric basis coefficients [P, for & = {2, 1}.
P P (12) (13) (23) (123) (132)

10 [1 o} [—1/2 +/3/2 [—1/2 _\/3/2] [-1/2 _\/2/2} [‘-1/2 \/3/2J
Pu
i [o 1} 0 -1 /3/2 1/2] —43/2 12 V32 —1/2 —3/2 =172

Thus (4.4) becomes

P™U; oar | V; rar)
__I , 5y [ @ (m))fi) i(m)) |
= Winl 2 2 ‘[(j(m j(m))( @ (m))] ¢

x| (AR KN it om) Ly

[here {P}* is used in place of P(u) to denote a per-
mutation on u-orbitals] and when terms are collected,

PU; 0ar | V; 7ar]
= Z’ Z"Y’t‘lv(i(") | i(m) s )icm |,

$(n) i(n)

where

7ov(i(n) | §(n)

= I 5 o (i) m))
T Nlnt .;m ® [(j(n) j(m)):l 6icm | Uicm)
as in (4.6).

APPENDIX B: EXAMPLES

In this Appendix we apply the methods of the
text to the evaluation of spin-free density matrices
for N = 3 and a = {2, 1} (doublet state of three-
electron systems). We find the first- and second-
order spin-free density matrices for a spin-free eigen-
ket of orthonormal orbitals by application of Egs.
(4.9) and (4.10). Let |U) be the orbital product

|U) = [u(3))
= lus) |us) |us).
The symmetry-adapted ket |U; car) is given by
|U; aar) = (a),efl IU) -+ (0')23:2 IU>:

where ¢,] and ¢,5 are found from Eq. (1.9) and the
matric basis coefficients of Table I.

Normalization of [U; sar) is provided by Eq. (1.23)
and in our case, the elements of A are given by

A, = <Ul efrf e |U>
= (3| el [u(3))

- L 3 [PIa(3)] P [u(3)

2
= '6'5“'

Hence, |U; osar) is normalized by dividing by the
square root of

(U;oar | U; oar) = A6 = L(c%o, 4+ o%0,).

To normalize [U; sar), we require ¢ to have magni-
tude 2, and procede to evaluate the density matrices
of |U; cor). From (4.9) and (4.10) we find

PU; or | U; oar] = 3[lu)u| + [us)ua| + |ua)uia]
and
P*[U; gar | U; oer]
= §llwn) fuadua| G| + |ur) Jua)ata| s
+ [uz) fudn] e + ) [us)uia] (o
+ s} fund fds] + fus) o) (s ]]
+ Hotor — o) lur) o) | (ual
+ o) Ju)ue] ]l + Po(—otey —
— V3 a¥o, + o¥oa)[[ws) [us)lua| (usl
+ ) [u)s| @] + To(—0lo,
+ V3 o%0;, + V3 oo, + o%oa)[[uz) Jus)
X | (| + s} fua)tia] (s ]

3 o%0,
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The general solution of the Schrédinger equation involving the time-dependent perturbation is
presented in a compact and manageable form both for periodic and aperiodic perturbations. The
method includes as a special case the solution of the Schriodinger equation involving the time-inde-
pendent perturbation. Formulas ready for practical uses are explicitly described. The essential part of
the procedure is the determinantal method in the Laplace-transformed space. The solution is appli-
cable to strong perturbations as well as weak perturbations.

I. INTRODUCTION

HE time-dependent perturbation theory is the

basis of calculating the probabilities for various
processes including the interaction of electromag-
netic field with matter.

Up to the present time, the most satisfactory
time-dependent perturbation theory was the method
of variation of constants (MVC) developed by
Dirac.! This method is basically the simple power
expansion in terms of the strength of the applied
perturbation just as the Rayleigh—Schridinger per-
turbation theory® (RS) in the case of the time-
independent perturbation. As in RS, MVC is useful
only when the perturbation is weak. If the perturba-
tion is strong, we must perform the calculations up
to very higher-order terms. However, in practice,
this is almost impossible and the result may diverge.
The number of terms in each order will increase
very rapidly even in RS. In all cases, the number
of terms appearing in MVC is much larger than
in RS. Also in MVC, we must perform the time
integration in each order. In short, if we apply
MVC the calculation will be very laborious with
the result which may diverge.

Here the author would call the reader’s attention
to the previous papers by the author,®* in which
a method for solving the time-independent Schrg-
dinger equation was given. The method yields satis-
factory convergence for the strong perturbation as
well as for the weak perturbation. It is hoped, then,
that we can establish the time-dependent perturba-
tion theory which is also applicable to the strong

* This work was supported by the National Science
Foundation.

1 On leave of absence from Kyoto University. Present
address: Department of Physics, Tohoku University, Sendai,
Japan.

1P, A. M. Dirac, Proc. Roy Soc. (London) Al112, 661
(1926); Al14, 243 (1927).

2 K. Schrodinger, Ann. Physik 80, 437 (1926).

3 T, Sasakawa, J. Math. Phys. 4, 970 (1963).

¢ T, Sasakawa, J. Math. Phys. 5, 379 (1964).

perturbation with a good convergence, because the
time independent perturbation theory should be
included, as a special case, in the more general
time-dependent perturbation theory. Bearing this
situation in mind, the author will present a new
time-dependent perturbation theory as the general-
ization of the previous papers.®'*

Here we shall explain the basic idea in the present
paper. In the case of the periodic perturbation, we
construct a set of the coupled equations for the
function exp(—lwt)¥(x, t) (v, the characteristic fre-
quency !/, positive and negative integers). In the
case of the aperiodie perturbations, we construct a
set of coupled equations for :"¥(x, t) (s, positive
integers). To this set of coupled equations, we apply
the Laplace transform and obtain the coupled equa-
tion in the Laplace-transformed space. Then by
making the inner product of this set of coupled
equations and the wavefunctions of the unperturbed
stationary states, we have the set of coupled equa-
tions, all of whose elements are constants. We solve
the secular equation obtained from this set of coupled
equations employing the method described in Ref. 3.
Once we find the eigenvalues of the secular equa-
tion in the Laplace-transformed space, we can ob-
tain the Laplace-transformed wave function from
which we get the wave function of the perturbed
system by simply applying the Laplace inverse
transform.

The important aspect of this method is that we
are solving the set of coupled equations which does
not contain any operator. All the time, we need only
to do with numbers. Thus the calculations are very
easily performed. Besides, we need not perform the
tedious time integrations in each order, which was
needed in MVC. The equivalent to the time integra-
tion is the Laplace inverse transform in the last
stage. This is very easily done, once we know poles
(the eigenvalues of the secular determinantal equa-
tion).
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In the course of expanding the secular deter-
minantal equation, we employ the Fredholm expan-
sion, whose convergence is guaranteed by the
Hadamard’s theorem. The method of obtaining the
eigenvalues from the secular equation is described
in Ref. 3. The methods yield the results which
converge very rapidly. On this account, see also
the Appendix of the present paper.

The wave function thus obtained is most generally
expressed as

¥(x, t) = Z

n

_iEll:”ll‘/}‘- Q
In) E Z € Xn,l’n’.l"n”fn'I
Il

where f° denotes the inner product of the initial
state and the unperturbed stationary state |n).
E;. ... is the eigenvalue of the secular determinantal
equation. (The states assigned by these eigenvalues
are not orthogonal in the configuration space.) E,..,..
is real for the periodic perturbation of real fre-
quencies and complex for the aperiodie perturbation.
Therefore, the spectra are sharp lines for the periodic
perturbations (Fig. 1), but not for the aperiodic
perturbations. The explicit form of x, i1 wn¢ 18
given by Eq. (2.19) or Eq. (6.19). This function
is independent of time. In conclusion, the above
form is the exact and the general solution of the
time-dependent Schrédinger equation. If we know
the wave functions of the unperturbed stationary
states, and accordingly the matrix elements appear-
ing in E;.... and Xn,i'n',1/:n+, the general solution
is ready for use in practical problems. The result
from MVC is the power expansion of this general
solution in terms of the strength of the added
perturbation.

The readers who are interested only in knowing
the idea of the present method may read Sec. 11
for periodic potentials and Sec. VI for aperiodic
potentials. From Sec. II to Sec. V, the method for
the periodic potentials is described. Section IT de-
scribes the procedure leading to the general solution.
In Sec. III, as a simple example, the time-independ-
ent perturbation is discussed from the view point
of the present approach. In Sec. IV, the detailed
formulas for actual calculations for periodic po-

b

HEAN

obe
L—w P b ¥w

(a) (b)
F1e. 1. The energy spectrum in the case of three unper-
turbed states a, b, and ¢. (a) @ >> D, (b) @ < D. Here D is the
distance between the perturbed energies defined by Eq. (4.18).
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tentials are described. In Sec. V, the comparison
with MVC is made. Here we see that the result
from MVC is nothing but the power expansion of
the general solution in terms of the strength of the
perturbation.

In Sec. VI, the method for the aperiodie potentials
is described. The general solution is expressed in
the same form as for the periodic potentials. One
difference from the case of the periodic potential
is that now the eigenvalues are degenerate up to
the first order. To remove this degeneracy, the
secular determinantal equation is transformed into
the dispersion equation described in Sec. VII. If we
pick up the terms directly concerning the state of
interest [Eq. (6.14)] from the dispersion equation,
we can remove the degeneracy with respect to the
state of interest, by employing the method described
in Ref. 3.

Using the value thus obtained as the starting
value of iteration, we use the iteration formula (6.15)
to find the eigenvalue. Once we obtain the eigen-
values, the wave function is calculated by the same
method as deseribed in Sec. II. In the actual cal-
culation of the wavefunction, the formulas given
in Sec. IV for periodic potentials is used also for
the aperiodie potentials with slight reinterpretation
of the matrix elements.

In Sec. VIII, we treat the time-dependent per-
turbation which is the product of periodic and
aperiodic potentials. In this case, the solution of
the Schrédinger equation is expressed as (8.9). Ob-
viously, this form can be absorbed into Eq. (2.18)
or Eq. (6.18) if we change the meaning of the sub-
indices. The extension to a more general class of
perturbations, the sum of products of periodic and
aperiodic potentials, is very easily done. The general
solution should again be expressed in the form of
(2.18) if we change the meaning of the sub-indices.
Finally, in Sec. IX, we conclude this paper.

In the Appendix, the rapidity of convergence of
the weak coupling and the strong coupling methods
described in Ref. 3 is discussed.

II. METHOD AND GENERAL SOLUTION FOR
PERIODIC POTENTIALS
We let H, denote the unperturbed Hamiltonian
of the system and V(x, f) the perturbation which
acts after the time ¢ = 0.
By the canonical transformation

U(x, 1) = exp (—iHot/R)Y(x, 1), 2.1)
the original Schrodinger equation
a2 ED g, v o, ) @2)
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is transformed into

. oY (X, 1)
wh ot

= exp (iHot/R)V(x, 1) exp (—iH,t/R)¥(x, ).

The solution of this equation is formally expressed
as

(2.3)

W, 0 = v, 0 + 5 [ exp G/

X V{x, t') exp (—iHot'/h)¢¥(x, ') dt’, (2.4)

The simple iteration of this equation taking ¢(x, 0)
as the starting function is MVC. We do not apply
this iteration method.

In this section and Secs. III-V, we assume that
the interaction V(x, £) is periodic.

Vi, §) = li Vi) exp (—ilot/R).  (2.5)

=—

Correspondingly, we express Eq. (2.4) as
exp [—i(H, + ko)t/hlY(x, ?)
= exp [—i(H, + lw)(t/R)]¥(z, 0)

+5 3 [ o =it + W - /MY

X exp {—iH, + (I + Dolt'/R}Y(x, t) dt'.

We define the Laplace transform [multiplied by
(@RI (x, p) by

(2.6)

1w =5 [ o

X exp [—i(H, + lwo)t/R]Y(x, ¢) dt.

If we use the Parceval-Borel addition theorem of
the Laplace transform that

j;w e dt l:f; u(t — tH(¢) dt’]

= f " e uld) di- f Tetu) dt,  (2.8)

@.7)

the Laplace transform of Eq. (2.6) becomes
(thp — H, — W)fi(x, p)

= y(x,0) + ; Vi@®@foE p). (2.9

In this equation the time integration no longer ap-
pears. However, the operator is still included,
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namely, H,. Therefore, we further decompose f,(x, p)
by the complete orthonormal set of the eigenfunc-
tions |n) of the unperturbed Hamiltonian H,,

H, [n) = ¢, [n). (2.10)

We multiply |n) from the left and integrate over
the coordinate x. (As usual, these processes will
simply be expressed as (n|.) As the result, we have
the set of coupled equations

Ghp — €. — l)fi.n

=fa+ ;Z ”E Vicafrarrm,  (2.10)
where
fra = (0] 1u(x, ),
fa = (n] ¥(x, 0)),
and
Vi = (] Vi(x) |n). (2.12)

The coupled equations (2.11) does not involve
any operator: All elements are numbers. Therefore
we can solve it by the elementary method of coupled
equations. The number of equations is actually
infinite. However, provisionally, we cut it at an
arbitrary finite number [ = L. Later, welet L — .
In the present paper, we assume that the number
of concerning unperturbed states is finite, say, N.
(However, this can be easily generalized to the case
of infinite number of unperturbed states.) We let
v, denote the first-order energy

wn = €y + VO,rm'

If we write out Eq. (2.11) explicitly, it assumes the
form of Eq. (2.14) (shown at the top of the following
page). Therefore, if we express the determinant on
the left-hand side by D(zhp), the solution f, . of Eq.
(2.11) or Eq. (2.14) is expressed as

3 D anlih)
oo = =D

(2.13)

(2.15)

where D;., o, is the cofactor of the element such
that in the column to which this element belongs
also belongs the element #p — w,, and in the row
to which this element belongs also does the element
thp — w,. — l'w. The expression for D and D+, s
are given in the form of the Fredholm expansion
(see, Sec. IV), whose convergence is guaranteed by
Hadamard’s theorem.

The determinant D(i%p) is factorized into the
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D(ihp) = Il Ghp — E.).  (2.16) Xmirmwiim”
1=2L n=a
Dl’n’,On(El”n”) (2.19)

The eigenvalues E;, of the determinantal equation
D(@ihp) = 0 can be calculated by the method of
the previous paper. (See, Sec. III of Ref. 3 and the
Appendix of the present paper.)

The wave function is now given by the sum of
the Laplace inverse transforms of f,, multiplied
by ik |n):

V(x, t) = ih Zg%f

—-fo+te

it e

dp €*fo. (2.17)
The path of integration is taken along the imaginary
axis shifted by an arbitrarily small positive quantity
¢ (the Bromwitch integral), and the semicircle of
infinite radius on the left half of the complex p-
plane. If we use the expressions (2.15) and (2.16),
the result is

&9 t; Z ln)e_mw'”‘/*:'Xn.z'n'.z"u",
' nn‘a’’
(2.18)

I @imr = Bivw)
R 1N
Equation (2.18) is the general solution which we
wanted to have. The explicit expressions for K,
and D;... on(E1++n.) will be found in Sec. IV. In
Eq. (2.18), we need no longer perform the time inte-
gration.
A similar method is applicable to the more general
class of periodic potentials

Vi, ) = ; D Vin(x) exp (—iloat/h).  (2.20)

In Secs. VI and X, it will be seen that the solution
of the Schridinger equation takes the form (2.18),
not only for the periodic potentials but for all kinds
of time-dependent potentials.

When we compare the wavefunction (2.18) with
MVC, we may use the canonical-transformed wave
function
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Y(x, 1) = exp [iet/h] ¥(x, §) 2.21)
(a is the initial unperturbed state). The phase
factor exp [ie,t/h] is not important, however, since
what we actually need is the probability.

III. TIME-INDEPENDENT INTERACTION

Let us compare the solution (2.18) with the solu-
tion of the Schrédinger equation whose perturbation
does not include time

I (z, 1)

ih =T = (Ho + V@I, ). (3.0

This is the special case that only the term with
I = 0 appears in Eq. (2.5). Consequently, all terms
in Eq. (2.18) vanish except for the terms with

Il =10 =10I"=0.If we omit unnecessary suffixes,
Eq. (2.18) is now

\I’o(x) t) = Z” ln)

. 2’ Dn’n En”
X exp (—tH,..t/h) I—E, & ”(_ Iz’ oy

n'’’'#n

(3.2)

This result must, of course, be the same as the
result derived by the usual method. We expand
¥°(x, ¢) by the eigenfunctions of the perturbed state,
which are the solutions of the Schrédinger equation

(Ho + V(X)) ‘l’n"(x) = Eﬂ”'l’n"(x) (33)
as
vz, t) = Z exp (—iE,..t/h)
X Yar (D) [ @, 0. (3:4)

The perturbed eigenfunction is expanded by the
unperturbed eigenfunctions |n) as

Yo (X)) = E ln)an»":

(3.5)

where
uars = (1] Yur(X)). 3.6)
We put (3.5) into Eq. (3.4). The result is
¥z, 1) = Z exp (—1E,  t/R) |n) Qi ¥ rnifor.
w'n -

Equations (15) and (18) in Ref. 4 show that
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I (B — By

The equivalence of (3.2) and (3.3) is thus established,
so we have now checked that our wavefunction
(2.18) includes the wavefunction of the time-in-
dependent interaction.

The problem of the time-independent interaction
switched on for a finite time interval is found in
many text books of quantum mechanics where this
problem is solved up to the first order. If the number
of states involved is only two, a and b, and if the
state was in the state a at the time £ = 0, the
first-order term of the usual method yields the
transition probability from state a to state b

2
_%I_ sin? (Ga

T (6 — &)

P., — )tk (3.9)

On the other hand, if we use Eq. (3.2), it gives

2
= A‘M—sinz (E, — E)i/h,

Pu = Z gy (3.10)
where
E. = 3{(w. + wp)
+ [(we — w)® + 4 |V}, (3.1D)

Comparison of Egs. (3.9) and (3.10) shows that
Eq. (3.9) is valid only when the perturbation is small.

IV. FORMULAS OF E,,, D, o, (i#p) AND
Dy, o (inp) FOR PERIODIC POTENTIALS

In this section, the general formulas for E, D,,,
and D, given in Refs. 3 and 4 are applied to obtain
the explicit formulas for E,,, D, 0.(i%p), and
D,y 0n(thp).

For convenience, we recall the basic idea of the
treatments in these references, which was the Fred-
holm expansion of the determinant

a1 O3 (3%
D= jay ax Aoy * 4.1
ayr  Gwa 1555 %

We expand this determinant in the following way.
First, we pick up all the diagonal terms and get
the product J[Y., a,.. Next, if we limit the product
of diagonal terms to [ J/%, , @, it must be multiplied
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by the determinant |3, §**]. For the “second-order”

ag1 0

terms, we must sum up all such possibilities;

I IH
[2 2N

n’'#np

N N

2 2

n=1 p>n

0 a,

. 0

This consideration is generalized to obtain

D= Ha,m—i—zz " H"a",", 4.9
n=1 n=1 p>n a 0 n’ #np ( . )
pn
0 a, a.
N N N
+ E E E Apn 0 Apq H”, o
n=1 p>n ¢>p n’#npg
G G O

Therefore, if we let ¢, denote the energy of the
unperturbed state and w, the first-order energy

wﬂ = e‘h + Vﬂ", (4‘3)
the secular determinantal equation
DE) =det(E—-~H) =0 4.4

is transformed into

N
I_Il (B — w,)
o v 0 —er "
+ Z Z H (E - wn’)
=1 p>n —Vm. 0 n’#Znp
0 _Vfw _Vnd
N N N
+ XXXV 0 =V, I (E-wn)
nol p>n ¢>p n'*npq
—Vw =V O
e 4.5)

If there is no degeneracy with respect to w,,
Eq. (4.5) is brought into the dispersion formula,

C,
z:E—w,._l

(4.6)

by applying the partial fraction method. In Ref. 3,
the method for solving (4.6) was given.

In the transformation coefficient of the wavefunc-
tion, the determinant D,.(E) is needed. This is the
cofactor of the (a, a) element in D(E) and is equal
to the determinant D(E), whose a row and a column
are missing.

Next, we shall explain the method of expanding
the determinant D,,, the cofactor of the (a, b)
element in D. This is the determinant D, whose

TATUYA SASAKAWA

a row and b column are missing, multiplied by the
factor (—)°**;

R R ﬁlb ........... AN
D, = (—)“+b ¢q1 ¢u2 ¢ab ........... ¢'aN
aNl uuuuuuuuuuu ﬂNb ----------- aNN

4.7

Now let us consider the element a,, which is at the
mirror image of the element a,, with respect to the
diagonal elements. We rearrange the determinant
D,, in the form that the element a,, comes on the
left corner in the first row. The result is

Dub - (_)a+b—1(_)a+b

Oy Aoy (a2 Gpa—1  Opa+1 (1754

Qe Gy Oyg Qra-1 Cra41 (2394

Qzq Q21 G2z Aza—1  G2a+1 Qan

X

Op—1a

Ay +1a

(1779 (135554
(4.8)

By this rearrangement, the determinant always
changes its sign from the original arrangement. By
the same consideration as used in deriving (4.2),
we can expand (4.8) as

173 a, 1
Dy = — H” | Gra + E” e
n#ab prabd apa 0 a’m:
(2299 abp abq
+ E// Z a,, 0 a, + .- - 4.9
pHab a>p a’waqq
Gy G O

D, (E) is also needed in the transformation co-
efficient of the wavefunction. Further details were
described in Refs. 3 and 4.

Now we apply the above general relations to our
special problem. Complication comes from the fact
that now the quantities have two suffixes [ and =.
The derivation of the formula is made by watching
Eq. (2.14). In what follows we write out the results.
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A. Eigenvalues
Similarly to Ref. 4, we shall define g+ nn:y gi/107 ,nnrnr €6€. by

gl’.’l"’ = - 0 Vl"""l )
V—-l’,n’n 0
0 Vit Vi
G amnre = | Vogr an 0 Vs,
Verirmion Vetroioy v 0
0 Vl’.'rm’ Vl".m"’ Vl"’.vm”’
Voiiwa 0 Vi mme Vi e
Voiins Voariymm 0 Vi mimes
Vorimom Vowocinam Vogiiogoy arome 0

T mprimt i rr = —

! (4.10)

ete.
If we use these quantities, the Fredholm expansion of the determinant D(¢hp) is

D(itp) = IH II Ghp — @, ~ 1)

n=a
L -l+N N N
rr y 17
-2 XX X Qi I1 (@hp — worr — ')
i=~L 1’=0 n=a n'=a (L''n" 1)y (l,n) (1417 ")
(n'>n, if 1'=0)
L ~l+L -l1+L N N N
-2 2 XX X ) DR g
I=~L 1'=0 1''21' n=a n’'=a n’'=a

(n’'>n, if 1'=0) (n''>n',if1''=1")

X HIII (,th — @ — l"'w)

(77,072 (lun) , (L1 n/ )L+ 0"

L —I+L -1+L =-l+L N N N ~
P VPIEDIEED VD DD by > R
1==L i'=0 1'/21" 1'/'21"" n=a n'=a n'=g n' =g '

(n'>n, if1/=0) (n’’'>n/, i1 1"=1') (a'"'>n’’,if 1/ "=]’")

< II”” (,th — Wi — lllllw) + vee (411)

A s (L), B+ n YT, ) (It 7 7)
Therefore, the secular equation
D(@hp) = 0 (4.12)
is transformed into the dispersion equation

L N
Cln

DVAD DY Sl (4.13)

where
-1+L N g
L' nn’
C;” = Z i l/
Vm—l~1 n'=a Wy ™ Wypr — LW

(n'¥n, if ['=0)

—-1+L -1+ L N N
s Gt aminre
S D> ’ .
Ve—l—~L 1''21 n'=a n' =g (wn — Wy — w)(wn — Wy — O))
(n'#n, if 1'=0) (n''>n’,if1''=1")
—~1+L —1+L ~1i+L N N N
Ve—mi—L L'72l? Uittt n'=a n' =g nifTag

(n'#n, if 1'=0) (n''>n',if1'/=1") (n'''>a', if 1’/ =1"")

X Jurarrarr s aninin ! g 4.14)

(0n — @Wpr — V) (@ — wprr — ") (wp — wprrr — 1)
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Equation (4.14) shows}that the I dependence of the coefficients C';, comes from the upper limit of summations.
However, actually, L should be infinite, so C;, does not depend on I. Thus the dispersion equation (4.13)

must be

0 N

l=— nmg ihp — W — lw =

with the coeflicient

@ N
Gt7 nn’
Co= 22 2 e
1=, o~ Wy — W — L
(n'#n, if 1’ =0)
N N

© ]
Ja—w P21t ’ lmg

n'=g
(n'pn, if 1'=0) (n''>n', if1'/=]")

From Eq. (4.15) we see that the eigenvalues
E for a fixed state n is distributed with equal
distance,

Ez,,. = El—l,n + w. (4:.17)

When the eigenvalues E,, are distributed with
equal distance D,

D =E,,, — Eo ns1, (4.18)

the energy spectrum will be as shown in Fig. 1a
for w >> D and as shown in Fig. 1b for » < D.

