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. A perturbation technique useful for computing many-time thermal averages of classical quantities 
IS developed. The canonical distribution function for the system is shown to evolve isothermally from 
that for a free-particle system as the interaction is switched on slowly. This perInits convenient use 
of an i~teraction ~icture in which to perform thermal averaging. The technique is applied to the 
calculation of the time-dependent pair correlation function in position for a uniform gas. The corre­
lation function is shown to be a sum of two components, one the solution of a kinetic equation and 
essentially a generalization of the autocorrelation in equilibrium, the other a generalization of the 
mutual correlation function in equilibrium. The equations arise as sums over diagrams. The equations 
resulting from the random phase approximation, valid for the short-time behavior, are solved exactly. 
It is shown directly that the generalized dielectric function given in terms of the correlation function 
is identical with that found by solution of the kinetic equation in the random phase approximation 
for all frequencies. 

1. INTRODUCTION 

I T has been shown by many authors l
-

3 that trans­
port coefficients can be given in terms of time­

dependent pair correlation functions determined in 
equilibrium. More generally, the two-particle cor­
relation functions describe a large number of macro­
scopic properties and serve as links between the 
microscopic and macroscopic worlds. 

This paper describes a perturbation approach to 
the calculation of time- and space-dependent pair 
correlation functions in equilibrium. We consider 
classical systems with velocity-independent pair in­
teractions. The basic formalism is introduced in 
Sec. II. 

Since we are interested in two-time (or more gener-

1 M. S. Green, J. Chem. Phys. 22, 398 (1954). 
2 R. Kubo, in Lectures in Theoretical Physics, edited by 

W. E. Brittin et al. (Interscience Publishers, Inc., New York, 
1960) Vol. Ii J. Phys. Soc. Japan 12, 570 (1957). 

a P. Mazur, in Fundamental Problems in Statistical Me­
chanics, edited by E. G. D. Cohen (Interscience Publishers, 
Inc., New York, 1962). 
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ally, many-time) averages, we do not wish to give 
any particular emphasis to time zero. For that reason 
we consider in Sec. III the motion of the system 
in purely dynamical terms. All correlations including 
those initially present in the actual system are re­
garded as resulting from an initial free-particle dis­
tribution when the interactions are turned on slowly. 
The point of view corresponds to that of an inter­
action picture. 

The resulting expression for the pair correlation 
function can be pictured in terms of the diagrams 
introduced by Prigogine.4 It turns out that in the 
thermodynamic limit as the volume and the number 
of particles go to infinity, with the density remaining 
finite, only two types of diagrams contribute. The 
correlation functions are found in terms of the solu­
tions of the corresponding integral equations. These 
equations are obtained in Sec. IV. 

In Sec. V the equations are solved in the random 

41. Prigogine, Non-Equilibrium Statistical Mechanics, 
(Interscience Publishers, Inc., New York, 1962). 
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phase approximation (RPA).s The well-known re­
sult that in the RP A the generalized dielectric func­
tionS obtained from the kinetic equation is the same 
as that found by a response function method for 
all frequencies7 is domonstrated directly for classical 
systems. 

The relation of the time-dependent theory to the 
equilibrium theory is discussed in Sec. VI. 

II. BASIC FORMALISM 

Consider a classical system of N particles with 
Hamiltonian H. The Liouville equation for the dis­
tribution function <Ps can be written4 

i a<ps(t)/at = L<ps(t), (2.1) 

where the Liouville operator L is defined as 
N N 

L = -i L 3;H·V; + i L V;H·3;. (2.2) 
i-I i==l 

Here 3; is the gradient with respect to the momen­
tum of the ith particle. In terms of the Poisson 
bracket { I, 

(2.3) 

We will be concerned with averages over the dis­
tribution function of functions of the positions and 
momenta of the N particles. If fer) = f({r;), {p;}) 
is such a function, its average at time t is 

(f( t» s = f dr f(r)<p s( t) , (2.4) 

where <Ps(t) is a solution of (2.1).8 Here r represents 
a point in phase space. 