To obtain the eigenvalues from Eq. (4.15), we
may apply the methods discussed in Ref. 3; the

L N
Do,.0,(thp) = IHL I Ghp — w0 — W)

C.

1 (4.15)
Gl'l".mp'n" .
(Wn — Wnr — V) (@p = @prr — ') + (4.16)

weak-coupling method, the strong-coupling method,
or the nearest-neighbor-states method. These meth-
ods give very good convergence. See examples given
in Ref. 3 and discussions developed in the Appendix
of the present paper.

B. Formula for D,,, o, (i2p)

In this section we shall calculate D,,,..(¢%p) for
n = p.

The determinant Dy, q,(¢%p) is equal to the de-
terminant D(ikp), but without the row and eolumn
to which the diagonal element (?%p — w,) belongs.
Keeping this in mind, we can write out Dy,,o,(#%p) as

('ihp — Wyerr — l"w)

n=ag
(In) % (0p)
L ~-i+L N N
\ 1
- E E Z Z g7 on’
l=wl l'=0 n=a n'=a (' n )k (l,n) (I+1" ")

(n'>n, if 1/=0)

N

—
nep, if l=0
n'wp, if 1'=—1(150)
L

> >

I=m=L ’'=0 1'' 21" n=a

N

> )
n'=a ! -g

(n'>n, if1'=0) (n'’'>n’, if1''=1")

—l+L ~l+L

—

Firirt nntnre

N

nHp, it 1=0
niwp, if 1’=—1(1<0)
n'tep, if 1/ ==1(150)
111 (,th — oy — l"'w)
(7w )M n) (B ") (LD n"%)
L ~l+L —-I+L =-l+L N N N
1= TS0 1St 13 ama E,_ ,,Z,,_

a n' =g

n’'=g
(n'>n, i1 1'=0) (n’’'>n’, ifl'/al’) (n'''>n’’ {1’ '=l’'")
v

nyép, if i=0

a’'yp, it l'=—=1(1<0)
n'lyp, if 1/ =m=1(1<0)
n! i yhp, if 17/ m—=](1<0)

X glllllllll"”‘lnllnlll 1

(Ghp — waerrs — V17) - +nn (4.19)

T2, ) k() (B o ) QB+, ) (L4777 ,n’ 0 ?)
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Or alternatively, this determinant is expressed as

D,,, Op(zhp) = H H (@hp — w, — k)

fn=a
(l n);‘(o 8
L -1’+L
x-S B 5 % i .
=L U'=~l'-L n'=a n'=a ’th — Wy — Vo Wyr == Wpr? — 1w
N (n'’sn’ .1f‘l"-0)

TN
n'yp, if 1'/=0
n’’yp, ifl"-—l’)
L ~1'+L =i'+L N N N
DD VI VD VDD 2

n''=g n'tmg
(n''stn’, i
N

P1177m0) (nf//>n’!, 4§17 =l’?)
y

v
n'Hp, it 1m0
n'sp, if 1/ =—1"
n' s, i 1 mm]?

Gir01707 mrnront st
.

X [(’th _— Wy — l'w)(w,,r — Wyrr — l"w)(w,.' — Wyrre —

L ~1'+L  -1'+L

lll )]‘
-1’+L
E E z E E 2 E E glulu;l" aln'’ntliniv
1’-—L Pem@?'=L 17217 11¥21"'! p'=a n'’'=qa n"’-a nivmg

~—
n’sbp, if 1'=0 n''sn’, if 1’ =m0
Y I T VR | S T S I T
lnﬂép’ if1 -l i i

AlTop it if Livapres
nivep, if 11Ve—1p"

X [(Ghp —
As in Cy,, L should be set as infinite in the final result.

C. Formula for D;.,.., o, (i#p)

h;lxuz'u, etc., by

The formula (25) in Ref. 4 is applied to obtain the explicit form of Dy, 0(¢Fip). First, we define hi-z++ . anrar

Vl'.vm' V(l’—l").mn"

YO——

)
Vir oo 0

Vi un Vr-t1rry,anre

Vetroirry mmes
hlllllllll'”"lnll'.lll = Vz”'”””l O

Voo s s

Virermrorme Viarsrotorymsrrmss 0
Vi Vereior e Vet omt e Vrrmsiry mtv

Vieroaroms 0

hl,l:;l:ulh_,m;”n"u,nlv = —

Viersomorms

V(l"—l”’),n"n"’ V(l"—li'),n"n“
¥
V(I"’—l"),n”’n" 0 V(lru_l(v).nu:"lv

Vllv.“!vn' V(l:v_lu),,.!vnu V(llv_ll:l)'"iv“lrl 0
ete.
Then we can express Dy, o,(thp) as
Dy oaibp) = __ JI’ (ihp — w; — lw)
T,n)w(0,n), (1" ,n")
1'+L N 1
v, Byopre arars X =
X 1 .,nn' + -EL'—L Z-a 1’1’ ,nn'n 1hp — g — (ll __ l”)w
n!’yin forl’’=1l’
n'’'wn’ for1''=0
1'+L 1'+L N N
+ 3 03 )> )> Barsooiors e
primit—L 1676500 TG

nn'n’’‘n’t?
n' =g
n''pin forl/ /=]’ &’ for B!/ =1’
(n"y‘n’forl”-o n'?lpn  fori''’'w=i’

n’’'’yn’ forl’’'=0

@.21)
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— V) (war — s = Ve)(n — e — U70) (e — wpir — F@)] — } (4.20)
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X [(hp — wur — U = V)] [(@hp — wprer — (V= V")e)]™

1’+L 1'+L 1'+L N N N
1";1'—1, t"gz" lig”’ Z E

for Livey
for 11v=0

niVyn

n'’'%p  forl’’!=1
niva0

n'''#p’ forl'’'’/=0

n'’#“n’ for i’ =0

n' =g n'’ =g nivemg
n’'#%n for1'/=1' [n”’<n"forl”’-l"] [n"'<n”’ior1"-l”'

X haryroensv men ool (@9 = @pr = (U = V) (@hp — wprre — (= V)]

X [(@hp — war — @ — )] 4 - }

Or alternatively, this determinant is expressed as
Dy oon = 11 (thp — vz — k)

(T =(0.n) . (1’ .n")

1'+L N 1
X [V LI M D " wspy  giy (W

n'‘#n forl’'’'=1'
n'’#n’ for 1’ ' =0

U/ +L '+ L N N h
+ 22 2 X R
N 7 17 17 117
o i By e e @ — e — (U = V) wnr — our — @ — 1))
Y
””#ﬂ forl"=l’ ﬂ,”#""forl”l=lll
mn, forty=l [,,,,,,4,, fo,,,,,.,,,J
n’'’#n’ forl’’'=0

I'+L '+L I'+L N N

+ Y ¥y oy oy

u‘ll_l‘ 171t L tivzl"' n''mag n'''mg "iv-;a
s

n’’%n for l"=l')( nivan !

n’’#n’ for 1/'=0 alV=n’  for 1'V=0

for liv=ys )

n'’’#n forl'’'’/=1l’ n'l#En’ ! for 1'7=1"""
n'’’%n’ forl"’=0) n'’#“n!Y for 1//=mllV
n' ' %niY for 1/t m]iv

X hl'l”l"'li'.mo’n"n”’ni'
(@hp — wurr — (U = Ve)wn = @ — (U = V') (wnrr — wniw — (I — M)w)
Again L should be taken as infinite in the final result.

(4.22)

+ :| (4.23)

V. PERTURBATION EXPANSION
(PERIODIC PONTENTIAL)

The general solution (2.18) with the explicit form-
ulas given in Sec. IV is all that we need. However,
it may be interesting to compare the general solution
with the perturbative result derived from MVC.
In this section, we shall make this comparison up
to the second-order terms.

A. General Formulas

Since the original secular determinantal equation
D(ihp) = 0 can be transformed into Eq. (4.13),
the determinant D(¢%p) must be factorized as

D(ikp) = IH (ihp — wr — )

ZL: i C'"—zw)'

l=—L n=a ihp — Wn

X (1 - (5.1)

On the other hand, according to the weak-coupling
approximation given in Ref. 3 (see also the Appendix

of the present paper),
Eip =0, +

+ Cirn _
5.2)
Therefore, up to the second-order terms,
Shp=Eirar % = T:g,‘» (Eionr — wy — lw)
L N Cl
x(1- 5 % pfemg). 69

(1,0}l ,n’)

where
=1+L N
Ve wirr Veior aer
Cl - R -1 .In/ L3
" 1"-2—;-1, n;a Wy — Wprr — l w

(n’'in, if 107 =0)

(5.4)
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From (4.20), we have
DOp,Op(EOp) = (EOp -

(T.n)=(0,p)

wy — lw)
Cln(Oy P)

L L
X{l— I-Z—Lfngo_n_wnmlw},

(1,n)#=(0,p)

5.5

where

—i+L N

>

10 2Tl nTTea W War
(n’ 50, iE 17 7=0)

nsp, if 1=0
(" it 170mmt

Vl",vm”V—l".n"n

— l,,(d

Cln(Oy P) Pl

(5.6)
Then, since

V—l .anl.pn

Clﬂ - Cln(Oy P) = W — @ + o’ (57)

we obtain

lim (ihp — Bo,) ———ED‘B(";TEZ; )

ikp-Eop

_ = - 1 V—l,anl,pn
RO VD Dy propry i g ey

(1,n)#(0,p)
5.8

For (', n') 5 (0, p),

Dop.on(BEron) = B — w5 — )

(T.n)#(0,p)

L N
_ C1(0p) }
X {1 I=Z—L ga El'n' — Wy — lw
(1,n)#(0,p)

= H (El'n’

(T.m=(0,p)(1*.n")

L N

X=X

l=—L n=a
(1,n)#(0,p) (3’ ,n")

Cz'n'(OP) }

’
By —wp — Lo

— w5 = ) (Eyrn — wnr — V)

Clngop)
Ezl”l - W, lw

Therefore, up to the second-order terms,

Doy oBrw) = Erw — wr — L)

(T, ) %(0,p) (17,n")
X {Cl’n' — Cl’n'(()p)}‘
Thus, for (I, n’) #= (0, p),

: Dy, .0,(¢1ip)
(’th - El’n') D(’th)

1
- El'n' - w, [Cl'n' -

lim
ikp—Eia’

C, 'n'(OP)] .
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If we use (5.7), we get
. _— Do, o,(thp)
oy, k0 = Bo) Tt
— 1 V—l’,n’J!’.pn’ (5‘9)

By —wpwy —w, + Lo

for (', n’) = (0, p).
Next, from the second-order approximation of
Eq. (4.23), we have

Dlv.Op(El’n’) = - (El'n’ — Wy — 7(0)
(T,n)=(0,p)(1,0)
1+L N
VieewraVazirn . ]
X[V"”"+ "=ZI—L ?;‘z (Byonr=enr —(1—=1")w)
(L7 ,n"")#(1,p)(0,0)
Therefore,
o Do) 1
A (k= Bo) Thhy T B — e — e
1+L N
Vl'.n’wV(l—l’).pn’ ]
X [VI.FU + l'-Zl—L n; EOp_wn’_(l— l’)w

(4n’)=(1,p),(0,0)

1
=7 Vi

Egp — Wy — lw

1+L N

+ E E Vl’.n’vV(l—~l’),pn'

l'=l—L n'=a
(L’ ,n")#(1,p)(0,0)

X {{Bop — o — o] [we ~ wpr + V] ™
+ [Bop — wnr — (I — o] o — w, — V)] 7'}.
(5.10)
Similarly,
o Digoihp) 1
ol @k = B Thhgy = B —a
I+L N

22

l'=l—L n'=qa
(1’ .,n")%(1,p),(0,0)

Vl',n'UV(l—-l').pn’ ]
E—wy — (=]

(5.11)

X [Vl.pd +

Finally, for (', n') # (, a), 0, p),

. . Diy.0,(ihp)
c"kz}—l»IEI}'..' (’th El’n’) D(’th)
- 1 v v
h (El’n' - wp)(El’n’ — Wy ~ l“’) A

(5.12)
B. Example

As the simplest example, we shall discuss the case
of two unperturbed states ¢ and b, presuming that
before the time ¢ = 0 the system was at a state a;

far = 8ua (5.13)
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in (2.18). Also, we assume that the perturbation
(2.5) has only two components ! = =1, and that
Vi) = V_,(z) = V(z). Therefore, w, = ¢, and
¢,. The wavefunction (2.18) of the system

W, =
is now

%W, )= 2 2 o)

X Hm (B — E;)

E—-Ep'a’

3—‘E‘/tha,on(E) .

D, (5.14)

From (5.8), we have

. _ DOa Oa(E) —;Et/h
Am (B = B =y

[1——J~"LL+IV@I{ ! :

L 6 — W6 T €

}e"'l’Eod/is.
€

iEt/h)

1 1
+ea-—eb+web—-w—
All other terms of the form

Jim (5 — Bo) 2 e (-

vanish. Therefore, the coefficient of the term |a)
X exp (—iEyt/h) in (5.14) is equal to

2
1= Tl

X H( ot e :lw)(—zw}

(=D { 1 1 }
ea~eb+web—ea+w+eb—eu—-w

R
€6 — €6 — W eb—ea+w+eb—ea—w
(5.15)
Next, from Eq. (5.9),
: _ DOa OG(E) —:Et/'k
o (B = Bud Th )
V 2
= wd; exp (—iE.,,t/h),
(5.16)
and
. — DOn Oa(E) _IE‘/"I’
s, & = B Tpgy
Val? ,
= .(—eb_—Lea_b!;;)‘i exp ('_ZEtlbt/h).

All other terms of the form

. . DOa Oa( —nEl/'h'
sm (8= Bu) = pi)

(I, n) = (0, a).
vanish.
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From Eq. (5.11), we have

lim (8 = Fu) Dgg;é)@

E—EB£i1a

=L v owiBam, 618

and
(E — E*2 ) D:kza Oa(E) --E’t/‘k

D(E)
1 ([ V|

| Vas|®
(:I:Zw) (Fw) & — 6+ w

lim
E—E+sa

) exp (—1E .2.t/h).
.19
All other terms of the form

lim (E — E..) DB(OE()E) —imen

E-Es
vanish.
From Eq. (5.12), we have
:I:Za Oa(E) —|Et/#
D(E)

Via ,
= ALl o iz,

lim (B — E.l) =58

E~E+ia
(5.20)

which, however, cancels out with (5.16). Also, we
have

:1:20 Oa(E) —iEt/%
D(E)

—_ mﬂbL exp (_iEﬂbt/h) .
“G-eto-cFa 02
All other terms of the form

lim (B — E.p) =52

E—-Ex1b

. Do, 0(E)
EP;‘,‘,, (B — Ei.) D(E)
vanish.
Collecting all of these results, we obtain the co-
efficient of the wavefunction |a) in (5.14) as

v, m) # (L, a),

e vV . .
e leot/ﬁ{l _ Yaa (euot/-h — e M:t/'k)
w
+ lg(:; ? (e2|'ml/* _ 2 _,_ e—-2t‘wt/it)

__qu,,l’( 1 1 )
h e,,—e,,—l—w+e,,—-e,—-wt

, LI S e HetE g
-+ IVabl [(éb — e + w)2w + (Gb — € — w)(-‘2w)

ei(u—u+m)t/# - 1 ( 1 + 1 )
& — & +w & — €& T w € — € —

ei(t.—u—w)t/-h — 1 ( 1 1 )]}
€6 — € — W e,,—e,,+w+eb—e.,—w )

(5.22)




SOLUTION OF SCHRODINGER

This is just the result which we obtain by MVC.
The term which is linearly proportional to the time
comes from the expansion of exp (—Et/k). This
shows that MVC can be applicable only to the weak
perturbation.

Next, we shall calculate the coefficient of the wave-
function |b) in (5.14). From (5.10), we have

tla Ob(E) —cE!/’k

Am (B = Be) “pg)
1 —iEodt/*
= o .TFo Voot ,  (5.23)
3 — DOa.Ob(E) —sEt/%
e, B = Bo) “hmy €
1 1 1 1
- {V""V“[:(eb — 6w + €& — € + w.—w>
+( 11, 1 ._.1)]
G — €6 —® @ & — € — ®
1 1 1 1 )
+ Vbeba[(eb — e 6 — € +ow +w € — € — W
1 1
+ (-2
€ — € € — € — W
_l__. 1 —iEBopt/h
+ E———— w)]}e , (5.24)
and
12a Ob(E) —cE’l/t
s & = Bo) =p g~
- I:VB“V“"<51, — € F 20 Fw + & — € T w Fw
1 1
+ V”Vb“(eb — ¢ F 2w.e,, — 6 +w
o 1 —iEopt/H
+ =Fw €& — €& T w)]e ) (5.25)

EQUATION INVOLVING TIME 733
*24 Ob(E)
B = B Ty
—_ [ Vbavau
T Ll — & £ 2w)(tw)
Vbeba ] —{Etaal/H
+ (6 — & & 2w)(e, — & = w) ¢ - (5.27)
Finally, from (5.12) we have
. _ DOa Ob(E) —cE't/‘k
o, B = Bud iy
— VbaVaa —$E+t1al/%
T e — & =+ w)(w) € » (5-28)
tza Qb(E) —OE‘/*
son, B~ Bad T
— Vba aa —sExi0t/%
T (e — €& = w)(Fow) o (5:29)
s _ DOa Ob(E) —1E’t/'h'
s, B = Bl W™
— ViaVis —iBsut/h
T (Lw)(e — € =+ w) , (5:30)
D sa.00(E) g iE
sogn, B~ Bad Zpan=
Vbeba —:'E*‘bt/'k’ (5.31)

- (£w)(e, — € &+ w)

Up to second-order terms, all terms which are
not listed vanish. Collecting equations from (5.23)
to (5.31), we obtain as the coefficient of the un-
perturbed wave function |b),

i(ep—catw)i/F
—iept/, e -1
€ _Vba
& — €& + w
i(ep—ea—w)t/n
e —1
+ ]

€ — € — W@

Vb a Voa

w

i(ep—eq—2w)t/k
e -1
+ [—

eb—-ea—zw

i(ep—eat20) /%

From (5.11), we have

lim (E — Eo)

E—Eos

DOn Ob(E) —tEG/-h
D(E)

1 1 1
ot '-_—)
€ W W — €& w

1

— € — & T w

1 )]e—l'Ecal/’k
H
€ — €, € — € — W

e — 1
+ & — €& + 2w ]

+ Vbeba [ei(u—e.-zw)tﬁr -1 + e-—iut/# -1
€@ — € — W & — € — 2w )
n gl sk _ g e 1]
€ — €, (]
Vbeba —swt/k 1

+e,,—e¢+w

€

i(ep—eat2w)e/h __

[ei(u—u)t/-h -1 4 ¢

1 ec‘wt/'h

+ eb'—ea-l_

o)

2 ®

(5.32)

(5-26) " This is the result which we obtain also from MVC.
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VI. METHOD AND GENERAL SOLUTION FOR
APERIODIC POTENTIALS

In this section, we demonstrate the method of
treating potentials which are not periodic in time.
The basic idea in this section is almost the same
as in Sec. II. The general solution assumes formally
the same form as that given in Sec. I1.

We assume that the potential is not singular in
time. Then, the potential may be expressed by

Ve = S (Hvom, 6D
where
V() = () (3 g’?“))t ©62)

The solution of the Schridinger equation (2.2) is
expressed then as

W 0 = v 0+ 3 4 (L)

s r\3 R
> f ewc:’/h(é) V(e Py, £ dtf. (6.3)
0

Defining the Laplace transform

o k
56 s o
. o

6.4)

gk(x: p) =

we obtain from (6.3)

g(x, p) = “—T{ym ¥(x, 0)

(thp —
© & 1
x (¥ X @a . 65

Here we have used the relation

f e 't dt f u(t — () dt’
0 0

-5 [eewoa [ e a

r=0

(6.6)
and
R PP ) B
fo te dt (p + Z'Ho/h n+1 (6'7)

Equation (6.5) is transformed into a more tractable
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form
(ihp — Ho, — VO@@)go — ¥(x, 0)

- 2V =0, 69
and

(ihp — Ho — V@) grs1 — s
- E (k’ + k + 1)V(k’)(x)gk’+k+l — 0, k Z 0.

Similarly to Eq. (2.10), we define the inner prod-
ucts of the quantities appearing in Eq. (6.8) and
the unperturbed stationary state |n);

Jem = (0] g4,

6.9)
= (n| ¥(x, 0)),
and
Ve = (] V@) ).
Equation (6.8) then reads
(Whp = & = Vi) — 22 Vilow
- Z 2 Vilgew = f (6.10)

and
E V»(tg)'gb-fl.n’

n’ #n

~Gx.n + (ihp €y V:?t))gk+1.n -

E4+E+1 .
Z ( +k1 T )Vg')gk'«x»ku,n = 0;

o
k=1 =

& = 0).

Equation (6.10) forms a secular equation in which
the first-order energy, ¢, + V2, is degenerate with
respect to n. In practice, we truncate this set of equa-
tions at &£ (= s — 1) and solve the equations with
s-fold degenerate energies. The choice of the number
s should depend on the strength of the added
perturbation and/or the time after the system comes
under influence of the perturbation. Numerically,
we must say that our choice of s depends on the
accuracy of numerical results we want to have.

We can transform the secular determinantal equa-
tion obtained from Eq. (6.10) into the dispersion
equation

E(E

(s—1)
C )a -1 +

T+ X me

- wﬂ) n
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where we have put
E=dhp and w,=c¢ + Voo. (6.12)

The method for deriving Eq. (6.11) is demon-
strated in Sec. VII. To solve Eq. (6.11), we trans-
form it as

s C(i)
E Z (E - wn)

n'#n =1

F — w,) — {; CHE — w)™"*

(E - wn)s
_(E—EL)E—E) - (B~ E.,.)
E — w) ’
(6.13)

where E, ,,(k=0,1, ---
of the equation

(B — w)' — CV(E

, 8§ — 1) are the solutions

_ wn)s—l

—CP(E - )P~ - =CP =0. (614
Therefore the iteration formula is
m By — @)’
v I,,!I,; BV — Ein,
C(u’)
(; Z W) (m >1). (6.15)

Equation (6.14) may be solved in a manner
described in Ref. 3, Sec. V, but without any re-
striction with respect to the sign of the coefficients
C!P, Therefore, the eigenvalues E, ,, is generally
not a real number, but a complex number.

The solution E, ., thus obtained depends on s.
If in C” all terms up to V“™" are included, we
can expect the final result which is at least correct
up to the terms proportional to ¢'~*. Hereafter we
omit the subindex s, with the understanding that
we have chosen an s which yields sufficiently gocd
results.

In the limit of convergence E%*) — E,.,, the solu-
tion g,., of Eq. (6.10) is expressed as

Z, E f?»' Dyvar 0a(ihip)
Jon = " D) ,  (6.16)
where
DGrp) = I1 11 Ghp — Bi).  (6.17)

Therefore the solution of the Schrédinger equation

EQUATION INVOLVING TIME 735
with the aperiodic potential (6.1) is given by
¥(x, ) = th Zl—j;:E dp € go.n

= 2 2 e s (6.18)
with

Divnr onlBirar)
(Byrrnrr — Euvorner)
.

(6.19)

In the case of the time-independent interaction,
wesetk =k = k' = k'’ = 0, and obtain Eq. (3.7).

Comparing the results obtained in this section
with those in Sec. I, we see that the general solution
of the time-dependent Schrédinger equation is ex-
pressed in the form of Eq. (2.18). The difference
in the periodic and the aperiodic potential is if the
potential is periodic (aperiodic) in time, the eigen-
value E,, in Eq. (2.18) is a real (complex) number, so
the energy spectra for the periodic perturbation
should be sharp lines as shown in Fig. 1, whereas
the energy spectrum for aperiodic perturbations
should have the width.

Explicit expressions for D;-,. o, in Eq. (6.16) was
given in Sec. IV. The matrix elements V.. Iin
Sec. IV, must, of course, be reinterpreted by com-
paring Eq. (2.11) with Eq. (6.10).

Xn.k'n’ k' 'n’'? —

VII. DISPERSION EQUATION OF DEGENERATE
SYSTEM

In this section, we demonstrate the method of
transforming the secular equation of the s-fold de-
generate system into the dispersion equation (6.11).
The fundamental idea is based on the general
method described in Sec. IV. Here we consider the
case that the first-order energy w, defined by (4.3)
is s-fold degenerate for each unperturbed state n.
This is the case of Eq. (6.10).

We denote the element of the secular determi-
nantal equation a8 Gun,.'m, Where a (and o) takes
on the values 0, 1, --+ , s — 1. Since we are con-
sidering the case that @g,,on = C14,1n =
we put

s = a’n—ln.l—lny

Wy = Gan,anla =0,1, -+ ,8 — 1). 7.1)

We expand the secular determinantal equation
in the form (4.5): First comes the product of all
diagonal elements, next the sum of the products
of (sN — 2) diagonal elements and two nondiagonal
elements, and so forth. The result is
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0 —Qan,pn

IIE-w)y+ 223

a B>a

(B — o) [ (B — w.)*

n'¥%n

—Qgn, an 0

+X X2

" n'>n a a’

0 “““-a'"',(E — o) ME ~ @) TI7 (B = o)

»' " rnn’
—Qa'n’, an 0

0 ~Qan,pn —Q&an,yn

+ 2 XX 2| ~t%me O — g0, 1n| (B = 0™ TI" (B — wn)’

n a B>a Y>8

“Qyn,an " Ayn,n 0
0 ~—Qan,pn —Qan,a’n’
+ 2 X222 —%nam 0 — g, [(B = 0B = )™ I (B = o)’
n a'>n a fra a o rey
“Quarnt,an —Qan’,pn 0
0 —Qan,a’n’ _aan,ﬁ’n’
+ X XXX X |t 0 e | —a)TE = a) T T E = e
n n'>n a a’ n'’nn’
—Qag'n’,an —ag'a’,a’n’ 0
0 ~Qan,a’n’ —CQan,a’'n’"’

+ Z E Z E ; ; _aa’n‘.an O _aa',‘l'“u”n

n a'>an''>n’ a

—Qarinttan T Qarintt atn’ 0

X (B — o)™ (E — 00) " E — 0™ 17 @ = ap) + -

n' snnin’ !

(7.2)

The power of (£ — w,), (F — w,.), etc., should not be negative. For example, the second, the fifth, and the

sixth terms in (7.2) appear only if s > 2, the fourth term appears only if s > 3, and so forth.
Dividing each term by the first term, we obtain

0 _aan'.ﬁn

1+ 22203 B — o)
n a f>a _aﬁn,an O
0 —UWan,a'n’ -
+X XXX Bem e (B — w)(B — @n)]"
n a'>n a a’ —Garnr,an 0
0 —aan,ﬁn _aan.'yn

+ E E E E —Cpn,an 0 —Qpn, yn (E — Wn, -

n a f>a y>B
—CQya,an "~ Qyn,pn 0

0 Qan,pn —CQan,a’'n’

+2X XXX 3~ 0 — g, arm | [(B — 0 (B — 0,)]™

n n'>n a Bra a

_aa’n’.an ’_aa’n’.ﬂu 0

O —~Qan,a’n’ —Qan,p'n

+ Z E E Z Z' ~Qu'n’,an 0 ) —Qqa'n’,8'n’ [(E - wn)(E - wn’)z]_l

n n'>n « a’ B'>a
—0grnran —0g'n a'n 0
0 _aan,a’n’ _aan.a"n”

+ Z E E E ; ; _aa’n',an 0 —aa:,,,_au,,,,

n a'>an’’>s’ a

—CGarinityan —COa'int, arn 0

X (B — 0)(E — 0a)(B — an )] + o0 =

(7.3)
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We decompose the left-hand side of this equation into a partial fraction and obtain the dispersion equation

of the form

I R
YT oy = b (6.11)

Up to the fourth order terms, the coefficients are given by
C’(‘l) = — Z E 2 0 Qan,a’n’ (wn _ wn’)-l
n'FAn  a a' Garn',an 0

0 aan.ﬁn aau,a'n’

- 2 E E Z Qgn, an 0 Apn,a’n’ (“’u - wn’)_z

a a’ B>a

Qoa'n',an Qo Bn 0
0 aan,a’n’ aan,ﬂ'n’
- Y Qarn’,an 0 Qorn' B0’ (wn - w",)—ﬂ
a’ﬂ’n'.an a'ﬂ’n'.a’n' O
0 aau,a'u' aan al’n’’

+ 2 2 X ; 25| Garnren 0 Garntyarrmre | [(0n = @ar)(e0n — war )]

n'#“n 0’ '>n'  a

Qorrniran Qarint,arn’ 0
0 Ganpn  Gan,yn  Gan,a’n’
SRDIDD o K
R L I U T, 0 Gymarw
aa’n’.an aa’n'.ﬂn aa’n’,‘v» O
0 Guna'n'  Ganfin  Gan,y'a’
+ Z am’n’.an 0 aa'n',ﬂ’n’ aa'n','y’n’ (w” _ w”')—a
fr>ar y7>p aﬁ'n’,an aﬁ'n’,a'n' O afﬁ'n’.'y’n’
Qoyrn’,an Qyrnr,arn’ Qoyrn’ ,Brnt 0
0 Ganpn  Gan,a'n’  Gan,8'n’
D M L
"' moe e B G man Garn 0 Garn prar
Agrnroan Op'n’ s Oprn’,arn? 0
0 Gan,n Gan,a’n’ Gan,a''nt?
+ Z E Z E Z E Agn, an 0 A, a’n’ Qpp,arin’’
n'wn n’' ' >n' a' a’’ | Bra Garn',an aa'n'.ﬁn 0 aa“ wiatt
Gorinrtan Garnpn Garin's,atn’ 0
X (20p — war — warr)/(w0n — wn’)z(“’n - wn")
0 Gan,a’n’ Gon,B'n’ Gan,a’’n’
_ Garnt o 0 N [T T
B>%" | Ggrnrian  Opnriarmt 0 Ggrn’ atintt

Qorintt an BGar'n'?,atn’ Qatin’’ 8'u’ 0
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O Qon,a'n’ Qan,a’’'n’ aan.ﬁ"n"
aa'n',an 0 azx'n’.a”n" aa’n’.ﬁ"n” 2 -1
- Z [(wn - wn") (wn - wﬂ’)]
prr>er Qot'n’’,an ao:"n".a'n’ O aa”n",ﬂ”n”
aB”n".an aﬁ”n”.a'ﬂ' aﬂ"n".a"a” O
O aom,a’n’ aan.c{"n” aan.a”’n"’
_ E Z Z Z Z Z aa'n',an 0 Qornt, 0’ 'n’ Quin’ ,a’''n’?*
n'#n n'’'>n’ 2’ >n'" a' a’’ a’’’ aa”n,,‘a" au”n”'a’n’ O aa”“”‘a,”n”’
Garrin'rran Qartrnrir, arinr Qartigrot grines 0

X [(wa — @n)wn — 0 Ywn — @ )] A o0,

2) __ 0 Qan,pn
Cn - _Z Bz:
>
“ “ aﬂn.an 0
0 aan,ﬁn aan,a’n’
-1
+ Z E Z Z A, an 0 Apn,a'n’’ (0n — @ar)
n'#n o« a’ Bra
aa'n’,an aa'n',ﬂn O
O aan.ﬂn aan,'yn aan,a’n’

+ZED S| 0 e el g

nimn @ of Pra v>f a-yn,om a-/n,ﬁn 0 a‘yn,a'n’
Qarn'ian Ga'n',gn Barn,yn 0
0 Qan,gn Gan,a’'n’ Qon,B'n
SIRID DD M Ml B O
n'#n a f>a a’ f'>a’ Qorn'an o' n 0 Qornt prar
Ag'n’,an  Qg'n' gn Qg'n’,a’n’ 0
0 aan,ﬁn aan,a'n' Aan,a’'n'’
_ Z E Z Z Z Opn, an 0 Qpn, a'n An.a’int’
n'#n a’ >’ a o @'’ f>a Qarn' . an Garnt pn 0 Garn' arrnrs
aa”n”.an aa”n”.ﬂn aa”n”.a’n’ 0

X [0 — wp)n — wor )] F -,

0 aan,ﬂn aan.-/n

C’(.s) = E E Z A, an 0 Qgn, yn

a Bra v>8
a‘yn,an a'yn,ﬂn 0

O aa».ﬁn aan.‘yr» aan.n’n’
Agn, an 0 Apn, yn Qn,a'n -1
—_— W, ~— W, + e
p2p25255> e
Qyn,an Cyn,pn Oyn,a’n’

aa'n’,an a‘a’n‘,ﬂn aa’n’.‘yu 0

(7.4)

(7.5)

(7.6)
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0 aan,Bn aan.1u aan.ﬁn
Qgn, an 0 Qgn,yn  Qpn,tn
W =TT % Bn, COL T 7.7
x Prev>h iy a-yn.am a'yn,ﬂn 0 a1n,3n
aﬁn.an aan,ﬂn a&n,‘yn 0

Having obtained the dispersion equation (6.11),
we remove the degeneracy by solving Eq. (6.14),
applying the method described in Ref. 3, Sec. V.
We use the iteration formula (6.15) and then we
obtain the eigenvalues.

VOI. MIXED PERTURBATION OF PERIODIC
AND APERIODIC PARTS

In this section, we describe the method of cal-
culating the wavefunction for a more general case.

If the time-dependent perturbation is the product
of{the periodic and aperiodic perturbations, we can
express it by using the notations of Secs. II and
VI as

_ = 1 t k—-’lwt/'h (&)
Ve =2, 2 (k!)(ih)e VE®.
(The time derivatives are taken to the aperiodic

part.) The formal solution of the Schrédinger
equation is

¥, 1) = ¥(x, 0)
+ Z 2 @) [ e

X V(k,)(x)e_“/(,,g'/ire—iliot’/'h‘p(xtl) dt,.

(8.1)

(8.2)
We define the Laplace transform of the function
(U/ED(/iR)(t/iR) e o1 My (x, f)
by g:.4(x, p)

- @) [ @)oo a

By the similar method as in Secs. II and VI, we
obtain from Eq. (8.2) a set of coupled equations

- v
Ghp — (Ho + W)™

gi.4(X, p) = x,0)

1
+ Z E[ Z ,th —_ [HO + (l + l/)w]}k—r-f—l

r=0

’
X (k ];- T)VEI’C )(x)gl+l'.k'+r(x, I))

or
fihp ~ [Hy + (L + D]} gulx, p)
= (itp — [Hy + (L + D]}
1
X Tt — Ho + o) ¥

+2. 2 > {itp — (Ho + G + Dal)’

r=0

(=, 0)

X (k' + 7’)V"‘ "®) Grv1e 4 4(X, D).

As in See. II, we multiply |n) from the left and
integrate over the coordinate x. Then we obtain the
set of coupled equations

(i = [ + (0 + V)]l gunn
1
i — G ¥

+ 222 2 2 i — e+ (4 Dal)’

= {ihp — [e + (1 + V]}*"

X (k, + T>V"‘ A Gt ket (8.5)
where
Girn = (0] gu(x)), 8.6)
fa = (n] ¥(x, 0)),
and
o = (0] Vi) ).
Eq. (8.5) is alternatively expressed as
[ihp — (e + o + VE01g10.n
- E E E kazmgnz drnt =
(n k'l )#(nOO)
(8.7
and
{hp — e + (@ + Vo + Vinal}grbern — Grtn

- E Z Z(k +k+1)V§"3mgz+z kL0

(n k! l ) #(n00)
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_ {ihp — e + (I + Vol
T\ lihp — (& + W]

1
- eI ®8)

fork = 0.

By the method demonstrated in Secs. IV and
VII, we can diagonalize the secular equation ob-
tained from Eqs. (8.7) and (8.8).

Once we find eigenvalues, the wavefunction is
obtained by the Laplace inverse transform of goo .

U(x, t) = ik ZJ—f

—fjoo+ e
= Z Z E In)e_'E' e ‘/*fOankﬂ 1R Iy

11’ k'k’’ nn'n’
(8.9)

foo+e

dp eﬂgoo.n

with

XH.l’k’n’.l"k”ﬂ"

Dl’k’n’.OOn(El"k"n”)
(Byoopom e — By

- ’

(8.10)

This is the generalized form of Eq. (2.18) or Eq.
(6.18). However, the expressions (8.9) and (8.10)
are formally absorbed in Egs. (2.18) and (2.19) or
Egs. (6.18) and (6.19) if we change the meaning
of sub-indices.

By Eq. (8.1), we have assumed that the time-
dependent perturbation is the product of the periodic
and the aperiodic perturbations. The extension of
the treatment to more general class, which is ex-
pressed as the sum of such products is very easily
done. The general solution should again be expressed
in the form (8.9) with additional sub-indices.

P TRy L

CONCLUSION

In conclusion, the general solution of the time-
dependent Schrédinger equation is always expres-
sible in the form (2.18). We can perform calculations
with the aid of the formulas described in Sec. IV
and Sec. VII.
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APPENDIX: COMMENT TO THE METHOD FOR
OBTAINING EIGENVALUES

As shown in Ref. 3 and in Sec. IV of the present

TATUYA SASAKAWA

paper, the original secular determinantal equation
is transformed into the dispersion equation

CEew

One of the methods of solving this equation is the
weak-coupling method. (See Sec. III in Ref. 3.) The
iteration formula of this method is

C.
1- Z [CD/E{".-” -

pEn

(A1)

_CO,.

E™ = o, + m 2
@,)

with
E[Ol = w,.

If we expand Eq. (A2) and subtract E'*} from
E'™ we obtain

21 _ g1 ul _
E® =E C..;.(w,.— n)zE @)
-+ higher-order terms. (A3)
In general, we have
Er{ml — E[m—ll _ C,, E C 5 (Elm—-ll Elm—zl)
n'sn ( Wy — wn)
-+ higher-order terms. (A4)

Since the lowest-order term in C,, C,. and E'! — w,
are of second order, the difference of E'*' and E'!
is the sixth- and higher-order terms. That is, the
first iteration is correct up to the fifth-order terms.

In general, the mth iteration of the weak-coupling
method gives the result which is correct up to the
(4m 4+ 1)th-order terms. In the usual perturbation
methods, the mth-order iteration gives the result
which is correct up to the mth-order terms (see
Ref. 3). This can be modified if we let the first-order
energy absorb into the energy denominator. How-
ever, even with this modification, the usual per-
turbation theory gives the result which is correct
at most up to the (2m - 1)th-order terms for the
mth iteration. The important improvement in the
weak-coupling method results from the presumption
that we calculate all coefficients C, in the dispersion
equation (A1) before making iterations.

Another method of solving the dispersion equa-
tion (Al) is the strong-coupling method. (See, also
Sec. III in Ref. 3.) We discuss it taking the case
of C, > 0and C,,, > 0.

First, we solve the equation

Cﬁ Cn+l
E—ow, E — Wn41

+ =1 (A5)
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exactly. This means that we diagonalize the original
secular determinantial equation with respect to the
two states. The lower solution E_ of this equation
lies in between w, and w,.,. We take E_ as the
starting value of iterations, for which we make use
of the formula

(E[m—ll . w")(E[m—ll — wn+1)

E[m_ll - E+

Co
X (n'!‘nz,ﬂ+1 E[m—” -, r), m 2 1 (AG)

E[m] o= E_ +

with
E[Ol = E_.
In Eq. (A6),

EQUATION INVOLVING TIME 741
Et = %{(wn + Wnt1 + Cn + Cn'H)

+ [(0n + @ps1 + Co + C»-H)2

— Mwuwpe1 + Cotoner + Cn+1wn)]i} . (A7)

In the limit of convergence, Eq. (A6) becomes the
dispersion equation (A1) because

(E—E)E —E) _ c,

o)l -y T E—a

The strong-coupling method gives the result which
is correct up to (d4m -+ 3)th-order terms after the
mth iterations, because (1) E_ is correct up to the
third-order terms, (2) (E. — w,) begins from the
second-order terms, (3) (E_. — wq+.)/(E. — E,)
begins from the zeroth-order terms and c,./(E_—w,)
begins from the second-order terms.

Cn+1
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A generalized virial theorem which expresses inverse compressibility in terms of integrals of virials
and canonical distribution functions through the four-particle distribution is transformed to the
grand canonical ensemble and becomes an expression for compressibility in terms of the same integrals
formed with grand canonical distribution functions. The integrals are of a mixed (virial and fluctuation)
type.

While the thermodynamic functions expressed by the same integrals with canonical and grand
canonical distribution functions are quite different, the two formulas agree in the thermodynamic
limit because of the different asymptotic behavior of canonical and grand canonical distribution
functions. We also derived an alternative form of the second virial theorem which expresses compress-
ibility in terms of integrals over virials and grand canonical distribution functions through the three-
particle distribution funetion only. It is shown that this form and its generalizations to higher deriva-~
tives of the density, as well ag the hierarchy of fluctuation theorems and the fugacity expansions of
distribution and correlation functions can all be very simply derived from a set of integro-differential
equations satisfied by the grand canonical distribution functions. A generalization of the wall theorem
(P/kT = pwan)isderived and shown to be equivalent to the generalized virial theorem (canonical form).

1. INTRODUCTION

HERE are equations of several types which
express thermodynamic functions in terms of
molecular distribution functions: the virial theorem,
which expresses pressure in terms of the average
virial of the force of interaction; the ¢ wall-theorem,”

* The research upon which this paper was based was
started while the autgors were at the Weizmann Institute of
Science, Rehovoth, Israel, with National Science Foundation
fellowships. It was continued at Northwestern University,
and supported there by the Advanced Research Projects
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which expresses pressure in terms of the density
at the surface of the container, and the fluctuation
theorems, which express compressibility and its de-
rivatives as integrals over correlation functions.
There is an infinite sequence of fluctuation theorems
and we became interested in the question whether the
wall theorem and the virial theorem can be extended
also, to express, for instance, compressibility in terms
of virials and molecular distribution functions or
boundary values of the latter, respectively. In the
present paper, we derive several theorems of this
type, and show their relations with each other, and
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with integral equations for the distribution functions.

In Sec. 2 we introduce the notation and general
assumptions. In Sec. 3 we state a generalization of
the virial theorem, which expresses inverse com-
pressibility as an integral over virials and the dis-
tribution functions in the canonical ensemble up
to the four-point distribution. We then derive the
corresponding theorem for the grand canonical en-
semble and obtain the thermodynamic limit of this
theorem. In Sec. 4 we obtain the thermodynamic
limit of the canonical form and show agreement with
the thermodynamic limit of the grand canonical
form. In Sec. 5 we obtain a generalization of the
virial theorem, which expresses compressibility as an
integral over the virial and grand canonical dis-
tribution functions up to the three-particle dis-
tribution only, and obtain its limiting form in the
thermodynamic limit.

The integrals occurring in these equations are of
a mixed (virial and fluctuation) type.

In Sec. 6 we show that the fluctuation theorems,
and the fugacity expansions of distribution functions
and correlation functions, and the theorem of Sec.
5 and its generalizations can all be derived very
simply from an integro-differential equation satisfied
by the molecular distribution functions of the grand
canonical ensemble. In Sec. 7 we derive heuristically
an asymptotic equation for the correlation of two
functions of density relative to the probability dis-
tribution of the grand canonical ensemble, and derive
from it an auxiliary equation needed in Sec. 3. In
Sec. 8 we derive a generalization of the wall theorem,
and show its equivalence to the generalization of
the virial theorem (canonical form) stated in Sec. 3.

2. NOTATION AND GENERAL ASSUMPTIONS

We consider systems of N particles without in-
ternal degrees of freedom. Quantum effects are neg-
lected. The particles are contained in a domain V,
and we use the same symbol for the volume of this
domain. We want to consider the case of 1, 2, and
3 dimensions together and write » for the number
of dimensions. The position vectors of the particles
are r;, r; --+ , and the volume elements are d’r,,
d’ry - -+ . We write d""r for II} d’r;, and we frequently
write only the numbers of the position vectors.

We write Zy(V) for the Gibbs integral

Zy(V) = fv ];e"w” a™r,

where 8 = 1/kT, and

@.1)

Uy = Uy(r,, 15 -+ 1) (2.2)

AND E. MEERON

is the potential energy of interaction. We use the
abbreviation

BP(N, V) = 3 log Zy(V)/aV. 2.3)

Additional assumptions concerning V and its in-
crement are made, when necessary to ensure that
P(N, V) represents in the thermodynamic limit the
outcome of a pressure measurement (and not, for
instance, the work per volume increment required
to increase the size of a small cavity in a large volume
of fluid). We define the molecular distribution func-
tions in the canonical ensemble (CE) by

pn(rl R N} V)

= (NAL' n)| I:ZIV(I’)]_1 j; e Le-ﬁvy i=InIl d'T,'-
(2.4)

For the grand canonical ensemble (GCE) we de-
fine the partition function by

© N
Q) = X = Zu(V) @.5)
o NI
and we define grand canonical averages by

F®). = G5O 3 5 mDFM). @9)

We made a distinetion between the GC average
of the canonical pressure

(PN, V)). = 9 log @v(2)/8V, 2.9
and the conventional GC pressure
P(z, V) = (1/V) log @v(2), (2.8)

and use p(z, V) or p for the GC density only.

We distinguish canonical from GC distribution
functions in the notation only by replacing N by 2
in the argument, and define

s Tn; &y V)= <Pn(r1; ce ,I',.;N, V)), (29)
r,; N, V) and
Xn(rly e, In3%, V)’

the correlation functions formed by the Ursell de-
velopment' from the canonical and grand canonical
distribution functions. Note that x,(ri, - - , 12, V)
is not, in general, the grand canonical average of
Xa(ty, -+ Ly N, V).

3. SECOND VIRIAL THEOREM WITH p.

Pn(rl; -
We denote by x.(r, -

We obtained a second virial theorem for the canon-
ical ensemble, in the case of spherically symmetric

1 B. Kahn and G. E. Uhlenbeck, Physica 5, 399 (1938),
especially p. 403.
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pair interaction u;; = u(lr; — r;]), by the scaling
method,” and found that it was given implicitely
by an expression for the fluctuation of the virial
calculated by Brown.’ The calculation is straight-
forward and one obtains

il
37 BPOV, Y]

- o Bl wincn5. 9
v

— p:(1,2; N, V)pu(3, 4; N, V)] d'r, d'r; d'ry d'ry

+ 28 fff D1291305(1, 2, 3; N, V) d'r, d'r, d'rs

v

O
v

X p(1,2; N, V) dry d'?‘z}, 3.1
where
b",' = T.-; du;i/d'r"i, (3.1’)
with
ro = |ri — ;. (3.17)

Equation (3.1) can also be derived from the second
wall theorem (Sec. 8) through Eq. (8.15).

The thermodynamic limit of Eq. (3.1) must not
be taken under the integral in the first term. We
have, therefore, derived the grand canonical form of
this theorem.

All terms linear in the distribution functions on
the right-hand side of Eq. (3.1) can be averaged
immediately. To take care of the term p,(1,2; N, V)
p2(3,4; N, V) we add and subtract

@_éz_} f f f 005 [(p(1, 2; N, V)po(3, 4; N, V),

- P2(1’ 2;2, V)P2(37 4;2: V)]

= V(& - erar, ) ) - (F—sear, 1) |

(3.2)
on both sides. The right-hand side of Eq. (3.2) is

2 H. 8. Green, Proc. Roy. Soc. (London) A189, 103 (1947),
especially p. 115.

3 W. B. Brown, Philo. Trans. Roy. Soc. (London) A250,
221 (1957/8). The explicit form is obtained by substituting,
into his Eq. (A4) (p. 245), his Eqgs. (7.11)~(7.12) (p. 231) and
Eq. (7.4) (p. 230) with Egs. (7.18)—7.20), p. 232. There is a
factor 1/9 missing on the right-hand side of the last three
equations, which 1s our 1/ for » = 3.
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F (@, — @)
= (V7). — W,
— 2B[NP(V, V). ~ (N).(PQV, V)]
+ VI@BPW, VIY). — (6PQY, VY]
= 3hog3 [ V) — 2P, V)]
+ VIBPQV, V). — POV, V)R] (33)

by Eq. (A1), Appendix A. From Eq. (B3) we have
v(z2 sy, Y + VIERQ, V)P

=GPV, V)¥] = V 55 6PV, ). (3.4)

Using these results one obtains for the GC average
of Eq. (3.1)

a
3 log 2

lo(z, V) — 2(8P(N, V)).]