Since L is Hermitian, as can be shown quite 
easily, (2.1) is similar in form to the Schrodinger 
equation, which is why we have used the subscript 
S. The major difference is that L is not positive­
definite, but its eigenvalues appear in pairs ±Ai. 
The solution to (2.1) can be written 

(2.5) 

The equilibrium distribution is stationary, so it is 
given by 

(2.6) 

6 D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951); 
Phys. Rev. 85, 338 (1952). 

6 That is, with the Coulomb potential replaced by an 
arbitrary potential v(r). 

7 D. Pines, J. Nucl. Energy 2, Part C, 5 (1961). 
8 The expectation value <1(t» given by (2.4) can be put 

in symmetric form to resemble a quantum mechanical ex­
pectation value. Since "'. is positive-definite, we may define 
I/I.(t) = [",.(t)]I. Then <1(t» = (I/I.(t)1 f II/I.(t». The form 
(2.4), though, seems more useful. 

On the other hand we can introduce a "Heisen­
berg" picture too. A function fH(t) = f[r(t)] changes 
in time with the motion of the system. Since 
afH(t)/at = 0, 

DfH(t) = _ {H f I ·Lf (t) Dt ' H = '/, H , (2.7) 

with the solution 

fH(t) = eiLtf~-;L'. (2.8) 

The factor exp (- iLt) is inserted after f because 
f(t) will be used in expressions multiplied by some­
thing on the right and the exponential factor is 
supposed to act on f only. Here f = f(O) = f s = fH(O). 
We identify also <PH = <p s(O) = <p(0). In terms 
of fH(t), the average at time t is given by 

(2.9) 

By virtue of (2.5), (2.8), and the easily verifiable 
fact that 

f dr LF = 0 (2.10) 

for any function F of interest (assuming periodic 
boundary conditions in configuration space) and 
for any Hamiltonian, the average (2.9) gives a 
result identical to (2.4). We have equivalent "Schro­
dinger" and "Heisenberg" pictures. The latter is, 
however, more useful because it enables us to 
define many-time averages. Thus 

(f1(l1) ... fn(tn»H 

= f dr fm(l1) ... fnH(tn)<p(O). (2.11) 

It is important to note that by (2.7) any constant 
of the motion is a solution of (2.6). In most quantum 
mechanical problems the ground state is assumed 
nondegenerate. Here the "ground state," given by 
L = 0, is highly degenerate. 

For our purposes it is most convenient to work 
in an interaction picture.9 Interaction picture var­
iables will be written without subscripts. We break 
the Hamiltonian into an unperturbed part H 0 and 
a perturbation H'. Correspondingly, we have L = 
Lo + L'. We define 

f(t) = exp (iLol)f exp (-iLot). (2.12) 

L' is also assumed to develop in time according to 

8 See, for instance, S. Schweber, An Introduction to Rela­
tivistic Quantum Field Theory (Row, Peterson and Company, 
Evanston, Illinois, 1961), Chap. 11. 
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(2.12). The Liouville equation becomes 

i(ocp(t)/at) = L'(t)cp(t). 

The solution can be written 

cp( t) = U( t, t')cp( t'), 

(2.13) 

(2.14) 

where U(t, t') is the unitary time-development 
operator 

U(t, t') = [exp ( -i r L'(t") dt") 1. (2.15) 

The symbol [ ]+ will be used to indicate that non­
commuting factors in the bracket are to be ordered 
from right to left according to increasing time of 
their arguments. Then the average (f(t» is given by 

(f(t» = J dr f(t)cp(t)· (2.16) 

Since (2.10) holds for both Lo and L' and 

[exp (-iLot)] U(t, 0) = exp (-iLt), 

Eq. (2.16) gives the same result as (2.4) and (2.9). 
The unitarity of U follows also; that is, for any F 
of interest, 

J dr U(t, t')F = J dr F. (2.17) 

In particular, 

(U(t, t'» = 1. (2.18) 

The unperturbed motion is just the free-particle 
motion of the system, so Ho is the kinetic energy. 
Then 

N 

Lo = -i L Vi·V i (2.19) 
i-I 

and 

f(t) = f({ri + Vit}, {Pi}), (2.20) 

where Vi is the velocity of the ith particle. 