+ POV, V). + V 2 (8PN, V),

- Sy ] i385
v

— p(1, 252, V)pa(3, 452, V)] d'ry -+ - d'ry

+ 28 fff V2013051, 2, 352, V) d'ry d'rp drs

14

- ff [7'12 ——-dd b — Bbfz]pz(l, 2;2, V)d'r, d"r,}-
T12
v
(3.5)

It is generally accepted, as the basis of the use
of the conventional GC pressure P(z, V), that

lim (8P(N, V)), = lim 8P(z, V),

Voo V-

(3.6)

and it is known that the limit on the right-hand
side exists.* Accepting Eq. (3.6) to be true on a set
& of measure m(8&) in the z plane, we have, by
Egoroff’s theorem’®

3 .2
(PN, V. = 10 5 0g 2

lim BP(z, V) (3.7)

Vo d 10g 2
on a subset of & the measure of the subset being
m(8) — & with arbitrarily small §. It is known that
in one-phase regions the limit on the right-hand side

4 C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952).

8§ E. C. Titchmarch, The Theory of Functions (Oxford
University Press, New York, 1939), 2nd ed., p. 339.
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of Eq. (3.7) exists,* and that

1,1_1.2 dlogz

p(Z, V)

We show heuristically in Sec. 7 that in one-phase
regions

lim oz, V). (38)

3]
dlogz vy,

lim V =5 (BP(N, V), = (3.9)

With the notation
lim P(z, V)

P 3.10

and
lim plz, V) = » 3.11)
we, therefore, have—with the provisos stated
above—
dp
dlogz 20 + AP

V_., %7 V{ ffff 129:[pu(1, 2, 3, 452, V)

- Pz(ly 2;27 V)p2(3, 4;z, V)] d'rl *

+28 [ [ vavant, 2, 32, V) &y s dir
v
- ff I:Tu d_:‘l; L
v

4. THERMODYNAMIC LIMIT OF THE SECOND
VIRIAL THEOREM

. d '7'4

- ﬁnfz]pz(l, 2;2, V) d'r, d'r,}-

(3.12)

We mentioned above that the thermodynamic
limit of Eq. (3.1) must not be taken under the in-
tegral. If this is done and the result is expanded in
powers of density, one obtains equations which are
obviously wrong. We also note that the thermody-
namic functions expressed by the distribution func-
tions are quite different in the canonical and grand
canonical form, Eq. (3.1) and Eq. (3.5), respectively.
In the former occurs VIgP(N, V)/dV which ap-
proaches —pdBP/dp, in the latter we have dp/ log z=
p9p/8BP. The corresponding phenomenon in the
case of the fluctuation theorem has been discussed
by several authors.®

There is, of course, no paradox when the limit is
carried out properly, which can be done explicitly
within the range of validity of results concerning

¢ G. E. Uhlenbeck, P. C. Hemmer, and M. Kac, J. Math

I;Ihys. 4, 229 (1963), footnote 11, p. 234, and literature quoted
there.
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the asymptotic behavior of distribution functions
which were obtained by Lebowitz and Percus'™’
Specialized to our case, their results are that

pl(li 2,3,4; N7 V) - Pz(]-: 2;N7 V)P2(3; 4; N! V)
1
) a(;;’ [ as P 2)]
X [p a% p=(3, 4)] + oV  (41)

when the pair (1, 2) is far from the pair (3, 4), while
there is no term of order ¥* in the grand canonical
case. We use the notation p,(1, --- , n) for the
thermodynamic limit of the distribution funetions
(in this section only).

Within the range of validity of these results of
Lebowitz and Percus, it is then permissible to take
the thermodynamic limit on the right-hand side of
Eqgs. (3.5) and (3.12) under the integral. Equation
(3.1), however, becomes

—p%+ﬂP

= 5% {g /ff b12b34[P4(1, 2, 3, 4)
- Pz(]., 2)[)2(3, 4)] d’ry d,Ta d,ﬂ

-+ 28 ff 012013051, 2, 3) d'ry d'rs
_ [[r

— p"%[n%(p—ﬁl’)],

where the virial theorem has been used to evaluate
the correction terms. The integrals now extend over
all space and the point (1) is arbitrarily fixed. With

[pg;@—m]
- 3P[ _ é@l_’]
P8P " T *

o8P
paz; 2p+ p ﬁ,

dblz
12 drlg

- Bbfz]l’z(ly 2) d'fz}

4.2)

-1 90
3P

4.3)

Eq. (4.2) becomes

(19:5{) L. Lebowitz and J. K. Percus, Phys. Rev. 122, 1675
8 H. L. Frisch and J. L. Lebowitz, The Equilibrium Theory
of Classical Fluids (W. A. Benjamin Company, Inc., New
York 1964), pp. I-19, 20.
vJ. L. Lebowitz and J. K. Percus, J. Math. Phys. 4,
116 (1963).



VIRIAL AND WALL THEOREMS

b o — 20 + P
= -2% {g fff blzb34[P4(1; 2: 3; 4)
- pg(l, 2)p2(3, 4:)] d,'rg d"rs d.7'4
+ 28 [[ biviap1, 2, 9) d'ra v,
dv,, 2 y
pa— f [T12 d:')m - BDIZJPZ(I) 2) drg} (4-4)

in agreement with the result obtained from Egq.
(3.12) by taking the limit under the integral.

5. THE SECOND VIRIAL THEOREM WITH g,

In this section we derive a form of the GC second
virial theorem which contains distribution functions
up to p; only. One expects such a form to exist, since
integration by parts applied to the compressibility
theorem will yield a term with Vp., which converts
to a term with p; by the use of the Yvon-Born-
Green equation.’ The derivation from the compress-
ibility theorem can be carried through but is some-
what tedious, and we present here a much shorter
derivation. '

From the virial theorem and the identity

[ et,2,3;N, 7y am,
1 4

=N - 2)p(1,2;N, V) (5.1

we obtain
@ - 2(% - epev, )

= - 2L [[ vuntt, 2N, V) @,
v

= 2_57 fff bups(l) 2: 3; N: V) d,rl d,Ta d,rs' (5'2)
14

The grand canonical average of the left-hand side
is by Eq. (Al) given by

(& - 2% - epav, m))

= @l - erar, )

d N
+ dlogz <V — BPV, V)>-

- 2@ — BP(N, V)>‘. .3)

10 A, Mouenster, Statistische Thermodynamik (Springer-
Verlag, Berlin, 1956), p. 2556 Eq. (VIII 81). The first term
gn t}(m3 right-hand side of this equation should be multiplied

Yy o
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Taking the GC average of Eq. (5.2) we thus obtain,
by writing the first term on the right-hand side of
Eq. (56.3) in terms of distribution functions

Togs P V) = BP@, V)]

— 2[o(z, V) — (BP(N, V)).]

= é%; j:[ blz[Pa(l: 2; 3;5; V)
v

— o1, 252, V)pu(3;2, V]dridradrs. (54)

To go to the thermodynamic limit, the arguments
stated at the end of Sec. 3 apply and we obtain

e _
o B :
- 1im 25 [[] valett, 2,32, 7
1 4

— p(1, 252, V)pi(3;2, V)]drydry d'rs.  (5.5)

6. SYSTEMATIC APPROACH THROUGH INTEGRO-
DIFFERENTIAL EQUATIONS

If one averages the normalization equation

(N —n)p,,(1,2, )n;N) V)
= [ ol A N, V) & (61)
1 4

over the GCE one obtains, using Eq. (Al), the
integro-differential equations

Ii)
(3 logz - n)p"(l, cre NG %, V)

= f [Pn+1(1) cee
v
,n32, Vipin + 152, V)] dreyy. (6.2)

ymn+ 152, V)

- Pn(1) e

If a sequence of symmetric functions p, satisfies
Eq. (6.2), the Ursell functions x, associated with
them satisfy the simpler equations

9 .
(a log - n)x,.(l, RN (2% D) V)

= /;Xn+1(1; MRS (7% 4 + l;z; V) d'Tnﬂ

(6.3)

and, conversely, Eq. (6.2) follows from Eq. (6.3).
These two sets of equations were given by Percus"
and can serve to derive in a unified way fluctuation

uJ K. Percus, ‘“The Pair Distribution Function in
Classical Statistical Mechanics” in Ref. 8, p. II-52 Egs.
(4.13), (4.14).
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theorems, fugacity expansions, and the second virial
theorem of Sec. 5 and its generalizations.
The fluctuation theorems'

P

= {11 [ e, V) ps — i |poe

i=1
1 »
z_f/'f e an+1(1) e ,'ﬂ,n+ 1;2, V)drn+1
v

(6.4)

follow from Eq. (6.3) by successive substitution and
integration.

The fugacity expansion of x,(1, -+ , n; 2, V)*
is obtained by writing Eq. (6.3) in the form

a .
?a‘z)?n(l, ey N3R, V)

= fyﬁkw(l, ceamn+ Lz, Vydrag (6.5)
with
Rn = 2 X (6.6)
From this follows by successive substitution
xn(ly et B, V)

l
= 2"{7&(1) e ,?’L;O, V) + %

iz1

X [ [l o 4 50, Vs s},
v

6.7

where, by definition, x,(1, +-- , n; 0, V) are the
ordinary Ursell functions. This derivation for finite
V¥ does not require the use of the thermodynamic
limit

N1 Z. /(N — ) Zy — 2" (6.8)

which is used in Ref. 13 to introduce the fugacity,
and which is known to be hard to prove rigorously.™*
With

Po = 2 "pa (6.9)

2 The fluctuation theorem for n = 2 is the well-known
compressibility theorem; for n = 3 it is given explicitly in
Ref. 6, Eq. (34b). The general form is im{icit in the equation
for 9"8P /32", Ref. 10, Eq. (VIII 226) with Eq. (VIII 159).

_#G. E. Ublenbeck and G. W. Ford, ‘“The Theory of

Linear Graphs with Applications to the Theory of the Virial
Development of Gases,” Studies in Statistical Mechanics,
edited by J. de Boer and G. E. Uhlenbeck (North-Holland
Publishing Company, Amsterdam, 1962), Vol I, p. 143,
Eqs. (47)-(49).

# M. E. Fisher, J. Chem. Phys. 42, 3856 (1965).

AND E,. MEERON

Eq. (6.2) becomes

9 . — f o

9z Pn(n) - v {Pni—l(n; n + 1)

— ppm + D} dTsyy 6.10)

where we have omitted the variables z and V, and
written n for the set (r, - - r,). By iteration of this
equation one obtains the fugacity expansion of the
distribution functions,'® again without the use of
Eq. (6.8).

For central symmetric pair inferaction, the virial
theorem and Eq. (6.2) yield

(a 1§g z 2)[f’(z: V) — (8P(N, V)).]

_L(_L_ )f " g
=57 5 log 2 2 VblzP2(1:2>d7'1drz

o [ v {po(l, 2, 3) — pa(l, Dp(3)} e d'ra
(6.11)
in agreement with Eq. (5.4).

One can also easily obtain a third virial theorem
from Egs: (6.2) and (6.11):

(a lggz - 3)(6 lggz - 2)[p(z, V) — (8PN, V)).]

= ZBT/: f./; biafpa(l, 2, 3, 4) — pa(1, 2, 3)pi(4)

- .03(1, 2, 4)Pl(?’) - Pz(lx 2)P2(3: 4)
+ 2p,(1, 2)p(B (D} A1y -+ drs (6.12)

and generalizations to higher order are obtained
in the same way. As is already suggested by the
two examples, the functions in the integrand are in
the general case obtained from the distribution
functions by a modified Ursell development, the
modification being that the pair (r,, 1) is formally
treated as one position vector.'®

7. CORRELATION OF TWO FUNCTIONS
OF DENSITY

In this section we give a heuristic derivation of
the correlation of two functions of N/V and V
relative to the probability distribution of the GCE,
through order V~'. From this we derive Eq. (3.9).

Equation (A7) in Appendix A can be written in
the form

15 J, de Boer, Repts. Progr. Phys. 12, 305 (1949); Sec. 7,
IIL. The term —W(r*)W(rw)) should be added on the right-
hand side of the third equation of Eqgs. (7.11).

16 Reference 15, p. 338, Eqgs. (7.11).
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(ol v),
- (. + 555 7).

Suppose now that f(N/V, V) is a function which
permits an expansion

(¥ 7) = Z5(5)
Then the covariance (f(N/V, V)g(N/V, V)), is given

<j%”v V>>

Z [p(z, ity V a4 lgg z]l<g<_11\/l ’ V)>,'

- (7.3)

Expanding the brackets on the right through order
V! yields

["(2’ N+ Tog z]l
x (ol )= GlF 7)),
+ V%”' l_kalogz( < (V’ V)>)+ '
= ool 7)), + 5 E [
x (o)), + o e
< (ol )]+ -
- d(g(%, 7)) + Lo - D, 522
x (ol 7)), 0 i
(ol 7))+

where p stands for p(z, V). Substituting this into
Eq. (7.3) and carrying out the sum over | we obtain

&l )>

— 1T, V), v1< @, v))
+3 (44 e s Tote, VJ}
xSl V), + 5w GG 7)),
X g ol V)) +

(7.1)

(7.2)

9 logz

(7.4)

(7.5

747

The first term right-hand side still deviates from

the product of the averages required for the cor-

relation. We, therefore, use the same equation, with

g(N /V, V) = 1, to obtain a relation between
floz, V), V)] and (f (N/V, V)),, namely

<f 7 > = flo(z, V), V]

op
2V d log 2z ap(z

oy L flate, V), VI oL (16)

Substitution in Eq. (7.5) yields the correlation
with respect to the GC probability distribution
through order V"

G 7).~
<f 7 ),
=V a; (f;g? ap(: V) <f v’ V)>

X 36 7) <~"<% V)>,+ o

where dots indicate terms of higher order in V.
For f(N/V, V) = N/V, these higher terms clearly
do not appear, and we obtain Eq. (Al) of Appendix
A.
In a region of values of N/V, where the series in
Eq. (7.2) does not converge, but

(7 7) - 5oy -»)

with fixed n, converges, the above procedure can
still be applied and yields Eq. (7.7).

Specially, with f(N/V, V) and g(N/V, V) put
equal to the canonical pressure P(N, V) we have the
fluctuation of the canonical pressure in the GCE
through order V7'

FUPWN, V). — (PN, V)]

o [~ (BPY, V)>]2

1 98P
ap

We have also an exact identity for this, derived
in Appendix B: With f(NV, V) specialized to BP(N, V)
in Eq. (B3) we have

V{{IBPIN, V)I), — (BP(N, V))2}
- V—-(BP(N V). — <V—‘9-I7;3P(N, V)>'. (7.10)

7.7

(7.8)

=V

=V ¥ (7.9)
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Now, in one-phase regions, where CE and GCE
must give the same result for the compressibility
in the thermodynamic limit, we have

lim V——ﬁP(N V)> = —pafp (7.11)
and, from Eq. (7.9)
lim VPV, V), — @GP, V1) = p 25
(7.12)
so that
hm V = (BP(N V), = 0. (7.13)

8. WALL THEOREMS

The derivations in this section are carried through
for the case of a system contained in a spherical
volume of radius R. Using polar coordinates we
then write

ZN(V)Pn(rly Toy ¢¢* , 1, Ny V)

!
N (NA: n)!f f D
1 4
N! B r—1
= Z]_V—-—n)'j; Tae1 ATnss
R R
X f Tovz Qfasa * f v dry
[} 0
X f ean fdwn+l “ae dwNe‘ﬂU(h"'rN), (8.].)

where [« -« [ dw,4y - - - doy indicates the integration
over angles and is to be omitted for the case v = 1.
We then obtain, for v > 2,

aa"_V [ZN(V)pn(l’ e

N dR .
=W =miar W —nE”

X [ ritdn, o [t dny
[ oo [ oo

_1 v—1 N!
- S-[,gd Tn+1 (N

—n — 1!
X f ATpsg ATpsg ++ Ay e 2070
v

n; N, V)]

—BU(r;---rN)

<,n,n+ I;Nr V)r
(8.2)

1 ’—
= ZN(V) E fs d 17',.+1Pn+1(1: *
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where S is the surface of the sphere, and [s d" 'rass
the surface integral over the sphere. From this we

obtain

:—Vp,.(l,2,° SN,V
+BP(Ns V)Pu(lyzy e ’n;Ni V)
=5 [ @b, o+ LN, V). 83)
8

For a one-dimensional model of particles in the
interval (0, R) the right-hand side is replaced by
Pasi(ry ++* Tusr; N, V)[rni-z"R'

To obtain the equation corresponding to Eq. (8.3)
in the GCE, we use Eq. (B3) with

N, V) = p(1, n; N, V). (8.4)
This yields
a1, e 2, V)
+ (BP(N, V)).pa(1,2 - -+ nj2, V)
}S & Par1pair(l, 0 ,n,n + 152, V). (8.5)

The known wall theorem"”
(8.3): since p, = 1, one has

is a special case of Eq.

BP(N, V) = % fs ol N, V) &

= Pl(r; Ny V)rC'

using the spherical symmetry.

Equation (8.6) is closely related to the virial
theorem: Converting the right-hand side of Eq. (8.6)
to a volume integral by means of the identity

v-—l — l r—l
fs o@® d = R Tod

(8.6)

- fv 6 +rVe@®dr  (8.)
valid for spherical volume one obtains
BP(N, V)
N 1 ,
- %= W/;rl-vlp,(rl;N, V) drn. (88

For spherically symmetric pair interaction this re-
duces to the virial theorem by use of the definition
of p, or through the Yvon-Born-Green equation.'

From the ordinary wall theorem [Eq. (8.6)] one
derives a second wall theorem which expresses the

11 ], L. Lebowitz, Phys. Fluids 3, 64 (1960), Eq. 12.
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inverse compressibility in terms of surface integrals.
Since r moves with the surface when the volume
decreases, we have

av
dgP(N, V) = —r RV p(T; N, V)
dnu(r, V>]
+ [ aV r fixed dV. (8.9)
Using Eq. (8.3) we then obtain
9PN, V)
1%

= {V_II‘/'I'-VPI(I'; N, V) — BP(N, V)pi(r; N, V)

1 -
+ g ~/.; pZ(r) I'2;']V; V) d, 1r2}r<:-§’

Using Eq. 8.6 and the spherical symmetry we then
obtain

(8.10)

96PN, V -
vEELN L[ v, s
+-;’—2 ffs i N, V) &7 dr, (8.10)
with
Xz(ru 1;; N, V) = Pz(rlv r; N, V)
- pl(rl; Ni V)pl(r2v Nr V)‘ (8'12)

The second wall theorem is closely related to the
second virial theorem with p,: We write Eq. (8.11)
in the form

-—-—aﬂp N V) 1 yipov, V)P

r Vou@t; N, V)d 'r

S
+ ffs ooty 1 N, V) &7y &7y (8.13)
We then use the identity (8.7) to obtain

Qﬁ_llN_Y_) + VISP(V, V)
1 iJ
- f ¢ +1-V)a-V)pul; N, V) dr

V
+ e ffv @ +1,-V)@ +1::V2)
X paft, X2, N, V)dn d’r,

= BPN, V) — % + ;}17 fv @ V)Ypt; N, V)dr
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+Il/f_/; po(T1, Iz;

1
+ WV _/:/;, (V1 + 1, Vo) poltr, 1o; N, V) d'ry d'rs

N, V) dvT, d'rg

1
+ a7 fj; (T, V)@ V)osty, 12, N, V) d'r,

N N(N -1

= BP(V, V) - =

+ 2V — l)[BP(N, V) — %]
+ ﬁ [f,, @ V) 'p; N, V) d'r

+ [ @ V)@ Vant, N, V) d"’rﬁl“}
(8.14)

or

39/8VIVBPWN, V)] + V[BP(N, V) - %T
= ,,Z_IV'{_/; @-V)p,(t; N, V)

+ f‘/; V) Vo)ps(ty, 123 N, V) d'ry d'rz}-
(8.15)

For pair interaction the Yvon-Born—-Green equations
can be used to convert the gradients of the distribu-
tion functions. The calculation is straightforward
though tedious, and leads for spherically symmetric
pair interaction to the second virial theorem [Eq.
(3.1)], when the second term on the left is expressed
by means of the virial theorem.

ACKNOWLEDGMENTS

The authors would like to thank Professor Shneior
Lifson, Professor Amos de Shalit and Professor
Harry J. Lipkin for the hospitality of The Weizmann
Institute of Science.

APPENDIX A

If (N, V) is any function of N and V, its cor-
relation with N in the GCE is given by

(NN, VD) — (NN, V)),

@, V). (AD

3 log 2z
To prove this note that by definition of ( ),
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Qe VXN, V).

- S s, v
= Fies 06 MEWL V) 42
* or
NI, V).
= 076 V) gog; 96 VXIQV, V)
= ), V) + 57 O, Ve (A3

61g

This is easily generalized to higher powers of N.
We have

(N"{(N, V))

= 076 V) g G VUW, VL. (4

Inserting @z, V) @7(2, V) between the factors
3/ log z one obtains
<Nmf(Nx V» = Qm(f(Nr V)>=r (A5)

where Q is the operator @7 '(z, V)(8/9 log 2)Q(z, V).
Now note that

22() = 07, V) 5o 06 VIEE)

[a log z + (V). :|<I>(z), (A6)
so that we have as generalization of Eq. (Al)
(N"f(N, V)

- |5 + e » g, .. an

APPENDIX B

In Appendix A we had found an exact expression
for the correlation between N and any function of
N relative to the probability distribution of the
GCE [Eq. (Al)]. The corresponding theorem for

AND E. MEERON
the correlation between P(N, V) and any function
f(N, V) is obtained as follows.

We have

2> [0, VG, V).

- $ 2 [ D iy, y) 4 g7 D

N=0 av
= NZ;]z\_TiZN(V)[P(N’ V)IN, V) + %V‘_}_IQ]
(B1)

Dividing by @(z, V) and writing out the left-hand
side one obtains

24V, V). + POV, VG, VI

af(N, V)

— v, vy, v + (D ey
The correlation is thus
(BP(N, V)I(N, V)). — BP(N, VHAf(N, V).
9 3N, V)
= '_V'<f(Nv V)), - < v L (B3)

We note that both (A1) and (B3) can be applied
to the correlation between N and PN, V) and we
obtain

Tio 6PV, V).
- 2. = 2 (HY))
=0 M+ Ve V) B
or
oz POV, V),
- Ny eV @

where P(z, V) is the conventional GC pressure.
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A purely covariant treatment is made of those solutions of the Einstein field equations which rep-
resent pure gravitational radiation propagating in fluid and electromagnetic media. The analysis
involves a discussion of the full Bianchi identities in carefully selected tetrad frames. In this way the
interaction between the gravitational field and the medium is transferred to a coupling between a
preferred frame for the gravitational field and one for the matter field. The gravitational radiation no
longer propagates along shear-free null geodesics, as it does in vacuum, and the shear and ray curva-
ture of the propagation vector are shown to depend directly on the properties of the medium. Some
new solutions of the field equations, representing transverse gravitational waves propagating in an
electromagnetic field, are exhibited and discussed in some detail. It is shown that no such solutions
exist, at least in simple cases, for perfect fluids. Finally, the treatment presented here is compared with
the more usual electromagnetic treatment, and it is shown why the theories require basically different
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approaches.

1. INTRODUCTION

CONSIDERABLE amount has been written

about the propagation of gravitational radia-
tion in empty space.'! These investigations rely
heavily on the study of what are called algebraically
special gravitational fields, which correspond phys-
ically to the case of “pure’” radiation. The principal
result is the theorem of Goldberg and Sachs (1962):

A vacuum metric is algebraically spectal if and only
if it admits a shear-free null geodesic congruence.

Although it is possible to considerably relax the
vacuum conditions® it is by no means true that the
theorem holds in general. This paper deals with the
question; what happens to the Goldberg-Sachs theo-
rem when there are perfect fluids or electromagnetic
fields present? The answer to this question should
furnish clues to the following problems: (a) the inter-
action of gravitational fields with matter, (b) the
generation of gravitational waves in physically real-
istic sources, (c) the establishment of criteria for
the presence of gravitational radiation in matter,
(d) a new function theory for nonvacuum gravita-
tional fields.

The analysis rests upon the decomposition of the
curvature tensor into the trace-free Weyl tensor
and a sum of terms arising from the Ricci tensor:

Riea = Copea + galcRd]b + Ra[cgdlb
- %Izga.[cgd]b'3 (1'1)

1 See, for example, F. A. E. Pirani, “Gravitational Radia-
tion”, article in Gravilation, an Introduction to Current Re-
search, edited by L. Witten (John Wiley & Sons, Inc., New
York, 1962).

2 W, Kundt and A. Thompson, Compt. Rend. Acad. Sci.
Paris 254, 4257 (1962). .

3 Square brackets denote antisymmetrization,

Afary = [1/21(Aae — Aba).
Round brackets denote symmetrization.

On account of the Einstein field equations
Rab - %Rgab = _Tab’ (1.2)

the Riecci terms in (1.1) can be equated with the
presence of matter. The Weyl tensor, having all the
symmetries of a vacuum Riemann tensor, is to be
thought of as representing the free gravitational field.
At any point of space-time the Ricei tensor and
Weyl tensor are completely independent, but in a
region they are connected through the differential
Bianchi identities, which can be written in the fol-
lowing form*:

Cabcd;d = Rcla;bl - %gclaR.bl- (13)

The remarkable resemblance that (1.3) bears to
Maxwell’s equations
Fab'b = ja’

leads to the suggestion that the Bianchi identities
represent the interaction between the gravitational
and matter fields. The right-hand side J,,. of (1.3)
is to. be regarded as a malter current; it satisfies a
“conservation equation”

Jo, =0, (1.4)

analogous to the conservation equation of electrody-
namics

e = 0.

The matter current represents that part of the source
which interacts with the free gravitational field.
Those parts of the matter which do not contribute
to J .5, are called gravitationally inert; the propagation
of the free gravitational field is in no way dependent

4 W. Kundt and M. Triimper, Akad. Wiss. Mainz. No. 12
(1962).
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upon them. There is nothing corresponding to this
in electrodynamics where, by Maxwell’s equations,
the electromagnetic field determines the complete
charge-current distribution. The difference between
the two cases can be expressed by saying that photon
telescopes can be used to explore the universe com-
pletely with regard to its electric charges, but a
graviton telescope may fail to detect the presence of
matter in certain states.