III. DEVELOPMENT OF THE DISTRIBUTION 
FUNCTION AS PERTURBATION IS TURNED ON 

The two-particle correlation functions are av­
erages of the form (2.11). The equilibrium distribu­
tion cp = cp(O) is canonical. Then 

(/l(tl)Mt2»a = J dr II 

X exp [iL(t1 - t2)]/2e-fJH/(dr e-fJH) , (3.1) 

where f3 = l/kBT. The correlations at time t2 are 
included in e-fJH/(dre-fJH), and the subsequent mo­
tion of the system is described by the propagator 
exp[ -iL(tl - t2)}' 

In order to avoid this rather awkward singling 
out of time zero (or t2), we want to adopt the 
quantum mechanical procedure of turning on the 
perturbation slowly, starting from a free-particle 
system, and taking interaction picture averages. 
It is not a priori clear that the procedure can be 
carried out with the Liouville operator. It requires, 
first, that there exists a stationary solution of the 
free-particle Liouville equation that develops into 
the canonical distribution over which we wish to 
average as the interaction is turned on; and second, 
that this solution can be written down explicitly 
out of the infinity of stationary solutions of the 
Liouville equation. It will be shown that this pro­
cedure is in fact possible for perturbations which 
depend on position only. 

In order to point up the differences from the 
usual quantum mechanical situation, we will pro­
ceed in the standard way.9 Let CPo be an arbitrary 
stationary distribution for the unperturbed system. 
Then 

LoCPo = o. (3.2) 

The interaction part of the Hamiltonian is written 
as H' exp( - et) with e > O. The expansion of U 
from (2.15) gives 

U,(O, - ex» = 1 + ~ (-i)" f", dtl •• , {~-' dt" 

X exp [e(tl + ... + tn)]L'(t l ) ••• L'(tn). (3.3) 

Let us define 

1
. U,(O, - ex> )CPo 

cp = 1m 

,~o J dr U,(O, - ex> )CPo 
U(O, - ex> )CPo, (3.4) 

where U(O, - ex» = lim,~o U,(O, - ex». The last 
equality in (3.4) follows from (2.17).10 Then the 
adiabatic theorem of Gell-Mann and Low states 
that cp is an eigenfunction of the total Liouville 
operator L with eigenvalue zero. Thus cp too is 
stationary. The theorem does not say which sta­
tionary state is obtained. One expects, of course, 
that the result of such a long, slow process will be a 
canonical distribution, but that does not say yet 
how cp and CPo are related. 

Assume that <Po is a canonical distribution at some 
temperature T = l/kB{3 (kB = Boltzmann's constant) 
for free particles, i.e., a Maxwellian. Then the 
process described by (3.4) is reversible in the thermo­
dynamic sense. The question is then what kind of 

10 In distinction to the usual quantum mechanical case, 
the denominator in (3.4) does not give an infinite phase 
factor. 
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process is being described. It is shown in Appendix A 
that Eq. (3.4) is a dynamical description of an 
isothermal process. The final canonical distribution 
is appropriate to the same temperature as the 
initial one. That is. 

cP = cp({3) = U(O, -co)CPo({3), (3.5) 

where CPo is Maxwellian and cp(t3) is the canonical 
distribution function for the actual system at the 
temperature given by t3. The normalization of cP 

implied by (3.4) is automatically correct, so that 
the partition function need not be computed. 

The result is true in a perturbative sense. That is, 
the equality (3.5) holds term-by-term in the expan­
sion in t3(H' - (H'» where H' is a velocity-in­
dependent perturbation. Equation (3.5) is ultimately 
used in computing reduced distributions. For these, 
each term in the perturbation series gives a perfectly 
finite result for any number of particles, no matter 
how large, so long as the density is finite. 

The question of the convergence of the perturba­
tion series for the reduced distributions is not 
answered. The starting point is a gas of noninter­
acting particles. We do not expect convergence if 
the isothermal process described by (3.4) takes the 
system through a phase transition. Thus, the per­
turbation procedure, when valid, holds for gases 
and in general may not describe a liquid phase. 

Henin, Resibois, and Andrewsll and Andrews12 

have obtained an expression for a uniform medium 
that is identical to (3.5) with cp given by (3.4). The 
interpretation is different from ours and does not 
make clear the difficulties in applying the perturba­
tion expansion to liquids. Their calculation has an 
error,13 which can be rectified, however, by the 
arguments of Appendix A, and their final result 
is correct. They did not consider external fields. 

We have, finally, using (3.4) 

([Mt1) '" i .. (t,,)J+)H 

= ([Mt1) ... i .. (t,,) U( co, - co )]+). (3.6) 

The right-hand side of (3.6) is evaluated in the 
interaction picture. By virtue of (2.17), U( co, - co) 

can be replaced by U(t', - co), where t' is the largest 
of the t i • We will be concerned from here on with 
expressions such as (3.6). All correlations on the 
right-hand side are taken into account by the dynam-

11 F. Henin, P. Resibois, and F. Andrews, J. Math. Phys. 2, 
68 (1961). 

12 F. Andrews, Physica 27, 1054 (1961). 
13 Henin, Resibois, and Andrews (Ref. 11) and Andrews 

(Ref. 12) assumed in effect that lim,_o (Lo - ie)-lLo = 1. 
See also I. Prigogine, Ref. 4, Chap. 12. The correct expression 
is lim,_o (Lo - ie)-lLo = 1 - Po. (See Appendix A.) 

ical operator U. The average is over the distribution 
for free particles, so Lo is given by (2.19). The 
interaction Liouville operator is 

L' = i L ViH'·ai, (3.7) 
i 

where H' is assumed to depend on the relative par­
ticle coordinates only. 

Having established this general result, we now 
specialize to uniform systems of N identical par­
ticles. 

IV. THE TWO-PARTICLE CORRELATION 
FUNCTION 

Consider a homogeneous system of N identical 
particles in a volume O. The particle density is 

.. 
per, t) = L «5[r - ri(t)] (4.1) 

i-l 

and the mean density of the system is 

n = N /0 = (p(r, t»H' (4.2) 

We are concerned with the two-particle correlation 
function S which describes correlations of density 
fluctuations. In a uniform medium, S can depend 
only on differences in position and time, so it is 
given by 

S(r - r', t - t') 

= ([p(r, t) - n][p(r', t') - n])H' (4.3) 

Using the Fourier expansion 

F(r) = 0-1 L F(k)eik
'
r (4.4) 

k 

to transform to the more convenient wavenumber 
space, Eq. (4.3) becomes 

S(k, t) = 0-1(Pk(t)p_k(O»H 

n-1( -iLl ) =.. Pke P-k H 

= ° for k = 0, 

using (2.10). Here 

for k ¢ 0, 

(4.5) 

Pk = L exp (-""g'ri) (4.6) 
i 

is the Fourier expansion coefficient obtained from 
(4.1). S is symmetric in both k and t. 

Applying (3.6) to (4.5) gives for k ¢ 0 and t > ° 
(which we shall assume from now on) 

S(k, t) = 0-1([Pk(t)P_k(O) U(t, - co )]+). (4.7) 

We have made use of the fact that U( (X), t) can 
be removed from the time-ordered product (3.6) 
without changing the result, because of (2.17). Ex-
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panding U, we obtain 

S(k, t) = 0-1 ~ (-~)" fa> dt1 ••• f~-' dt" 

X ([Pk(t)p-k(O)L'(t1) .•• L'(t,,)]+). (4.8) 

The unperturbed state is a free-particle state. The 
perturbation is assumed due to two-body interac­
tions, so the Hamiltonian is 

H = L (p~/2m) + ! L'v(lr, - rjl). (4.9) 
i i oj 

The prime indicates that the term i = j is missing. 
rn wavenumber space, 

Lo = m-1 L p,·k" , 
L' = -1/(20) L v(k) 

k 

X L exp [~"k·(r, - rj)]k·(a, - aj). (4.10) 
i. i 

Eq. (4.8) can be represented diagrammatically by 
the method of Prigogine,4 summarized in Appendix 
B. A vertex describing the transfer of wavenumber 
k from particle fJ to particle a is associated with a 
factor14 

-iL,,~(k) = iO-1v(k)k·(a .. - a~), (4.11) 

where v(k) is the transform of v(r) and is not to 
be confused with a velocity V,. A free propagator 
line for a particle a with wavenumber k between 
times t and t' (t > t') corresponds to a factor 

r,,(k, t - t') = exp [-~"k·v,,(t - t')]. (4.12) 

Because of (3.4), only connected diagrams con­
tribute to S(k, t). Each term exp -~"k.r,(t) in 
Pk(t) corresponds to the addition of a wavenumber 
k to the propagator for particle i at time t and can 
be represented by a directed vertical line carrying 
wavenumber k. Each such vertical line can be 
regarded as an end of the diagram. The vertical 
line can be omitted if either just before or just 
after the transfer of wavenumber k, particle i has 
zero wavenumber. rn that case the diagram ev­
idently ends with a free propagator. Thus S(k, t) 
is represented by the sum of all connected diagrams 
with two ends a time t apart. 