In Sec. 2 the Bianchi identities (1.3) are considered
when there is a perfect fluid present and the Weyl
tensor is algebraically special. It is found that the
gravitational field propagates along a null direction
whose shear and refraction (as measured by the
curvature of the rays) is determined completely
by the dynamical and kinematical properties of the
fluid. Futhermore the fluid decomposes into separate
parts which interact independently with the Petrov
type-N, type-III and type-D components of the
gravitational field. In Sec. 3 a similar analysis is
carried out for electromagnetic fields. In this case
it is found that the shear and refraction of the gravi-
tational field depend on the optical properties of
the electromagnetic field.

Some exact solutions with a Petrov type N gravi-
tational wave propagating along shear-free null geo-
desics in a nonnull electromagnetic field are exhibited
in Sec. 4. In Sec. 5 it is shown that Petrov type N
solutions cannot exist in a perfect fluid if the fluid

ressure vanishes. Without the condition p = 0
the problem remains unsolved, but it is pointed
out that “almost perfect” fluid solutions of Petrov
type N may exist.

In conclusion the physical significance of the
analysis is discussed, with particular emphasis on
its relation with electromagnetic theory.

2. GRAVITATIONAL FIELDS IN PERFECT FLUIDS
(i) Dynamics and Kinematics of Fluids

For a perfect fluid the energy-stress tensor takes
the form

Tab = uUU, + phﬁb) (2.1)

where
uaua = —1) hab = gab + uaub-

The kinematics of the fluid are studied by breaking
up the covariant derivative of the 4-velocity in the
following way:

Usip = Oap + Wap + %ahab - uaub) (2'2)

where

PETER SZEKERES

Us = ua;bub;
0 =u’,,
Wap = h[achblduc:dr
and
Oap = h(achb)duc;d'

With respect to a Fermi propagated frame, w,; and
0. are respectively the rates of rotation and shear
of neighbouring particles of the fluid®; 6 is the rate
of expansion of the timelike congruence. We define
shear and rotation scalars ¢ and » by

2 __ 1 ab 2 __ 1 ab
0 = 3040 , W = qWepw .

From the field equations (1.2), we obtain the
Riceci tensor

R, = —(p + puss + 30 — #)ga, 2.3)

and the contracted Bianchi identities result in equa-
tions of motion for the fluid,

g+ (w+po=0, (2.4a)
h'ps + (4 + Pt = 0. (2.4b)

The full Bianchi identities (1.3) yield, on substituting
2.3),

. 2 1 a
Cabcd = K, aUs1U + 3”.dh 1aJo1c

- (”' + p)(wabuc — Uasp)e + u[aa'blc)- (2°5)

The right-hand side of this equation is the matter
current J,;,, discussed in Sec. 1. Equations (2.4)
only involve 6, 1, s and h,’p.,; we say that these
quantities constitute the inert part of the fluid since
they are not connected with the propagation of the
free gravitational field. J,;, involves essentially the
shear and rotation of the fluid, and the spatial gradi-
ent of the density; these constitute the gravitationally
active part of the fluid, the part that can be found by
observing the propagation of the free gravitational
field.

(ii) Algebra of the Weyl Tensor

In order to study the Weyl tensor it is convenient
to set up a quasi-orthonormal tetrad of null vectors
ko, Ma, t,, I, satisfying

kem® =" =1, kk" = mm’ = {.0*

= k. t* = m,t* = 0. (2.6)
Introducing three self-dual bivectors
Vab = 2k[aib]) Uab = 2m[atbl; (2.7)

Mab = 2klambl + Zzlatbl’

5 J. Ehlers, Akad. Wiss. Mainz. No. 11 (1961).
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we can decompose the Weyl tensor into tetrad com-
ponents®

Capea + 1Chea = C1Va Ve + Cz(Vachd + M, Vcd)
+ Ca(Machd + Uamei + VabUcd)
+ Cd(Uachd + MabUcd) + CGUabUcd;

where

(2.8)

Chea = %(—.g)ieabiiciit.‘d- 2.8

The various terms in (2.8) have the following phys-
ical interpretations’: the C, term represents a trans-
verse wave component in the k, direction, the C,
term a longitudinal wave component, and the Cj
term a “Coulomb’” component. The C, and Cj
terms represent longitudinal and transverse com-
ponents in the m, direction.

(iif) Optics of Null Congruences

The principal optical properties of a null con-
gruence having %k, as tangent can be studied from

the tetrad components of the complex vector
Lb = ka:bta° (2'9)

L, is determined up to a phase e*’, since t* may be
subjected to transformations of the form

= e(t° + AkY).

We shall call L, the optical vector of the null con-
gruence; its tetrad components are

v = Lbkb = 7(1) + i,y(z),
g = Lbzb ’

9=meb,
Z=thb=0+iw.

(2.10)

v vanishes if and only if %, is geodesic; it measures
the ray curvature or the departure from geodicity
in the rays. Consequently we may think of it as
representing the refraction of the null congruence.
¢ is called the shear, 8 the expansion, w the twist, and
Q the angular velocity or rotation of the null con-
gruence.’

(iv) Propagation of the Gravitational Field

Consider now an algebraically special Weyl tensor.
This means that there exists a null vector k,, such
that C, = Cs = 0 in (2.8). The Weyl tensor is of
Petrov type N if C;, = C; = 0 for this k,, of Petrov
type III if C; = 0, and of Petrov type II or D if
C; # 0. A simple calculation from (2.8) with these
specializations yields the following relations:

¢ R. Sachs, Proc. Roy. Soc. (London) A264, 309 (1961).
7 P. Szekeres, J, Math. Phys. 6, 1387 (1965).
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In Petrov type N
UV Caped’® = Ci(T'y — k'0), (2.11)
in Petrov type II1
V*Cuod’ = 2C(ty — k.o), (2.12)
and in Petrov type II or D
VRVCues'® = 8C3(I'y — k'0). (2.13)

When there is a fluid present with streamlines
u”, we normalize k, to make

ku' = —1,

and defining s, = h,’k, (whence s,s* = 1, s,u* = 0)
we can choose the null vector m, such that

ka=ua+sa’

m, = (8. — Us).

(2.14)

Substituting the Bianchi identities (2.5) into Egs.
(2.11), (2.12), and (2.13) we find the following ex-
pressions for the shear and refraction of the prin-
cipal null congruence k, (denoted here by o, and v,
to distinguish them from the fluid quantities):

In Petrov type N
30170 = %(F".ata - 3(}‘ + p)(wab + Uab)tasb),

(2.15)
3Ci00 = $(u.o8" — 3(u + P)(wa + o'ab)latb),
in Petrov type II1
30270 = %(”’,asa + 3(” + p)(wab + aub)tazb)) (2-16)

3Co00 = —u.o" + 3k + P)wa + o)),
in Petrov types II or D

3Csvo = —pul’ — (& + P)Bwals’ —
3Cs0, = (I‘- + p)chbblc-

k° is called the principal null direction of the gravita-
tional field; the field is to be regarded as propagating
along this direction. Equations (2.15), (2.16), and
(2.17) show that the shear and refraction of the
principal null direction of an algebraically special
gravitational field are determined by the tetrad
components of the spacelike density gradient, the
rotation and the shear of the fluid.

If the Weyl tensor is of Petrov type N we have
C, = Cs = 0, and the right-hand sides of equations
(2.16) and (2.17) must vanish. It follows then from
(2.15) that*

(u + p)a'ab = C100(38.8, — has)s
(I‘ + p)wab = 28[.;(51:101‘)’0 + tb]éﬂ’o),

b e
oul'’s’), (2.17)

(2.18)
(2.19)
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and
.. = 3(Cryols + C—'l')?otb + o08;). (2.20)

Hence the optical shear and the refraction are
directly proportional to the shear and the rotation
of the fluid:

v2 lcl'ﬁnl = (F" + p)‘*’y (221)
V3 [Cioo| = (u + p)o. (2.22)

From (2.22) we see that g, is real if and only if C,
is real; this means that the principal axes of the
optical shear coincide with the polarization axes of
the transverse gravitational field (the axes *, I* which
make C, real). Equation (2.18) shows that the fluid
shear has a principal axis in the ray direction s, and
is degenerate in the transverse (4, ,) plane. From
(2.19) and (2.21) it is seen that the refraction of
the wave is determined by the rotation of the fluid.
The axis of rotation of the fluid must lie in the trans-
verse plane of the wave; if it coincides with one of
the polarization directions (C, real and ¢ or
78 = 0) then the wave is reflected at right angles
to it, whereas if it is at 45° to the polarization di-
rections the wave is deflected in the direction of the
rotation axis (Fig. 1).

For a type-IIT Weyl tensor the right-hand side
of Eq. (2.17) must vanish, since C; = 0. Hence we
have

3Cy00 = —(u + P)as. s, (2.23)

and k, is shear-free if and only if s* (the longitudinal
wave direction according to an observer traveling
with the fluid) is a principal axis of the fluid shear
(Fig. 2). Equation (2.16) can be split up into real
and imaginary parts

6Covs” = 18" — 3 + P)o.ss”
= (” + p)wubfaeb)

2078 (2.24)

Fic. 1. Propagation of a transverse gravitational wave
(type N) in a perfect fluid. The central ellipsoid represents
the shear of the fluid streamlines. The broken lines denote
graviton paths. They are deflected from the geodesic by a
vector d® which makes an angle ¢ = 20 4 1 with the rotation
axis w?, where 0 is the angle w® makes with one of the polariza-
tion axes of the plane wave. The magnitude of this deflection
is proportional to the angular velocity « of the fluid. A circular
cross section of gravitons is transformed into an ellipse, by
an amount proportional to the fluid shear ¢ in the direction
of wave propagation.
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Fia. 2. Propagation of a longitudinal wave (type III) in
a perfect ﬂui(f. The circle of gravitons is transformed into
an ellipse, by an amount depending on the angle ¢ between
the principal fluid shear axis and the direction of wave
propagation s,. The deflection out of the plane of the polariza-
tion is proportional to cos ¢, the angle between s, and the
rotation axis «®.

where
= (1/V2)( + i), ¥ =Q1/v2) —if).

Hence the ray is only left undeflected in a direction
orthogonal to its longitudinal plane of polarization
[the (s,, ¢,) plane] if the axis of rotation of the fluid
is orthogonal to the ray direction. The refraction in
its own plane is determined by the components in
the ray direction of the density gradient and fluid
shear. It is unaffected by any rotation the fluid may
have about s, as axis.

Equations (2.15), (2.16), and (2.17) suggest that
not only can the matter be split up into gravita-
tionally inert and active parts, but the active part
J ase can be further split up into separate parts inter-
acting with the transverse wave component, the
longitudinal wave component and the Coulomb part
of the field. For example, the shear tensor can be
split up as a sum of three terms:

o1(8:8 — 3has), 0288y + T3Seafsy

and

os(ets = fofs) + osecafsr.

From Eqgs. (2.18), (2.23), and (2.17) it appears that
for an algebraically special field with principal null
vector k* = §* 4+ «° the first term interacts with
the shear of the type-III component, and the last
with the Coulomb component. This splitting off is
really the essence of Kundt and Thompson’s state-
ment of the Goldberg—Sachs theorem:*

Any two of the following imply the third:
(A) Casea s algebraically special with k, for principal
null vector.
(B) k, is shear-free and geodesic.
() Vabvucum;d =0
V¥Chpea’® = 0 for Petrov type IIT
UV Chpea’® = O for Petrov type N.
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From Eqgs. (2.11-(2.13) it is clear that (A), (B) =
(C), and (A), (C) = (B). The proof that (B), (C) =
(A) is less trivial.

3. INTERACTION OF GRAVITATIONAL AND
ELECTROMAGNETIC FIELDS

An electromagnetic field is represented by a skew-
symmetric tensor F,, satisfying Maxwell’s equations
(Fab + iF% *=0. (3-1)

The energy-stress tensor is given by

Tab = Fu{Fb‘ b %gabF,','Fii = '—Ra(,. (3.2)

(i) Null Field

The electromagnetic field is said to be null if
there exists a null vector such that

(Fab + ’iFfb)ka = 0;

from which it follows that the Maxwell tensor can
be written in the form

Fab + iF:‘b = Vab = 2k[azb]’ (3‘3)

where the conventions of Sec. 2 are adopted. Max-
well’s equations (3.1) now imply that

kyk® =0 and k.0l =0,

k, is shear-free and geodesic. From the field equations
(3.2) we have

Rub = —%kakb
and the Bianchi identities (1.3) can be written as

Cubcd:d = Rc[a;b] = —%(kck[a;b] + kc;[bka])} (3'4)
whence
VEVC,u = 0.

From the Goldberg-Sachs-Kundt-Thompson theo-
rem quoted at the end of Sec. 2, it follows that the
gravitational field must be algebraically special with
k. as principal null direction. This result is what we
might expect intuitively—the gravitational field as-
sociated with a pure radiation electromagnetic field
consists of pure gravitational radiation.

If the Weyl tensor is of Petrov type N, we can
contract (3.4) with #°¢* and find that

0="F,, 0 =2= 0+ iv.

Hence the expansion and twist must vanish if the
Weyl tensor represents a pure transverse gravita-
tional wave. All solutions of the field equations
representing this situation have been found by
Kundt.?

8 W. Kundt, Physik, 163, 77 (1961).
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(ii) Non-null Field
The Maxwell tensor has the form
Fo +iF% = AQ@pugy + 2Fury), (3.5

where p., q. are the principal null vectors of the
electromagnetic field.” p,, ., 7., 7, form a quasi-
orthonormal null tetrad (we call it the electromag-
netic frame). A is the (complex) electromagnetic
amplitude or field strength.

Maxwell’s equations (3.1) can now be regarded as
expressing the gradient of the field amplitude in
terms of optical parameters of the principal null
directions:

i(ln 4),, = —29¢, — 2p, + 21, + Q97 (3.6)
where
z(p) = L,(,”)rb ,

( b
Q(zz) = va) ,

z(a) — L;a)Fb ,
Q(a) — L'()a) b
7
L, L{® being the optical vectors p, and g,
)

(») ___ =0 (@) __ CJ
Ly = pa.7, b = Qagl .

The field equations (3.2) result in
Ro = A" (20@gn — 39a)- 3.7

On substituting into the Bianchi identities we can
carry out a similar analysis to that for a fluid
medium. There are two cases to be distinguished:

(a) The gravitational field is algebraically special
and its principal null vector %, coincides with one
of the null vectors p, or g, of the electromagnetic
field. The two fields shall be called aligned in this
case; it has been shown by Kundt and Triimper®
that k, must be shear-free and geodesic.

(b) The gravitational and electromagnetic fields
are nonaligned; that is, k, does not coincide with
either p, or ¢,. It is possible to scale these null vectors
such that

kp® = —k.g" = —1.

By a spacelike rotation r, — ¢’r, we can achieve
that

ka=pn—qa+ra+r-a'

The null tetrad for the gravitational field can be
completed by choosing

m, = %(_pa + [P + Ta + fa))
ta = %(pa + Qa + Fo — ra)'

This normalization amounts to a coupling of the

9 J. L. Synge, Relativity, the Special Theory (North-
Holland Publishing Company, Amsterdam, 1956).
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gravitational and electromagnetic frames, so as best
to view the interaction, Substituting (3.7) into the
right-hand side of the Bianchi identities (1.3), and
using the identities (2.11)-(2.13) and Maxwell’s
equations in the form (3.6), we arrive at the following
relations:
For a type N Weyl tensor

Cry = —[Af (L + LP)m*

Cio =LA (L + LYy,
for a type III Weyl tensor

20y = |AP (LP + L,

20,0 = } A (L& + LW,

(3.8)

Il

(3.9)

for a type II or D Weyl tensor
3Cyy = 4 |AF (LY + L&)’

+ (L — L),
8Ceo = A" (—(L7 + L)

+ @ — LOW).

(3.10)

Hence with this choice of tetrads, the interaction
between an algebraically special gravitational field
and a nonaligned electromagnetic field is completely
determined by the tetrad components in the gravita-
tional frame of the sum and difference of the two
optical vectors of the electromagnetic field. If the
Weyl tensor is of Petrov type N then the right-hand
sides of (3.9) and (3.10) must vanish; if the principal
null vector k, of the gravitational field is to be shear-
free and geodesic it is clear that the sum of the op-
tical vectors, L® + L{?, must vanish, Exact solu-
tions representing this situation are discussed in the
next section.

4. EXACT ELECTROMAGNETIC SOLUTIONS
(i) Null Solutions

In the light of the preceding analysis it would be
interesting to exhibit some exact solutions repre-
senting gravitational waves propagating through
various media. As a first example there exist the
metrics of Kundt® representing a type N gravita-
tional field having ¢ = § = w = @ = 0 (planefronted
waves with parallel rays), accompanied by a plane
electromagnetic wave,

ds* = }(da® + dy’) — 2 du dr + 2U du’,
where U = U(z, y, u) satisfied
FU/a* + 8°U/oy* = —3.

The coordinates are those introduced by Robinson
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and Trautman'® in which z' = u = const are null

hypersurfaces
gu. e, = 0.

The vectors k, = u,, are tangent to the family
of null geodesics lying in the hypersurfaces, and
2® = r is chosen as an affine parameter along these
geodesics. The coordinates z° = z and 2* = y
label the geodesics on each surface 4 = const,

(ii) Nonaligned Nonnull Solutions

There also exist solutions of the field equations
with a nonnull electromagnetic field and which are
of Petrov type N. To find these solutions we use
the relations obtained from the Bianchi identities
in the previous section and put these into the New-
man-Penrose formalism'* to obtain further simplifica-
tions. Finally we set up Robinson-Trautman co-
ordinates and use the methods of Newman, Tambur-
ino and Unti'*'*® to obtain the exact solutions. The
procedure is long and cumbersome, but fairly
straightforward. The final result is the following
metric:

ds* = % cos® kr(da® + dy)
— 4 du dr — 27(2r 4 « ' sin 2r) du dz

+ 4722 sin’ ke — 26™ — e Ox/0u) AW,  (4.1)

where

T =

r(u, ) = ¢* coth "z + f(w)),
« = x(u, ) = g(u)e” sinh ("z + f(w)),

g(u) and f(u) are arbitrary functions of u. This
metric is of Petrov type N with principal null
vector pointing along k,«u, = (1, 0, 0, 0). k, is
geodesic, shear-free and twist-free, but it will have
an expansion and a rotation, The Ricei tensor turns
out to be

R* = 4™(2p"¢" — 39",
where
p* = (dxe™™, —r(3e™ k/0u + ¢ " tanr
+ rsec«kr), e “r tan kr -} sec xr, 0),
and

¢ = —p° + (0, —2rrsec«r, 28ec«r, 0).

1 1. Robinson and A. Trautman, Phys. Rev, Letters 4,
431 (1960).
( “21;3. Newman and R. Penrose, J. Math. Phys. 3, 566
1962).
( 122133. Newman and L. Tamburino, J. Math. Phys. 3, 902
1962).

13 K. Newman, L. Tamburino, and T. Unti, J. Math. Phys,
4, 915 (1963).
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p® and ¢° are a pair of null vectors satisfying p.g” = 1.

By (3.7) the metric can be considered as repre-
senting a transverse gravitational wave propagating
along shear-free null geodesics through a nonnull
electromagnetic field. The principal null vectors of
this field are p° and ¢°, neither of which are aligned
with the gravitational wave k%, and the electromag-
netic field strength is A = 2¢*.

The electromagnetic field has the odd character
that it is not a wave field (since it is not null—the
electric and magnetic fields are nowhere equal and
perpendicular) yet its amplitude propagates with the
velocity of light. It may be thought of as a *“quasi-
wave’’ field. For a timelike observer the passage of
the field will appear like an electromagnetic sheet
whose strength rises (or diminishes) exponentially
without limit. We may calculate the strength C,
of the gravitational wave in the frame (&*, m*, £, %)
determined from the normalizations of Sec. 3. It is

C, = Y tan«r
= %g(u)e” sinh (¢"z -+ f(u)) tan xr.

Thus the arbitrary function g(u) measures the
strength of the gravitational wave, which is seen
to be quite independent of the electromagnetic field
strength 4. The function f(u) is merely a phase
function on the wave hypersurfaces u-const, which
can be set to zero by a coordinate transformation

=z 4+ e f(w).

It is interesting that C, has singularities at r =
(n + Ymx"'. These are real singularities of the
manifold, and there is no way of avoiding them.
Another way in which these singularities show up is
in the expansion of the gravitational propagation
vector k, = u . When there is no electromagnetic
field we have that § = k°,, satisfies
de/dr = ¢,
so that
6=1/r

and the waves are spherical, emanating from a
source at r = 0. With the electromagnetic field
present the equation becomes modified to read

dé/dr = & + <,
8o that
0 = k tan kr.

The waves are infinitely divergent at the points
r = (n + Hwc ', If we choose to restrict the mani-
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fold to the region —imx™' < r < 3w«™' it will be
incomplete.

(iii) Aligned Nonnull Solutions

The metric (4.1) is by no means the most general
one representing a pure transverse gravitational
wave in a nonnull electromagnetic field. It is not
even the most general one with shear-free geodesic
propagation vector k.. The analysis in the Penrose—
Newman formalism makes it clear that the electro-
magnetic field strength A may be variable over the
hypersurfaces u = const. However it must be con-
stant along the tangents k, if these are to be shear-
free and geodesic:

A k"= 0A/or = 0.

The full integration of the field equations in this
more general case is considerably more complicated,
and a closed form for the metrie has not been found.
The metric (4.1) represents the case of a type-N
wave in a nonaligned electromagnetic field. There
exist further solutions representing a type-N wave
in an aligned field. As pointed out in Sec. 3 (ii) (a),
the principal null vector k* is shear-free and geodesic.
For Petrov type N it turns out furthermore that
k® has vanishing expansion, twist and angular mo-
mentum (that is, it is a p.p. wave), and the elec-
tromagnetic field amplitude A is constant. This
makes the Newman—Penrose field equations fairly
straightforward to integrate. The result is

ds’ = iP7*(ds® + dy°)
— 2dudr — P’ (X dudz + Y du dy)
+ {U — 3 1A + 3P(X* 4+ Y)) du’
where P = P(u, z, y) satisfies
P°V?InP = % |A|* = const.
Uz, y, u) satisfies
VU = —P,

4.2)

and
Z =X+41Y = flu,2) — 49U/0z,

where z = z + 1y, V* = 3°/32° + 98°/9y°, and f
is an arbitrary analytic function of z. This metric
is of Petrov type N with propagation vector
pointing along k, = u,, = (1, 0, 0, 0). The Ricci
tensor has the form

Rab = IAIZ (2k(amb) — %gab)’ (4-3)
where

m® = (-1, - IAlz r+ U,X,7).
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k® and m® are the principal null vectors of the elec-
tromagnetic field. The null vector is neither shear-
free nor geodesic. Completing the tetrad with the
vectors t*, 1, where t* = (0, 0, P, ¢P), we find for the
shear and refraction of m*

g = ma;btatb = .P2 s
—2P aU /2.

In this frame the gravitational field strength C,
can be calculated;

_g P aU/e) _oP' X oP' _ Y oF
a9z u or ay
— P|A|’r + 4 0Z/3z2).

We see that the field strength varies along the geo-
desics of propagation:

C..k* = aC,/or = 2 — P* |A]".

If the null vector m* has vanishing shear, it is clear
we cannot use the metric (4.2) since P> = 0. This
situation is represented by the metric

ds’ = P *(ds® + dy*) — 2dudr
+2(U — 1 |A]P ) &,

Y= ma;btamb =

Cl=

4.4
where

PV'InP =1 |AP,

VU = 0.

The Ricei tensor is again of the form (4.3) but with
m* = (=1, =1 |A|*r* 4+ U, 0, 0). In this case m®
is shear-free, but it is still not geodesic. The gravita-
tional field strength is given now by

C, = —8 3(P* aU/3z)/ 9z,
and is constant along the k* geodesics, C,/9r = 0.
(iv) A Conformally Flat Solution

The metrics (4.2), (4.3) are all the metrics rep-
resenting a pure transverse gravitational wave prop-
agating through an aligned nonnull electromagnetic
field. From the metric (4.4) we can obtain an in-
teresting case if we put U = 0. m® is now geodesic,
4 = 0, but also C; = 0. This means that the Weyl
tensor vanishes, and there is no free gravitational
field at all. That is, the metric

s = 3P7de® + dy) — 2dudv — } |A 1 d,
where
VP2 =0

represents a conformally flat space, with a nonnull
electromagnetic field present.
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5. EXACT FLUID SOLUTIONS

The question we now investigate is whether there
exist any Petrov type N solutions of the field equa-
tions with a perfect fluid. A partial answer has been
given by Kundt and Trimper,* who show that no
solutions exist if w = 0 (w = angular velocity of
fluid). By Eq. (2.21) this is seen to be equivalent to
the statement that no Petrov type N solutions with
perfect fluids exist in which the waves are prop-
agated along null geodesics (y = 0). However, the
case

p = u+ A(t)7

where ¢ = const are the hypersurfaces to which the
u* are orthogonal (they exist on account of the pos-
tulate w = 0), eludes the Kundt-Triimper analysis.
They discard this case as unphysical since it is
usual to have p < fu. This is not totally convincing,
however, since u might be almost constant on the
hypersurfaces ¢ = const, and A(¢) chosen in such a
way as to have p < 4 satisfied everywhere. There
appears to be no straightforward way of eliminating
this case, and it must remain an open question
whether there exists solutions of Petrov type N with
p=ur+ AQ.

The more general case w # 0 is much harder to
analyze since the fluid streamlines are no longer
hypersurface-orthogonal and it is not possible to
set up suitable Gaussian coordinates. We have man-
aged to deal with the case p = 0, where by (2.4b) the
streamlines are geodesic, %, = 0. The result, proved
in the Appendix, is the following:

No solutions of Petrov type N with incoherent matter
(p = 0) exist.

While the question of the existence of type N
solutions is still not decided, we see from the above
results that such solutions, if they exist, must be of
a complexity considerably exceeding that of any
fluid solutions that have been found to date.

To conclude this discussion, we give a simple
argument to show that locally there can be a fluid
present in a Petrov type N metric. Consider a
conformal transformation of the metric,

2
Qab =€ "gab-
The Rieci tensor transforms as
R = Ry + 2u.y — 2uu, + (2u 4 u°,)gus,
where
ua = u.a} ua;b = ub:m

The Weyl tensor remains invariant

éabcd = Cabcd;
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so that the Petrov type of the metric is unchanged
by the conformal transformation. If we consider
g.» to be the metric tensor for a vacuum solution
R,, = 0, and let « be a solution of the partial dif-
ferential equation

g u g, =uut = —1, (5.1)

then
Ru = 20, + (56/3 — 2ha — bug,,
where
Ussp = 0ap + §6Ra.

Using the field equations in the new space

Ro — 3Rf0 = =T,
where

R =PRu,g" =66 — )e™,
we find that
T = —204 + (46/3 — De ™ha
+ (3 — 200 ™0ds,  (5.2)

where %, = e"u, is a timelike unit vector in the g,,
space, and h,, = dur + %uts. Thus we have generated
a perfect fluid solution from the vacuum if we can
find a solution of Eq. (5.1) with ¢,, = 0. We cannot
find such a solution if the initial metric is of Petrov
type N, since the fluid streamlines would be hyper-
surface-orthogonal (w = 0), contradicting the result
of Kundt and Triimper. However it is clear that at
any point of the manifold it is possible to find a
solution having o, = 0 at that point. In this way
we can generate a “local fluid.” But as we depart
from this point we will have ¢,, # 0, and aniso-
tropies will appear in the energy tensor. It is not
inconceivable that we might find a solution in which
¢ remains small relative to 6 at least for a sizable
region of the manifold, and in this region we will
have an ‘“‘almost-perfect”’ fluid. We can obtain an
upper bound for the size of the region in which 7',
remains physical. From (5.2) it is seen that the
density and mean pressure are given by

p=e 3 — 26),
p = e ™(46/3 — 1).

Hence, if x4 and p are both to be positive we must
have

i<0<i

Furthermore ¢ should be much closer to the lower
value than the higher, else the pressure dominates
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the density. Now we can use the Ricci identities
Rdacdud = 2ua;[bc]'

Contracting over a and ¢ and using the vacuum
condition R,, = 0, we find on further contracting
with u® that

6 = 98/du = —2¢° — 6.
If initially at u = uo, 8 = § + ¢, we will have
a0/ou < — %,

1
hence # can only remain > % until a time u, =
u, + 16 ¢/3, after which the pressure becomes nega-
tive.

6. RELATION TO ELECTROMAGNETIC THEORY

The results obtained in this paper for the prop-
agation of gravitational waves in matter have a
strangely unfamiliar ring when we try to compare
them with the usual electromagnetic treatment. For
example, the “refraction” discussed here is nothing
like the refraction of electromagnetic waves, for
there is no slowing down of the waves—there is
merely a deflection from the straightest, the geo-
desic, path—while the other feature of the inter-
action, the shear of the waves, is something never
discussed in electromagnetic theory. It is not hard
to see where the difference between the two theories
lies. We could treat the electromagnetic field in a
similar way, discussing the Maxwell equations

Fab.b — ja’

and obtaining a departure from geodicity and a
shear in the electromagnetic wave coupled to the
current vector j°. But this treatment would be
entirely wrong if applied, say, to light passing
through a slab of glass. In this case the interesting
features occur at the atomic scale, where the cur-
rent §° becomes extremely complicated. When we
smooth out all these tiny currents we have j* = 0, so
that the field should propagate as though there was
no matter present at all,

Fab.b = 0.

But at the atomic level there is the creation of a
large number of oscillating dipole moments which
produce their own field, out of phase with this
freely propagating field in just such a way as to
produce a total transmitted wave traveling with a
speed less than that of light in vacuum. Feynman'

4 R. Feynman, Lectures on Physics, Vols. I and II (Addi-
son-Wesley Publishing Company, Inc., Reading, Massachu-
setts, 1963).
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has recently given a very clear and beautiful treat-
ment of just this problem.

There are several reasons why such a discussion
would not be applicable to the gravitational case.
In the first place general relativity is a continuum
theory and is only valid at that scale where we can
regard the matter as smoothed out into a highly
regular fluid. It is very difficult to see how one could
treat a system of discrete particles in the theory.
This feature arises again and again, its most famous
instance perhaps occurring in cosmology where the
whole galactic population is smeared out into a
continuum. Secondly, the principle of equivalence
demands that all masses respond equally to the
gravitational field, with the result that no dipole
moments are created in the matter. It is true that
.quadrupole moments may occur, but there is still
another point to bear in mind here. It is only on the
astronomical scale that matter is held together by
purely gravitational forces; on the terrestrial scale
it is the much larger electromagnetic forces that
are important. A comparable situation in the elec-
tromagnetic theory would be if the atoms were
held together not by the electric forces but by some
field which was stronger by a factor of about 10*°
(even the nuclear forces pale into insignificance
here). In such a case the induced dipole moments
would be weaker by a corresponding factor, and
the usual phenomenon of refraction would never
be observed. Our analysis of refraction would then
have to follow lines similar to those discussed in this
paper.

The above discussion raises some inevitable que-
ries. If large-scale gravitational waves arise, or have
arisen at a more chaotic epoch of the universe, how
do these propagate through the galactic system?
The analysis should now follow the more familiar
electromagnetic treatment, with induced quadrupole
moments in the galaxies replacing atomic dipole
moments. At the other end of the scale, we may ask
how very short wavelength gravitational radiation
(of atomic dimensions) would propagate in ordinary
matter. Again, the electromagnetic treatment should
be the one to adopt.
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APPENDIX: PETROV TYPE-N SOLUTIONS
WITH INCOHERENT MATTER

Consider a fluid with p = 0. From Egs. (2.4a, b)
we have

o= —upb,

%, = 0.
Let us assume w 5 0. If the Weyl tensor is of Petrov
type N with principal null vector k, = %, + s,
we have from (2.21) that v # 0 (k, is not geodesic).
Take r, the unit vector pointing along vi, + ¢,
and ¢, the unit vector pointing along ¢(vl, — ¥i,).

Uq, Sqy Tay and g, form an orthonormal tetrad. From
Egs. (2.17) to (2.22) and (2.2) we have

Us;p = 20817 T 30’(sasb - Tl;hab) + %0hab (Al)

and

sy = p(3wr, + V3 gs, + 0us). (A2)
If we put these into the current conservation equa-
tion (1.4) we get

—1w(20 + V3 o) (A3)

o =
and
%.q" = #.q° = 0. (A4)
Consider the Ricei identities
Rty = 2Us.14-

Using (1.1) and the field equations (2.3) this may
be rewritten in terms of the Weyl tensor

C%edths = 2Up; 1001 + F0UGers (A5)

Contracting over b and ¢, and a further contraction
with 4’ results in the well-known Raychaudhuri
equation

6= —3u+ 25" — 25" — 36°. (A6)
Using the fact that C?,., is of Petrov type N,
C%eaka = 0, (A7)
results in
V36 =30 — 3300 — & (A8)
and

The last equation together with (A4) gives that
(A9)

8.¢=7.'d=0.
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Using the Weyl tensor symmetry
C*ear = 0,
and the fact that u , is a gradient in (A2)
Bam = 0,
we find, using (A7), that
Sterclather = 0.
That is,
kan@’®" = iy — 7)/V2 vl

Hence y"y® = 0, that is, either v’ or ¥ is zero,
which means that ¢, and r, coincide with the polari-
zation directions of the transverse wave. This means
that we can write the Weyl tensor as

Cabcd = 2C(kla7‘b]k[crd] - k[aqblk[ch])'
By (A5), (A6), and (A8) we find

b
0 = 8,08 =

b e d

C = 20,,.urur’ = —'. (A10)

Now,
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V2 l'Yl = ka:brakb)
and by (2.21) it follows that
= oo — 8,,7°"). (Al1)

Now

b b d b
(80:57°8 ), U’ = Sp;e;?U'S F RyaesST S U,

From (A5) and (A7) it follows that the last term
vanishes, while the second term can be written as

wSa; T — 3(8 4+ 2V3 0)s,,.°8° .

If we now differentiate (A11) along u* we find using
(A3), that

80t = 3 (V3o — 0) — uV3 0.

A final differentiation along u* of this equation re-
sults in
pet = 0.

Hence w = 0 and our theorem is proved, since by
(A10) this means C = 0 and the Weyl tensor
vanishes.
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The statistical correlations of the matrix elements of real symmetric Hamiltonians are studied using
the assumption of representation invariance and the limit of large dimension N. The diagonal-diagonal
correlation coefficient is expressed in terms of a parameter which gives the ratio of the dispersion of
off-diagonal element to that of the diagonal element. It is shown that for a certain class of real-sym-
metric Hamiltonian ensembles in the limit N — «, the diagonal-diagonal correlation coefficient goes
as AN, where A is some positive constant independent of N and the correlation coefficient of two
different eigenvalues is the same as the one obtained using the weak assumption of independent

probabilities.

I. INTRODUCTION

HE joint probability distribution for the Gaus-
sian ensemble of real-symmetric Hamiltonian
matrices was first derived by Porter and Rosenzweig.!
This derivation is based on the assumptions that (1)
the matrix elements are distributed independently of
each other, and (2) the Hamiltonian is statistically
invariant under linear orthogonal transformations
of the set of basic functions. The assumption (2)
is a physical assumption, because this simply means
that the joint probability distribution should be
independent of the orientation of the base system of
axes, but assumption (1) is quite unphysical.? It is
natural to ask if there is some way of avoiding the
weak assumption that the joint probability dis-
tribution of the Hamiltonian matrix elements is
made up of independent distributions for the sep-
arate matrix elements. It has been shown recently’
that the requirement of invariance under arbitrary
changes of representation and the limit of large
dimension are sufficient to obtain the same results
for the distribution of the eigenvector components
of a random Hamiltonian matrix, as those obtained
by the requirements of representation invariance
and the independent distribution. In this paper, we
shall study the correlations of the Hamiltonian
matrix elements using the assumption of representa-
tion invariance and the limit of large dimension.
Let us consider an ensemble of N X N real-
symmetric Hamiltonian matrices with elements H,,.
These matrices belong to a definite value of the
total angular momentum and parity and have
iN(N + 1) different matrix elements which we
take to be the diagonal plus superdiagonal matrix
elements. The ensemble of matrices is described by
1 C. E. Porter and N. Rosenzweig, Suomalaisen Tiedeakat.
Toimituksia Ser. AVI, 44 (1960).

2 F. J. Dyson, J. Math. Phys. 3, 140 (1962).
3 Nazakat Ullah, J. Math. Phys. 6, 1102 (1965).

giving the differential probability with which a
matrix characterized by certain numerical values of
the matrix elements H,, occurs. It should be pointed
out here that we do not know in what representation
H will be diagonal and therefore a typical member
of the ensemble will have a large number of nonzero
off-diagonal elements. The N eigenvalues E, and
the eigenvector components a, of the random
Hamiltonian matrix will themselves be random.
They are related by

Hﬂv = ;E)\au)\av)\' (1)

The N X N matrix formed from the eigenvector
components a,, will be a random orthogonal matrix.

We are interested in the ensemble averages of the
products of the matrix elements given by equation
(1). Using the representation invariance hypotheses
this averaging can be done separately over the
eigenvalues and the eigenvector components.! The
averages of the products of components of a set of
orthogonal unit vectors randomly oriented in the
N-dimensional space are known.* These known aver-
ages enable us to predict some of the correlations
of the Hamiltonian matrix elements and to find
relations between the correlation coefficients of the
Hamiltonian matrix elements and those of its eigen-
values.

II. CORRELATIONS OF HAMILTONIAN MATRIX
ELEMENTS

It has been shown earlier* that for any N, the
representation invariance hypothesis leads to the
conclusion that there are no correlations between an
odd power of the off-diagonal matrix element and
any power of diagonal or another off-diagonal matrix
element. In this section we would like to study the
correlations for large N. But before we discuss the

¢ Nazakat Ullah, Nucl. Phys. 58, 65 (1964).
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case for large N, let us first give an expression for
diagonal-diagonal correlation valid for all N. Using
expression (1) and the known averages of the eigen-
vector components,* we can show that the diagonal-
diagonal correlation coefficient is given by

CH“.Hes =1- ﬁ27 (2)
where
_ (T B’
b= [N‘ <TrH2>]

X [(N D+ - 1) <(TrH)2>]

The bracket sign { ) above denotes the ensemble
average. In writing expression (2) we have taken
(TrH) = 0, which simply means that the mean
eigenvalue is taken to be zero.

The ratio of the dispersion of the off-diagonal
element to that of the diagonal element can be ex-
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It is interesting to note that the correlation coef-
ficient given by expression (5) can have both positive
and negative values depending on the parameter 8.
The results of the independent distribution imme-
diately follow if we put 8° = 1.

To study the correlation coefficient given by ex~
pression (2) for large values of N, we consider the
ratio

y = {(Tr H)")/(Tr H?). (6)

We shall show that for a certain class of real-sym-
metric Hamiltonian ensembles, v is of the order of
N~'. To show this let us denote the joint probability

density function by Py(H,,, Hys, +++ , Hyy), then
[ e miPutt -, Hi) Lt

v = 7
[ TPy, - B T,

wlv

Let us make an orthogonal transformation on N

pressed in terms of the parameter 8, which depends variables Hyy, Hyo, - -+, Hyy
2 HZ
on N and {(Tr H)*)/(Tr H"), as H., = S C.H,, ®)
(L)L) = 36 @ " .
such that Cy;, = C, = -+ = Cy = N7% then
Using the relation between the diagonal-diagonal , 4
correlation coefficient and the correlation coefficient Hy, =N"TrH,
of two different eigenvalues, the latter correlation gnd since € is an orthogonal matrix, therefore
coeflicient is given b
s Sm-Tr;, [, = .
C _ 362 — 2 ) (5) # 13 ® »
BwBe ™ (N — 1) + 2 Expression (7) now becomes
[ HEPE, B, - Hi) L aR,, T1 diT,
vy = N u<y .
f(EH +2 X HL)Px(Hiy, Hus, -+, Hiw) T1 at,, T1 aHL,
n<y n<y
We now regard the matrix H as a vector in [L, = angle. Expression (9) can be written as
1N (N + 1)}-dimensional vector space® and introduce s
the L-dimensional spherical polar coordinates f Fy(sin 0, cos 6) cos’ §sin“~* 0 do
=N , (10
Hiy =rq, -+, Hiw = ¢, T -2 10
f Fx(sin 6, cos 6) sin"™" 6 df
V2Hy = rgya, o+ V2 Hy-y.x = 141,
then where Fy(sin 8, cos 0) is the function obtained by
Lot integrating over r and all the angular variables
f GPx(r, @, -+, qu) dr dQs except 6. By a slight change of variable we can ex-

Y= N )
fr"“PN(r, Q, ", qu) dr dQy

where dQ; is the L-dimensional differential solid

9

¥ N. Rosenzweig, Brandeis University Summer Institute
Lectures tn Theoretical Physics, 1962 (W. A. Benjamin, Inc.,
New York, 1963), Vol. 3, p. 91.

press v as

i
f Fy(—sin a, cos a) sin® a cos*™* & da
i

y=N-—=

ir
f Fy(—sin a, cos a) cos”~” a da
—j

(11
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‘We now make the assumption that our probability
function Py is such that the function Fy(«) can be
expanded in a convergent series around a = 0.
Therefore, most of the contribution to the integrals
in the numerator and denominator of expression
(11) will come from o = 0 when L is large and the
dependence of the ratio ¥ on N will be like N7*.
Expressions (2), (3), (4), and (5) show that for such
ensembles in the limit of large N, the ratio of dis-
persion of the off-diagonal element to that of diagonal
element is 1, the diagonal-diagonal correlation goes
as AN, where ) is some positive constant independ-

NAZAKAT ULLAH

ent of N and the correlation coefficient Cg,,z, is
given by

Ce,.z; = —N", (12)

The correlation coefficient given by expression (12)
is the same as the one obtained using the assumption
of independent probabilities.
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A review is presented of irreducible unitary representations of the (3 4 1)-dimensional restricted
Lorentz group on manifolds of time-, light-, and spacelike 4-vectors. In each case a complete set of
orthonormal (in the sense of the distribution theory) basis functions is available. The completeness
relation for the nontrivial spacelike case is proved in detail. Expansion formulas, Lorentz-group
analogs of the Fourier integral theorem, are given. In particular, expansions of plane-wave solutions
of the Klein-Gordon equation for — o < m? < « are worked out as an illustrative example. Possible

physical applications are briefly discussed.

I INTRODUCTION

HE mathematical theory of representations of

the (1 + 3)-dimensional (restricted) Lorentz
group Ly(= L!) has received a considerable amount
of attention both in physical and mathematical
literature.'~® The finite-dimensional nonunitary rep-
resentations of this group have long been known and
utilized in physical applications. The infinite-dimen-
sional unitary representations have also been known
for some time*; perhaps surprisingly, they have not

* This work was sponsored by the National Aeronautics
and Space Administration under Contract No. NAS7-100.

1 B. L. van der Waerden, Die gruppentheoretische Methode in
der Quantentheone (Springer-Verlag, Berlin, 1932).

* M. A. Natmark, Linear Representa,twns of the Loreniz
Group (The Macmillan Company, New York, 1964)

3]. M. Gel'fand, R. A, Minlos, and Z. Shapiro,
Represeniations of the Rotation and Lorentz Groups and their
Applzcatums (The Macmillan Company, New York, 1963).

P, A M. Dirae, Proc. Roy. Soc. (London) A183 284
1945); 1. M. Gel’fand and M. A. Naimark, J. Phys. 10 93
1946;; Harish—Chandra, Proe. Roy. Soc. (London) A189, '372
1947).

been very widely applied in physics.® All irreducible
unitary representations of L, are known and are
usually explicitly constructed in terms of functions
defined on complex manifolds.” For example, the
so-called principal series representations of L, are
constructed on the space of all complex-valued
functions f(2), z = =z + 4y, for which

JP2 (@ drdy < .

The complex variable z has no immediate physical
significance, and this is a distinct disadvantage for
physical interpretability of these representations.
In practical applications, one frequently en-
counters situations in which functions of one or
more 4-vectors transform according to the Lorentz
group L,. For example, scalar fields obey the trans-
5 E. M Lifshitz, J. Phys. 10, 116 (1946), . L. Ginzbur,
and I. E. Tamm, JETP 17, 227 (1947), .M. Gel’fand an
A M. Yaglom, JETP 18, 703 (1948) S. Sha,plro, Soviet

Physics—Doklady 1, 91 (1956); 1. S. Shapiro, Physics Letters
1, 253 (1962).
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been very widely applied in physics.® All irreducible
unitary representations of L, are known and are
usually explicitly constructed in terms of functions
defined on complex manifolds.” For example, the
so-called principal series representations of L, are
constructed on the space of all complex-valued
functions f(2), z = =z + 4y, for which

JP2 (@ drdy < .

The complex variable z has no immediate physical
significance, and this is a distinct disadvantage for
physical interpretability of these representations.
In practical applications, one frequently en-
counters situations in which functions of one or
more 4-vectors transform according to the Lorentz
group L,. For example, scalar fields obey the trans-
5 E. M Lifshitz, J. Phys. 10, 116 (1946), . L. Ginzbur,
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Physics—Doklady 1, 91 (1956); 1. S. Shapiro, Physics Letters
1, 253 (1962).
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formation law ¢(x) — ¢(Ax); invariant (scattering)
amplitudes of 4-momenta p,, p,, :-+ transform as
A(py, P2y +++) — A(Apy, Aps, - - - ), ete. These various
quantities do not transform irreducibly under L.
One is frequently interested in expanding them in
terms of funections irreducible under L,. Thus one
is faced with the problem of constructing irreducible
(unitary) representations of the Lorentz group on
a manifold of a single 4-vector and then with the
problem of expanding arbitrary reasonably well-
behaved functions defined on this manifold in terms
of Lorentz-irreducible functions. The case of several
4-vectors is treated by performing expansions in
each of the 4-vectors and then using the Clebsch—
Gordan machinery to effect the desired reduction
into irreducible components under L,. Most of the
required Clebsch—Gordan coefficients are available
in the literature.® We shall not be concerned with
the reduction part of the problem in this paper. Our
goal is to examine the expansions of functions of a
single 4-vector. We shall restrict our discussion to
the important special case of spin zero for which
G, one of the Casimir operators of L, vanishes.
Nonzero spin requires extra variables, in addition
to the 4-vector components, and is therefore beyond
the scope of this article.

Our work is based on solutions of a number of
second-order ordinary differential equations rep-
resenting eigenvalue problems associated with cer-
tain operators constructed from the generators of
Lo. Not all possible solutions of these equations are
acceptable: only those which are normalizable to a
constant or to a delta function. Our rather pedestrian
approach to the expansion problem via differential
equations has the virtue that all calculations are
explicit and straightforward; a large body of results
from the theory of differential equations may be
utilized which would not be available with the more
abstract approaches.

Irreducible unitary representations of the Lorentz
group on manifolds of timelike 4-vectors have al-
ready been discussed by a number of authors.®’
Corresponding representations in terms of spacelike
4-vectors have also been discussed, although not in
full generality; we believe that some of the results
on this subject given here are new. The lightlike case

¢ A. Z. Dolginov and I. N. Toptygin, Zh. Eksperim. i Teor.
Fiz. 37, 1441 (1959) [English fransl.: Soviet Phys.—JETP
10, 1022 (1960)]; A. Z. Dolginov and A. N. Moskaley, ibid.
1697 (1959) [English transl.: ¢bid. 1202 (1960)]; M. A.
Naimark, Am. Math. Soc. Transl. 36, Series 2, pp. 101-229.

7 Chou Kuang-Chao and L. G. Zastavenko, Soviet Physics
JETP 35, 990 (1959); V. S. Popov, Soviet Physics JETP 37,
794 (1960); N. Ya. Vilenkin and Ya. A. Smorodinskif, Soviet
Physics JETP 19, 1209 (1964).
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does not appear to have been treated before. All
three cases are reviewed here in the interest of com-
pleteness.

A summary of irreducible unitary representations
of the restricted Lorentz group is presented in Sec.
II. Lorentz-group. expansions on manifolds of a
single 4-vector are discussed in Sec. III for the
timelike and spacelike cases. Expansions of functions
of a lightlike 4-vector are considered in Sec. IV. A
summary of results is presented in Sec. V, and pos-
sible physical applications are indicated. Finally,
three appendices are devoted to detailed proofs of
certain statements made in the text as well as to
an illustrative example.

II. THE RESTRICTED LORENTZ GROUP

The Lie algebra £, of the restricted Lorentz
group L, is spanned by the six (Hermitian) operators
M, = —M,, uv=201,2, 3, obeying the com-
mutation relations

[Mu'. Mpv = iM[#lﬂgPl'li

where brackets denote antisymmetrizations as, e.g.,
in
A} = Quy = Gy,

and the nonvanishing diagonal metric tensor com-
ponents are
Joo = goo = g = —g“ = -1, 1=1,2,3.

Irreducible unitary representations of L, are char-
acterized by the eigenvalues of its two Casimir
operators F and @, commuting with each M,, and
given by

F=—-iM,M",
G = M, 0.
Here M is the dual tensor of M defined by

B = 47°M,,
1if (uvpe) = even permutation of (0123),
" = §—11if (upo) = odd permutation of (0123),
0 otherwise.

We denote the eigenvalues of F and G by
f=14"—-F,
g = 2kv.
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There are the following classes of irreducible unitary
representations of L, labeled by & and »*'®:

@ k=0, »=1;

i) k=0, »2>0;

Gi) k=0, v =1y, 0<y <l;
iv) £=1,2,3,++, —0 <y < o;

(V) k= %;%1%7 te

The representation (v) is double-valued; all others

are single-valued. The representation (1) with f =

g = 0 is the trivial or identity representation of L.
We shall use the notation

M= (M, My, M) = (Mps, M5, My5),
N = (N, Noy N3) = Moy, Mogy, Moys).
The commutation relations for the M, and N; are
M, M;] = de;uMy,
[M;, N;] = te.ulVy,
[N, N;] =

y—o <p < @,

—ie; My,

where

0ijk
€iik € .

The M; span the Lie algebra 8u(2) of the two-
dimensional unimodular group SU(2) homomorphic
to Rs, the three-dimensional rotation group.

The operators M* and M; form a maximal abelian
subalgebra of the operator algebra spanned by the
six M,,, and hence they may be diagonalized simul-
taneously with F and G. Thus one may introduce
the vectors |kvju) defined by the four eigenvalue
equations

(F, G, M*, M) |kwju)
=1+ =K, 2k, j(§ + 1), w) [kvju).
Here
j=k+n,
j—=1, 00, —j.

n =‘0’1’2’ e ,
B =1j
It is possible to choose a canonical form of the opera-

tors M,, and the vectors |kvju) for which the fol-
lowing relations are valid®:

M; ljw) = u i),
(M, £ M) [juy =[G F wG £ u + DF |ju £ 1),
Ny [jw) = [(G + 1) — &PFCHu | + 1u)

+ Uovw/iG + DI liw)y + (F — &HICY |j — 1p),
8 H. Joos, Fortschr. Physik 10, 65 (1962).

JONAS STASYS ZMUIDZINAS

(N, =+ iN,) |juy = FIG + 1 = 0§ + 2 = wICH,

X i+ 1p £ 1)+ B{F )G+ 1 £w/iG+ D)}

X lju£ )£ [GFuG— 1F WP i~ lux1),
ey = i — WG + /48 — D

where we have suppressed k, » in the vectors |kvju).
There is an error in Joos' coefficient of [ju £ 1)
in the expression for (N, == ¢N,) |ju); he has [§(7 +
1)]7? instead of [j(j + 1)]7'. The vectors |ju) are
just &®,,,; in Joos’s notation and are related to Nai-
mark’s® f* by the following substitutions:

i + 1wy — —~if;™,
liw) — 1,
li — 1) —3fi7,
(k, v, j, u) — (ko, —tc, k, v).
III. LORENTZ GROUP EXPANSIONS

We consider in this section the problem of con-
structing irreducible unitary representations of the
restricted Lorentz group L, in terms of functions
of a single 4-vector, 2. The solution of this problem
shall lead us to the desired decomposition of an
arbitrary reasonably well-behaved function of z into
a (possibly continuous) sum of functions transform-
ing irreducibly under L,.

As mentioned in the Introduction, we restrict
ourselves to the spinless case (G = 0). This means
that the generators of £, may be taken of the form

M, = X,P,,
where
[Py X\] = ig,.
Let us immediately choose the representation

P, = 13, = id/oz",

X, =z,
—o Lz, < o, w=020,1,2,3.
Then
M,, = iz,
F =29 — 32-90 — 2:99
with z2:00 = 2"2°9,9,. In addition to F, M’ and

M;, we may also diagonalize any one linear com-
bination of the operators P?, X* and P-X + X-P.
We choose P* = —4°, minus the d’Alembertian.
Thus

(PZ: F} sz M3)¢mfiu(m)
= (m27 f; .7(.7 + 1)) F)'Prnliu(x)-
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The operator P? is extraneous to the Lorentz group
and bears roughly the same relation to it as the
radial part of the Laplacian to the three-dimensional
rotation group. Not too much more will be said about
P? in the following. The functions ,.;;.(x) are ex-
pected to be concrete realizations of the abstract
vectors |kvju) of Sec. II, at least for the values of
k and » satisfying kv = 0.

To get a more explicit form of the above eigen-
value equations, we put®

r= (x07 m);
z = |z,

n = (sin 6 cos ¢, sin 6 sin ¢, cos 6),

with
—o <z < o,
0<zr< =,
0<6<m,
0L o< 2r
We find

—93 =9/0x =nd/dx — z 'nx(nx9/dn),
d/0n = (cos 6 cos ¢, cos 0 sin ¢, —sin §) 3/96
-+ (—sin ¢/sin 8, cos ¢/sin 8, 0) 9/3¢,
M = —inx4d/dn,
N = —in(x, 8/9x + z 8/0x,) — 2oz N xM.
From these results it follows that
—P? = 3*/ox2 — 98*/ox® — 2x7' 8/dx + M,
F = —(x, 8/3z + x 9/9x,)°
— 202 N&o 8/3z + x 8/010) + (x5 — 27z *M?,
—M? = 9%/96° + cot 6 8/86 + (sin 8)7* 8°/3¢°,
M, = —1 8/8¢.
It is clear that ¥,.;;.(z) may be written as
Ymsinl@) = @s(To, 2)a;,(m),
where the a’s satisfy the eigenvalue equations
M’a;, = j(j + Daj,

Msain = M@y,

3.1

and for integral j are just the familiar spherical
harmonics'®:

9 Note that z is used to denote both the 4-vector (z,) and
the magnitude of its spatial part, {x|. The usage should be
clear from context.

10 See, e.g., M. E. Rose, Elementary Theory of Angular
Momentum (John Wiley & Sons, Inc., New York, 1957).
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aiu(n) = Y,.(9, ®)

_ e 2@51(:_:_@}*
¢ [ I (¥ wi) Pes O
(1 — x2)u/2 di+y

21]| T itm (xz - 1)i°

Pi(x) = -
(@) P

We note the normalization

fdnain(n)*ai’u’(n) = 8;j 0y

x 2x
fdn=f desinof de.
o 0

The a;, satisfy (2.4) with
M, & iM, = e**?(£9/30 + 1 cot 6 8/3¢).
Since
Pi(—2) = (—)""*Pi(),
eI o ()Hene
we have
a;(—n) = (=) a;(n).
The completeness relations read

zi: a;(n)a; (n")* = 2+ 1

p=—j; 47

Pi(n'n’):

’

n-n’ = cos 6 cos & + sin fsin ¢ cos (¢ — ¢),

> G+ PP@a) = o1 - nw).

The solutions P4(cos §) of (3.1) forj =0,1,2, ---,
and u = j,j — 1, ---, — j are unique, bounded,
differentiable, single-valued, and normalizable on
the interval 0 < 6 < 7. For half-integral j at least
one of these properties fails to be true. More pre-
cisely, the following situation holds. Forj = %, %, - - -
and & < u < § the functions P;*(cos §) are quite
satisfactory. However, for negative p and j > 3
these functions are not square-integrable with respect
to the measure d(cos 8) and hence must be discarded.
One may be tempted to use a;, ~ P7'*'(cos 6).
But then a repeated application of M, — M, to
P;¥(cos ) leads to the undesirable functions P}(cos 6)
with » = %, , --- Nothing new is gained by ad-
mitting Legendre functions of the second kind be-
cause of the identity

b = _u+i7_r(j+l‘)! -#
Q:(x) ( ) 2 (] . u)[ P: (x)'
The only admissible set of solutions is for j = 3 for
which the two functions (sin 6)* and (sin 6)~* cos 6
are normalizable. Thus, except for this single case,
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half-integral angular momentum solutions of (3.1)
are pathological and will henceforth be ignored.”
The function ¢/, satisfies

(F;, P?)‘ani(xm z) = (f, mz)‘anf(xo; x),

where the subscript j indicates that M® in F and
P? has been replaced by its eigenvalue j(j + 1). To
separate variables in the above equations, let

2

P =g3—2" (—o <r'< o),

T/ (—@ <p< @),

i

p

and assume the decomposition
Oh(@o, ©) = bi(P)en(r).- 32

Transforming to the new variables and substituting
(3.2), we find

[a-» L+ig+n+ —fj—,,z]b;(p) -0, 33)

(@2l mle =0 6o

7‘2

We may think of the functions y..,;,(z) as being
the transformation coefficients between the vectors
|z} (eigenvectors of X,) and |mfju):

‘/’mfiu(x) = <x l mfj”>'

Thus, with proper normalizations, we shall require
that

[ awimti | a)e | mryiu)
= 5(’”1 - ml)a(f I f')aii’amt'

and
[ dt [ am T | mtismtia 12 = o = =),

where
dr = dx, dx, dz,; dz,,

5(1; - xl) = fI 5(.16,, - xl"))

and §(f]f’) is either &, or 6(» — »'), depending on
whether f and f* are discrete or continuous; similarly,
J df stands either for [ dv or ) ..

The volume element [ dz may be decomposed
into three parts, each invariant under L,:

u See, however, the discussion of the rotation group
representations for an arbitrary comglex j given by V. S,
f’o%(g and E. I. Dolinskil, Soviet Physics JETP 19, 1232
1964).
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f dx = f dx 6(z")8(x,)
+ fdx 6(z™) 8(—xo) + [dx o(—=7),

whetre
a0,

0(a)={0
1 a>0.

In terms of the variables % p, and n, we have
[ d 0 etz
= [ o [ ao ke — 1 [an, @5
0 1

f dz 6(*) 6(—z0)
- [arr | Dt -7 [a, GO

fdx 0(—z")
= [ ar | do3( — 07 [an. @D

Our solutions will be appropriately normalized with
respect to the above measures.

Let us now proceed to the solution of the eigen-
value equation F,b} = fbi. It is easily verified that
two linearly independent solutions of (3.3) are

(»* — 1)!P5(p) and (o* — 1)'Q3(n),

where P§ and Q¢ are the associated Legendre func-
tions of the first and second kinds,'® respectively,
and

a=01-Pt= (@ - AL

The Legendre functions are single-valued and
regular in the complex p-plane cut from — o to 1.
The timelike and spacelike solutions are quite dif-
ferent qualitatively and require individual discus-
sion. We consider the timelike case first.

Timelike Case

For a timelike vector z we have 22 — 2° = r* > 0
and p° = (zo/x)® > 1. Thus p falls in either of the
two open intervals (1, «) or (—«, —1). Consider
functions on (1, «). Using the volume element (3.5),
we shall require

%flm dp (0" — 1)7b{(p)*b}(p) = 8(f | f).  (3.8)

_ 2 All formulas quoted here concerning the Legendre func-
tions are to be found in A. Erdélyi et al., Higher Transcendental
Functions (McGraw-Hill Book Company, Inc., New York,
1953), Vol. 1, pp. 120-181.
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Remembering that ¢ = 2kv = 0 and disregarding
half-integral representations according to previous
arguments, we have three separate cases to consider:

() a==xk £=1,2,3,:-+;
() a= iy, »> 0;
(i) a= +v, 0<y, < 1.

Since
Pip) ~ o',  Qip)~p7,

for p — o, it follows that for j > 0 only the Q% can
be used. Now

Qo) ~ {(" -0,
(P - 1)a/2 )

at p ~ 1, so that for the case (i) the solutions are
unnormalizable, the integrand in (3.8) behaving
like (o — 1)™*"*2, Thus we are left with cases (ii)
and (iii) with j = 0, 1, 2, -+« , Consider the case
(). For j = 1,2, 3, --- we must use ;" although
for = 0 both Q¥ and P?” are admissible. We dis-
miss Py’ by requiring that the j = 0 solution be
obtainable by means of a lowering operator from
the j = 1 function. Thus, with a slight change in
notation, we have

bi(e) = Bi(s* — 1'Qi(p)

with the normalization constant B? to be determined
next. Noting

Q) =, TG + 1+ )

T(iv) p—1 _i"'}
XRe{r(j+1+iu)( 2 )

we find, using asymptotic integration, that

Rea >0,
Rea <0,

(3.9

(3.10)

3 [ a6t - D70 o)

2 —2x»y
e

~ & sinh
plus a term proportional to 8(v + ») = 0 (since
v, ¥ > 0). Thus we see that the solutions (3.10)
are normalized to §(r — »') with

|Bi] = (2/m)e""(v sinh m)t.

3y — )

Using well-known relations between contiguous Le-
gendre functions, one can ascertain that the functions

. _ -V } .
X (o' = 1DQ}(p)

1<p< =), (611
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multiplied by the a;,(n) behave canonically under
the action of M and

N = in(p’ — 1) 9/9p — pn xM.

They are thus concrete realizations of the vectors
k= Ovju) on the manifold of positive timelike
4-vectors z(z* > 0, z, > 0).

Taking p in the interval (— =, —1), we obtain
solutions on the manifold of negative timelike 4-
vectors z(z® > 0, z, < 0). Using the fact that

(- 1= — | —1|'forp < — 1 and
Qi—p) = —¢*"Qi(p) (Imp 2 0),
we find

bi(p) = (—=)'bi(—»)
for both signs of Im p.

The solutions (3.11) can be put into a familiar
form by setting

(p < _1))

p = coth ¢
and using Whipple’s formula
Q@) = ™ @/ +» + p)E@ — 7?
X P ~ 1) (Rez > 0).
We find
bi(p) = #(hsinh §)F T 67 + w)Pfzl (cosh D),

where either sign of 4-7» is valid. Using the integral
representation

P(cosh &) = (2/x)¥(sinh a)'[T(} — w)]™
X fo " @ (cosh & — cosh 5)™ cosh (v + )
valid for Re u < 1, we have the alternate expression*?
bi(o) = #2074 TT 6° + ) (einh £
X for dv (cosh ¢ — cosh v)’ cosw.
This can also be written as®
bi(p) = ~(=i2¢ I 6* + ) (sinh 1y

X di** cos v{/d(cosh §)*!.

As shown by Joos,® the following completeness
relation holds for the ab-functions:

18 A, Z. Dolginov and 1. N. Toptygin, reference of Footnote
6.
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o i

x,(p) = X, 2, a,mbi(p)a;(n")*bi(o)*

i=0 p=—j

= @/r)@* — 1)7¥sin plog[p + @ — D},
(3.12)

valid for zo, x5 > 04 and z,, 5 < 0, hence for p > 1.
For the mixed case, 2, > Oand 2§ < 0 orz, < 0 and
x5 > 0, one has p < — 1 and, as one may easily
trace through,

%.(p) = —@/)@ — 17
Xsin {rlog [-p — (@ — DI}, (38.13)
The formulas (3.12) and (3.13) may be combined by
writing
%.(p) = 70" — D}
X sin { log [p| + @ — D)

or

p = &-& = z-2'(rr?)H,

P> (3149
%,(p) = vr®sin {/sinh ¢
with
|p| = cosh ¢, > 0.

As further shown by Joos,®
f dv K,(p) = 2 |z,| 7* 8z — 2) p>1
0

or, in a manifestly Lorentz-invariant form,
f dv %,(p) = f ar’* r”* 8(x — ).
k1] g

For p < — 1 the integral vanishes, of course.
Stated in a different way, we have the following
decomposition of the four-dimensional delta fune-
tion:

8z — x)

= {"2’[(&-#) — 1]}}7" 8(a® — z'D)6(£-4 — 1)

X f: dvsin b log (-2 + [@-#) — 1)),
(3.15)

The kernel &,(p) has the “reproducing property”’
expressed by the formula

f dv 8¢ — DR, (u-v)K, (w )

= &y — )X, (u-u'), W=’ =1, (3.16)

which may be verified by substituting expansions
(3.12) for the kernels in the integrand or by direct
integration.
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Let us finally consider the case (iii) with & =
v, 0 < v < 1. As we have seen, for j > 0 only
the Q7% functions behave properly at p = o. How-
ever, (3.9) shows that

i*n(p) ~ (p — 1)—lr.l/2

at p = 1; hence they must be discarded. The only
remaining possibility is to use the functions
P;(p)(; = 0) which behave like (p — 1)"’* at
p = 1:

_ 1 (P 1)»/2
A +w) \p+1/

A trivial calculation shows that

o (p) =

5 " dp (6 — 1)7IP(0)*Pr ()

= [20 + v)T( + »)T(1 + »)]7".

Thus these solutions are not orthogonal for dif-
ferent values of »,. This is not at all surprising since
they correspond to the so-called complementary
series of irreducible unitary representations of L,
constructed on a Hilbert space with an inner product
different from that of the Hilbert space appropriate
to the basic (or principal) series of representations
with & and » real. We shall not further discuss the
complementary series of representations in this paper
since they do not occur in expansion formulas we
are going to consider. We hope to examine these
representations on another occasion.

Next on our agenda is the expansion problem of
functions of timelike 4-vectors. Let us suppose that
the function ¢(z) is square-integrable on the mani-
fold 2* = * > 0, 2, > O:

f dz 8(2° — )0(z,) (@) < =,
We define its “Lorentz transform’ &,;,(+") by

et = [ @8 @7 6@ — Moo

X a,@*bi(p)*;  (3.17)
the inverse is given by
W@ = [ &% X el @be. 618

A rigorous proof of these formulas is beyond the
scope of this work; we may only remark that it
parallels the proof given by Naimark® of a general
theorem on the expansion of functions defined on the
group manifold of the group SL{2, C) homomorphic
to the Lorentz group. The analog of the Plancherel
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theorem'* of the Fourier theory is the formula
[ da @ st = o) lo@P
= j; dv Z Z l@wu(r )l2

§i=0 p=—j
Spacelike Case

For a spacelike vector x we have 22 — 2° = 7 < 0
and hence p* = (x,/2)> < 1 or —1 < p < 1. The
normalization to be imposed on our solutions is,
according to (3.7),

L[ do e = Db = 511,

Just as In the timelike case considered above, we
have here three sets of values of & = (1 — f)} to
be investigated separately. We start with the case
(ii), @ = v, » > 0. Let us take the solutions bi(p)
given by (3.11) for p > 1 and try to continue them
into the region p < 1. Since bi(p) is regular in the
complex p-plane cut from — = to 1, we see that we
get two different continuations, depending on
whether we continue along the upper or the lower
edges of the cut. Thus we shall consider the two
functions bi(p + 10) and bi(p — 0); note that
bi(p + 10) = bi(p — 0) for o> > 1. On the interval
(=1, 1) it is advantageous to introduce the Legendre
functions on the cut, Pi”(p) and Q;’(p). Making use
of the formulas

Q7 (p % 10) = " "[Q}(p) F (im/2)P}"(0)],
Pi’(—p) = (—)"[cosh mP}"(p)

+ (2/ir) sinh mQj’(p)] (0 < p < 1),
Wp £40) — 1) = £i1 — ) (" < 1),
we find
bilp = 10) = =®{(o)le* P} (p)

— (=)™ P (— 0],

o - () (1280 o

Let us define the linear combinations

csch /2

b = 2SR ™2+ D) = biGp — )
= 27%@{(n)[P}’(0) = (-)'P(—0)]. 3.17)
1t is clear that
b5 (—p) = £(=)'b*(p). (3.18)

u B, C. Titchmarsh, Introduction to the Theory of Fourier
Integrals (Oxford Umversxty Press, London, 1948) 2nd ed.
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A simple computation shows that
% f_ 11 dp (& — DB (o) b5(0) = (v — ).
The result
%f dp (0 — D7BX(0)*Y(p) = 0

follows from (3.18). The factor 27% in (3.17) is neces-
sary for proper normalization since for the spacelike
case both p = 4+ 1 and p = — 1 endpoints contribute
to 8(»r — ).

The kernels

" — 24 1
xip) = y 2L

i=0

P,(n-n")bl* (o) b} (o")*

are evaluated in Appendix A, where it is shown that

Fix.m p>1,
Xp) =9 0 —-1<p<1, (3.19
—3iX.( p< -1

here ®,(p) is given by (3.14). Note that under
p — —p, we have X5(p) — £XK%(p), as necessary.

Let us next consider the case (i) witha = k, k =
1,2,3, --- . It is known that the Legendre functions
Pi(p) form an orthogonal set with respect to the
weight function (1 — p°)™":

1
[ a0 @ = ORGP () = buli+ BYG — B
Thus we have the normalized solutions

i = | S0 e, Go0)

1/t , .
5 f_l do (p* — 1)7°bi(p)*bi-(p) = bua-.

We note that
Pi(—p) = (=)"""Pi(p).
The phase factor ' has been determined by letting
@v — k in the functions b!*(p) and ignoring an un-
important constant over-all phase factor. The solu-
tions QF* behave as (1 — p) ™% k = 1,2,3, --- ,
for p ~ 1, and hence they are unnormalizable.
We compute next the kernel

%) = 3 2L P @nb(abice)e.

i=k

From (3.20) we have
bi(p)bi(e")*

G—=0!
= %G

1 — ML — PURPIP).
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Using the addition theorem®

Pi(cos @) = P(o)P(¢')
Ty }: (Jj—:ﬂ P(o)P(e") cos e,

cosa = pp’ + (1 — pz)*(l — p'z)* €OS w,

valid for |p], |o’| < 1 of interest here, and the orthog-
onality relations

1 m=n=0,

lf dw cos Mmw CosSNw = Y% m=n 21,
ko
0 m#n,
we obtain
G = B a o
(]+k)! :(p) :(P)

———1[ doPcosa) coske (G2 k> 1).
T Jo

Thus
= L0 - M- TG+ DP@)
X ff dw P(cos a) cos k.
0

Interchanging the integration and summation and
extending the latter to run from j = 0 at no extra
cost (because of the orthogonality of P;(cos a) to
cos kw for j < k), we find

= 51— - oY
X f dw 8(cos @ — n-n’)T,(cos w),
0

where
T.(cos w) = cos kw

is the kth Chebichef polynomial of the first kind.*®
Noting that

1 — ) — p)} 8(cosa — n-w)

o/ —n-n’

pz)i(l _ plz)}) = &(cos w +P):

= 6<cOSw + a _p

we get

%, = kTu(—p)8(l — pD/=°(1 — ). (3.21)

15 A, Erdélyi et al., Higher Transcendental Functions
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. 2,
244,
St Reference of Footnote 15, p. 183.
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This kernel, too, has the reproducing property
fdv 6@ + Dx(u-v)Ke (U v) = 8 Kalr-n).
Moreover, it is orthogonal to X3:
fdv 80 + DXu(u-v) K5 v) = 0;
this_followg from the easily proved orthogonality
of b} and bl*.

As we show in detail in Appendix B, the complete-
ness relation for spacelike solutions of (3.3) is

(1= #)p— ) = [ doloinhm) (P IP; (o)

+ PP AP (=] + 2 b P
for § > 1; when § = 0, the last term is omitted.
Multiplying this through by

(—2/2°) 8" — ') — p)(2j + 1)P(n-n’)/4x

and summing on j from 0 to «, we find, on inter-
changing j-summation with v-integration and k-sum-
mation in the above,

8z — o) = —(2/2") @ — &)1 — o)’
X 8(p — p) &1 — n-n’)
= —(1/2) 8@ — x>{z %.(p)
+ f " MK ) + sc:@)]}, (3.22)
where

@) + %0 = —X.(6(—1 — p)

and X, is given by (3.14). The formula (3.22) is
the spacelike analog of (3.15).

No continuous normalizable solutions of (3.3)
can be found for the case (iii) with o = oy, 0 <
vo < 1, because of the singular behavior of both
Legendre functions at p = —1. A particular linear
combinations of the two Legendre functions which
is nonsingular at p = —1 becomes singular at p =
+1 and vice versa. If one is prepared to accept
solutions which themselves or their derivatives are
discontinuous at some interior point of the interval
(—1, 1), then normalizable solutions may indeed be
constructed. We shall not consider them.

The expansion formulas for the spacelike case
are obvious analogs of those previously given for
the timelike case, except that now we must include
both discrete and continuous contributions.



UNITARY REPRESENTATIONS OF THE LORENTZ GROUP

As an application of the expansion formulas, we
consider in Appendix C a decomposition of the
plane-wave solutions of the Klein—-Gordon equation
(for positive and negative m®) in terms of the
Lorentz-irreducible functions discussed above.

IV. LIGHTLIKE SOLUTIONS

In the lightlike case we have x2 = z°, and hence
the “spherical” and the “radial” equations, (3.3)
and (3.4), are both in terms of the same independent
variable. Consequently, a novel situation obtains.
We write

7] = €* = (2} + 25 + a3t
and consider z,, ,, z; as independent variables. The
expressions for M® and M, are the same as before
while those for F and P? are obtained by setting

8o = 0 in the corresponding expressions for the time-
like and spacelike cases given in Sec. III. We find

P? = ¢ 9%/0u’ + 9/0u — M),
F = —3/ou® — 29/du.

Diagonalization of F leads to the eigenvalue equa-
tion

(—o <y < ®)

it

(d*/du® + 2 d/du + )b;w) = 0
with solutions, for f # 1,
b)) = Cie™™ + Cd™,
Bio=—1=x(@1—pHL

The invariant volume element is'’

fdx 8(z") = %ﬁ: duez“fdn.

The only normalizable class of solutions (4.1) is
that for f = 1 4+ 4%, » > 0. One easily verifies that
the functions

i . . -V }
bf(u) — (—1')’6(—1*‘,)“7"_}[?8 i i i zyg]

#.1)

satisfy

1 « ug + +* 4
: f_& du B bE W) = 86 — ),

%f du e*biw)*b;. () = 0,
and, multiplied by a,,(n), behave canonically under
M and
N = —i(n d/du + d/on).

1 We omit the factor 6(==zo) on the understanding that
the sign of x, is fixed, solutions for both signs being the same.
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We also have the completeness relation

[ Biapie)* + biebie))
= 2" 8(u —u).

It should be clear that the solutions b5 do not
satisfy the eigenvalue equation P’y = m’®y for
m® # 0. If m*> = 0, then P’} = 0 can be satisfied
only at the expense of having j = Zdv or §j =
—1 == v, of no interest to us.

From the above we see that lightlike solutions are
of a rather simple nature, being pure exponentials
independent of the angular momentum j. It follows
that various expansion formulas are just those of
the Fourier integral theory which need not be re-
peated here.'*

V. DISCUSSION

The theory of decomposing functions defined on
a manifold according to irreducible representations
of a given group is known in the mathematical litera-
ture as harmonic analysis.'® A familiar example is
the theory of Fourier integrals connected with the
group R of real numbers under addition. Viewed in
this light, our work might be described as a phys-
icist’s version of harmonic analysis associated with
the Lorentz group L,. The noncompact nature of
L, (or R) is reflected in the occurrence of delta-
function normalizations for the basis functions of
some of the representations. This fact does not pre-
sent any great difficulty. The non-Abelian character
of L, is, on the other hand, the real source of com-
plications because of the appearance of associated
Legendre functions with complex-valued indices, as
contrasted with simple exponentials in the case of
the group R.

Let us briefly summarize the results of the pre-
ceding sections. We have found that the discrete
representations of Ly(v = 0,k = 1, 2, 3, - --) oceur
only in the spacelike case. The continuous series of
representations (» > 0, &k = 0) occur in all three
cases. All these representations belong to the prinei-
pal series of irreducible unitary representations of
L,. Normalizable continuous solutions belonging to
the complementary series of representations are
available in the timelike case only. They are non-
orthogonal with respect to the inner product used
for the remaining solutions. Moreover, they fail to
appear in expansion formulas.

A unified treatment of timelike and spacelike

18 (3, Bachman, Elements of Abstract Harmonic Analysis
(Academic Press Inc., New York, 1964).
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solutions is obtained if one uses the parametrization
22 — 2" =17, 20/x = p. Then —» < p < o, and
p>1,—1<p<1,and p < — 1 correspond to the
positive timelike, spacelike, and negative timelike
cases, respectively. Positive timelike solutions may
be continued to the spacelike region along either
the upper or the lower edges of the cut (—1, 1) in
the complex p-plane, yielding two sets of solutions
with different reflection properties under p — —p.

We should point out the well-known fact that the
noncompact Lorentz group L, is very closely related
to the compact group R, of real rotations in four
dimensions. Formally, the transition from L, to
R, is accomplished by letting z, = iz, z, real, or, in
terms of the group generators, (M, N) — (M, 7N).
The solutions of the eigenvalue equation Fy = fy
for the case of B, may be obtained by simply con-
tinuing the solutions for L, in the eigenvalue f
(which now takes on a discrete set of values only).
Our approach based on differential equations makes
the connection between E, and L, very explicit and
easily tractable.

A possible physical application of our formalism
would be to the treatment of the Bethe—Salpeter
equation'® dispensing with the sometimes prob-
lematical Wick’s rotation®® of momenta to the eu-
clidian region. Another application that comes to
mind is to scattering amplitudes, in the manner of
Shapiro.® Finally, it is known that R, and L, are
the symmetry groups of the nonrelativistic Coulomb
field for bound and continuum states, respec-
tively.”* ™ In view of the close connection between
the two groups, as just discussed, one sees that yet
another, and very important, application of the
Lgy-representations would be to the class of problems
involving the nonrelativistic Coulomb field.

APPENDIX A

Our goal in this appendix is to calculate the sums

*/A A 2 1 NI it
xi@#) = X AL p st @
for the spacelike case £ = £’ = —1. We recall that

ey af v MrG+1 —z'u)]* )
b7(e) = 1 (2sinh1rv) [r(j 1t
I [Pi*(cos 8) = (—)'P{’(—cos 6)],

( 1# E, B. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232
1951).

20 ;. C. Wick, Phys. Rev. 96, 1124 (1952).

2V, Fock, Z. Physnk 98, 145 (1935)

2V, Bargmann, Z. Phy51k 99, 576 (1936).

2 1. C. Biedenbarn, J. Math. Phys. 6, 433 (1965).

% L. C. Biedenharn and P. J. Brussaard Coulomb Excita-
tion (Oxford University Press, New York, 1965)
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where we have put

0<6<m.

Rather than attempting to sum (Al) directly, we
consider first the sums

= i P,

i=0

p = COs 0,

v } .
,)(2 sinh W) sin 6
X [Pi’(cos 6) 4= (—)'Pi"(—cos 6]).

Using the representations®

P;:'(cos 6 = (%)*M

'z — w)
X ];r do (cos ¢ — cos 6)73" cos (j + De,
(=)'Pi(—cos 6) = (—)[P}’(cos 6) cos (j + w)r
— (2/7)Q;"(cos ) sin (j + )]

(sm 6)"”

B (w) — ) f do (cos ¢

— cos 0):"" sin (j + Pe,
where

{1‘ x>0, {0 xZOv
T, = T =
0 250, -z <0,

we have, upon interchanging summation and inte-
gration,

3 (sin 6)'**
rE — )
x [ de 3G+ HP@n’)
0 i=0
X [(cos ¢ — cos 6)77* cos (j + B¢

+ (cos ¢ — cos 6)=F " sin G + Ye)-

x: = Yx®sinh m)~

Let

0]
[

3 G+ DP@n”) cos G + Pe

R ieNT L mhies —iend
2,“9 EP(nn)[e €*) — e e
To make the sums meaningful, we let ¢'® — ¢**1”,
e** — ¢ *7%, ¢ > 0. Then the two series are of
the form Y; P;h', || < 1, for which the following
formula is valid:

> P,(cosa)h’ = (1 — 2h cosa + K)7E.
i=0
26 W, Magnus and F. Oberhettinger, Formulas and Theo-

rems for the Functions of Mathematical Physics (Chelsea
Publishing Company, New York, 1954), pp. 66—67.
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Thus we find

=_.-;__6_ ) — men’/’T}
S 2 aqo{[cos(sc'+ze n-n’’]
— [cos (p — %) — n-n’’]7H}.
Noting that
sing > 0

0<e<m,

cos (¢ = 1€) =~ cos ¢ F Zesin ¢,

and using the formulas®™

(x £ i = 2 + e,

(d/dx)z, = +£nh7t,
valid for an arbitrary complex A ¢ —1, —2, --- in
the limit ¢ — 0%, we find with A = —} that
S = —27tsin p(cos ¢ — n-n’’)-%,

Similarly, we obtain

G+ P @n”) sin G + B
= —2"* sin ga(cos o — n,nu):i.
Thus

x: = —(4n) "} 2v/sinh m)}
X (sin 60 — )™ [ " dpsin o

X {(cos ¢ — cos 6)7"(cos ¢ — n-n’’)-}
%+ (cos ¢ — cos )= (cos ¢ — n-n’’);}}.

The first integral is taken over the values of ¢
satisfying n-n”’ > cos ¢ > cos 8, while the second
over those satisfying cos § > cos ¢ > n-n”. Making
the substitutions

cos ¢ — cos 8
n-n’’ — cos @

cos¢ — n-n’’
cos 6 — n-n’’

t = and ¢ =
in the first and second integrals, respectively, we
find that both integrals are multiples of the beta
function B(—3%, 3 — ).*” More precisely, the result
is

X3®) = (2)'[4xT(—)(sinh m)}]™

X ETT £ 5T, (A2)
£ = (cos § —n-n'')/sin §
= ginh { — n-n’’ cosh ¢. (A3)

26 . M. Gel'fand and G. E. Shilov, Generalized Functions
(Academic Press Ine., New York, 1964), Vol. 1.

27 Strictly speaking, the integrals do not exist because the
factors (cos ¢ — nen’’), ¥ are nonintegrable at the singularity.
This apparent difficulty may be eliminated by writing
A(++)s4/0(cos ) = —a(---)."#/8(n-n"") and then inte-
grating over ¢.
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It is easy to show that X* may be calculated by
the formula

Xy = f dn’’ x%(sinh { — n-n’’ cosh {)
X x3(sinh ¢ — n’-n’’ cosh {')*.
Substituting (A2) into (A4), we find
xF =0T + 1.1, 1)),
where
Iaﬂ — f dn//EZI—irsé—H-h’
Now
E:l‘iVE;—-l'&-ir + E:l—iv£;—1+iv
= f do a‘“ﬁ(a x 27)(:!:55’)_1
(1]

(A4)

a, 8 = +x.

= @) [ doa (5 (e i F
— ek FE.
Thus we are called upon to compute the integrals
7.0 = [ an e = o7,

where z = a =+ 7¢, — 0*. The expressions for the
X% in terms of the J. are

X = (2m) " %*(2m0) "} j: do o " {J (o — te)

— J_(a + t¢) £ [Tl + te) — Jila — 16)]}.
From (A3) we find

J.@) = (moosh ™" [ an”" (u — nn)?

X (W — m-n")7", (A5)
m = z cosh {'n’ + cosh {n,
% = tanh {, (A6)
w' = (¢sinh {’ & sinh {')/m,
h = m/m.

The integral (A5) is well-known and is given by®®
fdn” ( —nn”) (' — m-n’)"?

27 uu’ — men 4+«
=—log—F—F7,
K wy — @mn —«
& = (uu/ — mn) — (1 — a1 — u'?),

th.n = (z cosh {'n-n’ + cosh {)/m.

28 M. L. Goldberger in Relations de dispersion et particules
élémentaires, ed. by C. de Witt (John Wiley & Sons, Inc.,
New York, 1960), p. 62.
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Using (A6), we find
(wy’ — then)ym = (1 + pz)/cosh ¢,
&m’ = 22(p° — 1)/cost’® ¢,
p = sinh ¢ sinh ¢’ — cosh ¢ cosh ¢'n.n’ = £-4’.
Thus

T N Ty Cy
Ji(z,p) = X — 1P log 7 Zdp — (@ — DY

Let us consider the case p > 1. Writing p = cosh p,
p > 0, we have

- re e’
Using
(@ + i)™ = Pla F ird(a),
log (a =& t¢) = log |a| £ ir6(—a),
we obtain
Jola + ie, p) — Ju(a — ¢, p)
- —si‘gj’pi—’ [0 — 6) — 6(c — )]

In a similar manner, we find
J_(a+ ie,p) — J_(a — ie,p) =0

and, performing a trivial integration,

sy _ v _sinvp _ v
10 = Forgmh, = T oA — 1
X sin frloglp + (@ — DI} (@ > 1).
For the case p < —1, we write p = — coshp, p > 0,

and find

v sinwp v

%) = ~3.2oh p 20 — 1)
X sin'{rlog [-p + " — D]} (@ < -1).
Finally, it is easy to check that ®3(p) = 0for [p| < 1.

APPENDIX B

In this appendix we derive an expansion formula
for functions of a spacelike 4-vector argument. It
is sufficient to treat only a part of the problem,
namely, that associated with the eigenvalue equa-
tion Fy = f. We shall use the theory, notation, and
results for second-order ordinary differential opera-
tors as discussed by Titchmarsh.*

% B, C. Titchmarsh, Eigenfunction Expansions (Oxford
University Press, London, 1962), Part I, 2nd ed.
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Let us put, for fixed j§,

p=tanh{ (—= <{< ),
bi(p) = sech x(f),
A=f—1.
Then (3.3) reads
Lyxy = N, (B1)
where
L = —d*/d¢* + ¢(©),
q(¢) = —i(j + 1) sech’ ¢.

Solutions of (B1) are linear combinations of
P5(tanh {) and Qj(tanh {) or, equivalently, of
P%(tanh {) and P(— tanh {), where

o= (=ML

Let 6(t, ) and ¢(¢, \) be two solutions of (Bl)
satisfying the boundary conditions

6'(0, ) = ¢(0,\) =0,
6(0,2) = —¢’(0,N) = 1.
The first pair of boundary conditions is satisfied by
8(¢, \) = A[Pj(tanh ) + P5(—tanh {)],
#(5, ) = B[Pi(tanh {) — P(—tanh {)].

(B2)

Imposition of the second pair of conditions yields
A = 1/2P%(0),
B = —1/20{/(0),
where
P;'(0) = [dP(z)/dx].m0.

It is clear that 8 is symmetric and ¢ antisymmetric in
tanh ¢ and hence {. Thus we may restrict our at-
tention to the half-interval (0, «) in {. Next, we
must construct a solution of (B1) which is square-
integrable on (0, «). Suppose

is this solution (there is only one because we are
dealing with the limit point case, as general theorems
of Ref. 29 show). Using (B2), we have

¥ = (4 — mB)P(p) + (A + mB)Pi(—p).

Since P§(—p) fails to be square-integrable at p =
+1 for integral values of j of sole interest to us, we
must set its coefficient equal to zero; thus
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m(\) = —4/B = P{(0)/P50)
— 2tan T L)
2
o DO+ 3 + 30)T(1 + ) = Jo)
TG+ 3 + 3TG + 3 — 1)

The Legendre function Pj(tanh {) is square-inte-
grable on (0, «) provided Re a < 0; we henceforth
assume that this condition holds. The expansion
theorem takes the form

16) = 5= [ dot) 66,0 [ ar o, M1

+ 217 f dr(\) (¢, N) f de’ $(¢7, V)

for every f € L*(— o, oo)' here

o(\) = —lim du Im [m(u + i8)]77,
$—0+

7(\) = +1lim du Im m(u + 29).
50+ Jo

In other words,

i — 1) = o [ o) a5, (57, N

1 ©
o [ ar 65, M8, ¥,
It remains to compute the spectral functions o and 7.

With the help of I'-function identities we obtain

_Jta—2

m(\) =

Decomposing this expression into partial fractions,
we find
m\) = (j + a)
S22 — 2+ DE2n — D }
X{l 2T ratioam
= 2n)! (2§ — 2n)V/[2'n! G — W)1P°.
To calculate Im m, we must specify the proper branch
of « as a function of A. Let us take a cut in the com-
plex A-plane running from 0 to 4« and put
a = ("M
Then, setting
A= \e’, 0<0<2m

we have
o = I)\li e}s‘(r+0)
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and
Rea = —|\|*sin 6/2 < 0

for 0 < 6 < 2m, as required for square-integrability
of P%. Letting further

A =u -+ 1§,

we find

—o <y <L », 5> 0,
{m-—a' >0
a =
—(—uwt + 148 ,u <0.
Thus for v < 0 we have
ImG+a+1-—2n"
= —78G +1—2n — (—wh)

(8" > 0)

and

i
Im m(u +40) = = 2 2n(2j — 2n + 1)

X a.8(—wt — j — 1 + 2n).

In a similar manner, we find

Im [m(u + 0)] = —= i ai,a((—u)* — i+ 2n).

For v > 0, only the tangent function in (B3) con-
tributes to Im m:

o |T( + §/2 + iV,

I 0) =
mnlt 0 =2 | iz + ivar2)
% {tanh vt j even,
coth"w%u* 7 odd,

Im [m(u 4 0] = —[Im m(u + 0)]™".

A somewhat lengthy but straightforward computa-
tion now yields the result

i = 1) =5 [ doo(sinh ) P (PP

PP =) + 3 b SRR,

APPENDIX C

As an illustration of the theory given in Sec. III,
we shall expand the exponential function exp
(—1ip-x) in terms of the eigenfunctions of the opera-
tors F and P? for the timelike and spacelike cases.
These expansions are four-dimensional analogs of
the well-known expansion

- i; @ + Diipn)P-2).  (CL)

exp (ip-x)
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The role of j,(pzx) is played by the solutions of the
“radial equation’ (3.4); in place of P,(p-%) we have
the various kernels X discussed in Sec. III.

The point we wish to emphasize is that (C1) pro-
vides a decomposition of exp (fp-x) into a sum of
functions with arguments invariant under rotations
(namely, |p|jx] and $-%). In the same manner, the
anticipated expansions of exp (—4p-z) will provide a
decomposition of the exponential into a sum and/or
integral of functions of (+p°z*)* and p-4, ie., a
separation of exp (—#p-z) into radial and spherical
parts, each invariant under Lorentz transformations.
There are several ways of obtaining the desired
expansions. We shall use the method of direct inte-
gration which, although not the shortest, is perhaps
more illuminating, especially in the spacelike case.

We start with the timelike case. The function
exp (—ip-x) is square-integrable on the manifold
m! = {z:2° =1 > 0, 2, > 0} provided Im p, < 0,
which we assume. Thus, according to (3.16), for
z € 9! we have

e—-’p-z — fdxl 5(:1: —_— z/)e—irz’

= f dv Vs,
0

(C2)
where
= f dz’ 8(z" — 1°)
X (#?[(£-4) — 1} 764 — 1)

X sin {» log [£-4' + (-2 — }}e™"".

Since z is positive timelike, we may choose a co-
ordinate system in which 2 = (r, 0), r > 0. Letting
xp =rcosh¢, ¢ > 0, we find

= @) [ dg simh ¢ sinyge
0

X fdn’ exp (¢p-n’rsinh {).

We may extend the integration on { to — o pro-
vided we halve the result. The angular integration
is trivial; we get

— (27”:1”,)—1 f dg_ Sin Vg.e—ipor cosh

ipr sinh { —ipr sinh {
X (e —e ),

= Ip|.

Suppose p is timelike. Then we take p, = em cosh {’,
p=msinh { e = £, m > 0, { > 0 and find

JONAS STASYS ZMUIDZINAS

= (2ripr)”} f_: d¢ sin v¢{exp [—iemr

X cosh (¢ — e’)] — exp [—temr cosh (¢ + )]}

Letting ¢ F ¢’ = # in appropriate exponentials, we
have®

oy = :i:Sln 4 f dn cos vy exp [—i(d=m)r cosh 7]
_ ___1__ cxv/277(2,1) 8in vg'
- mre Hir T) smhg'
for €= &£1. (C3)

Here H}'® are Hankel functions of the first and
second kinds of order i». Noting that p-xz =
emr cosh ¢, the expansion formula (C2) takes the
manifestly invariant form

e—ip-z = _D\(u2 _ 1)}]—1 f dv Ve**”Hﬁf'"()\)
)
X sin [ log (ju| + @' — 1)h)]
(xzy Zo, p2 > 07 Do % 07 Im Do < 0)
with

N = @) = mr > 0,

u=p£=pz/\
Using (3.14), we may write this as

e’ = f ) dv RN K, (u), (C4)

RN = —# N\t PHE (). (C5)

Clearly, ®* satisfies (3.4); it should also be pointed
out that ®* is essentially the Fourier sine transform
of (@ — 1)¥e ",

Next, suppose p is spacelike. Letting m — —dem,
¢ — ¢ + Yir amounts to p, = em cosh {' — p, =
em sinh ¢/, p = m sinh ' — p = m cosh {’. With
these substitutions, (C3) becomes

sin »(¢’ + i)
cosh ¢’ !

K (Z) }u’aH(l)(,Lz)

Again, one has the mamfestly invariant expansion

e, = —i(wmr) " K, (mr)

¢ = (x[u’ + 1) fo " i KoY

e (W + 1 + w)™}
—p’ > 0)’

X {617/2([,“2 + 1]* - u)-'r _
(x27 Zo,

30 Reference of Footnote 25, p. 26.
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where now A = (—p°z”)}. To assure the convergence
of the above integral the variable {' = (u* 4+ 1)t +
u = [(&® + 1)¥ — 4]™" must be given a small negative
imaginary part.

Expansions on the manifold o} = {x:a2® = #¥* >
0, 2, < 0} are just complex conjugates of the cor-
responding expansions on 9! given above; this
follows from

e oe

—iPoZo

— [e—l'zu(—u)]*.

We consider next expansions of the exponential
function on the manifold 9M_ = {z: 2" = * < 0}.
Using (3.22), we get

e = fdx’ oz — z)e "

==f dv vp'?
0

= fd:v’ 8z — 1)

+ X ke

k=1
with

1)

¢, =

X 0(—1 — £-&) (@2 — DI

X sin (s log [14-#'| + (@47 — D}je™,
o) = —-f dx’ 8(z'* — )61 — |£-4'|)

X [#r'(L — (&))" T~
We compute o first. It is convenient to introduce a
change of variables of integration appropriate to the
spacelike case. Just as in the timelike case one inte-
grates over the three-dimensional rotation group,
the little group®* of timelike vectors with volume
element dn, so now one may integrate over the little
group of spacelike vectors, which is the three-dimen-
sional Lorentz group. Let us compute its volume
element. Choosing £ = (0, 0, 0, 1), we may, in view
of the restriction |£-£'| < 1, introduce the following
parametrization for £

£§ = sin a sinh 8,

48

#{ = sin « cosh 8 cos v,
#; = sin « cosh @8 sin v,
5 = cosa,
where
0 <a<m,

—o < f <K o,

0Ly <2r.
8 K. Wigner, Ann. Math, 40, 149 (1939).
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The volume element dz’ is found to be
dr' = 3z’ dz’* sin® « do cosh 8 dB dy.
Thus
o) = lsz da sin a cos ka
T Jo
o 2r ) ,
X f dB cosh 8 f dye . (C6)
~co 0

Suppose p is spacelike. Then we write
p = ([—p°]*sinh ¢, [—p} cosh (),
n = (sin @ cos ¢, sin fsin ¢, cos 6)
and find
p-z’ = (pr’)}[sinh ¢ sin e sinh 8 — cosh { sin dsine
X cosh B cos (y — ¢) — cosh ¢ cos 8 cos o).

The integration over v in (C6) may immediately be
done:

2r
f dy €2 7P = 2nJ(a),
0

a = (p**®)?! cosh ¢ sin @ sin a cosh 8 = b cosh 8.

Next, we do the integral over §°*:

f dB cosh Be ¥ *** £ J4(b cosh B)

=2 fm dt cos |e| tJo(b[f + 11}

%
= 2220 =2 06 — o,

¢ = (")} sinh { sin a.

The result so far is

(C7)

o = 2N — W) f da cos kae™ ™ =

X cos (\[1 — w*]sin a)0(1 — u%),
A= (pzxz)};
Setting 4 = cos w, 0 < w < =, combining the ex-

ponential with the second cosine function in the
integrand, we get

u=p-L

o® = (m\[1 — w00 — o) f da cos ka

X [e—o)‘eos(m+w) + e—-:)\uo! (a—w)]

We may extend the a-integration to 2« provided we
divide the result by two. The legitimacy of this

2 Reference of Footnote 25, p. 33.
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operation becomes obvious when we remark that
by letting « range from 0 to 2=, we are integrating
twice over 9M_ subject to the restrietion |£-4'| < 1.
Letting @ = w = ', we finally find

¢1£2) = 2(\[1 — uzy)_lTk(u)("i)ka()\)9(1 - |u|)
(@, 2 <0).
Using the identities
ei: sin ¢ = E eim#Jn(z),

nm—co

J-(2) = (=)Va2),
it is easy to verify that

2 ko

k=1

= g N K(w) = ™ (W < 1),

G\ = 205NN, (C8)

If p* > 0, then ¢/ = 0. This follows from the
vanishing of the step function in (C7):

0(b — le)) = 6(sinh ¢ sin § — cosh ) = 0

with the substitutions cosh { < sinh ¢ to change
from spacelike to timelike .

Considering ¢! next, we may carry out the re-

quired integrations by taking
£} = sinh « cosh g,
£{ = sinh a sinh 8 cos v,
£} = sinh & sinh §sin v,

£} = cosh a

with
—o <a< o,
0<g< o,
0 <y < 2n.

The calculations are straightforward, and so we
only state the results:

(1)
Vo,

_ {—Gi*,([p’x’]*)ﬂcy(ﬁ-:ﬁ) P>0, —~1£p-4>0;
~(-p’ 2 %P4 P <0.

JONAS STASYS ZMUIDZINAS

Here

RN = MK (0N, (C9)
Ki(w) = o’ + 117 (W + 17— w)”

— (W + 1 w7 (CL0)

Summarizing, we have the following expansions
of the exponential function:

~ip-z

e

[ po
| & &t hn @00 10-9), 7', 2°>0;
0
| vou-ramem-a, v <o, 2 >0;
0
= i-[ e R(-rPEw-9, #>0, o <0;
0

- " i R D DA~ = P 2)

- é (P %D £) 601 — |p-£]), p°,2° <O0;
(C11)

here ®%, &, ®, X!, R, K; are respectively given by
(C5), (3.14), (C9), (C10), (C8), and (3.21). The
integrands are assumed to incorporate small im-
aginary parts of appropriate arguments necessary
for the absolute convergence of the integrals. The
expansions (C11) clearly are symmetric in p and z,
as they should be, except for the minus signs in the
last two expansions. These minus signs may be
understood by noting that for spacelike z the radial
part of the volume element reads

f_: & & = f: A=) (=) = —fom 'y

We see that discrete representations of L, con-
tribute only when both p and z are spacelike and
then only for —1 < -4 < 1. In all cases the radial
parts of the expansions satisfy (C1).

It should be pointed out that (C11) has been given
by Joos® for the case p°, z°, 2o > 0.
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