It is convenient to define an irreducible correlation 
part (rep) of a diagram as a part all of whose 
vertices are at least doubly connected to each other. 
They are equivalent to the irreducible clusters dis­
cussed by Weinstock. 16 

l' Note that the factor t in (4.10) does not appear in 
(4.11) because a and fJ are fixed. 

16 J. Weinstock, Phys. Rev. 132,454 (1963). 

t= t 

FIG. 1. Schematic reduced diagram for a two-particle cor­
relation function. 

The most general diagram contributing to S con­
sists of a number of rep's (or possibly none) al­
ternating with free propagators of wavenumber. k 
to form a linear (i.e., nonbranching) chain with 
two ends. One end of the chain is at a time T and the 
other end at a time t + T. We can, in all generality, 
put T = O. The other vertices may be arranged 
in any temporal order, though as we show, most 
of these arrangements give no contribution. A typical 
diagram for S is shown in Fig. 1. The rep's are 
represented by numbered circles. Each linking prop­
agator bears wavenumber k because conservation 
of wave number at every vertex implies conservation 
of k in the large. A vector k going backward in 
time is equivalent to -k going forward in time. 
The ordering is important because the vertices rep­
resent operators in momentum space. 

An rep is characterized by the particle labels 
associated with the two free propagators attached 
to it; by k; by the time difference t1 - t2 of the two 
vertices at which the free propagators are attached; 
and, of course, by its internal structure. 

The significance of the reduction is that rep's 
are local in space and time, at least for short-range 
forces. The times are short because typical wave­
numbers k' transferred in an interaction are of the 
order of T;;-\ the reciprocal of the range of the inter­
action. The free-particle propagator between two 
successive vertices in the rep behaves something 
like exp (-~"k' ,v,f1t). The exponent oscillates rapidly 
to produce cancellation for time intervals much 
larger than about (k'V)-1 ,..., ToV-t, which is the 
collision time. For times of the order of the collision 
time, the particles involved must all be in a region 
whose dimensions are of the order To if they are 
to interact in any manner except sequentially. 16 

16 We pass over the pot~ntia~y troubl~some questi~n of the 
extent to which lOP's of mfinite order m h, 8zS for mst~~ce 
when the individual vertices are replaced by bmary colhslOn 
vertices (see Sec. VI), are still short-time quantities. 



                                                                                                                                    

594 RAPHAEL ARONSON 

We will be concerned with the limit N, n ~ co 

with n = N In finite. The diagrams which con­
tribute in this limit can be inferred from the following 
rules which give the order of magnitude of the 
diagrams. 

(1) Every vertex contributes a factor Aln, where 
A is a measure of the interaction strength. 

(2) Every closed loop gives a factor n because 
it involves a sum over k', and Lk' ~ (n/87r3

) f dk' 
when n ~ co. 

(3) If there are r different particle indices there 
is a factor N!/ (N - r)! r-v N r when N is large. 

(4) Thus, if there are n vertices, m closed loops, 
and r particle indices, the diagram goes as An N r Inn-m. 

(5) Consider particle indices being assigned to 
lines in a diagram according to decreasing time, 
that is, in going from left to right in the diagram. 
No new indices can be assigned at a creation vertex. 

(6) Two new indices cannot be assigned at a des­
truction vertex. Such a vertex corresponds to an 
operator L H , the Liouville operator describing an 
interaction between the new particles i and j. An 
expression involving LH vanishes on being averaged 
if i and j are new particles, so such a diagram gives 
no contribution. 

(7) Thus at most one new index can be assigned 
at any vertex. It follows that r ::; n - m. Therefore 
in the thermodynamic limit there are no infinite 
terms in the expansion of a statistical average. 

(8) In the limit the only nonvanishing diagrams 
are those with r = n - m. Thus, in assigning 
particle indices, one must assign a new index when­
ever possible. 

(9) It follows that no particle can appear in two 
disjoint particle lines, with the possible exception 
of semiconnected parts (defined in Appendix C). 
In particular, the only particle that two ICP's can 
have in common is the particle linking them. 

(10) Any diagram with a destruction vertex (ex­
cept possibly in a semiconnected part) vanishes. 
This follows from Rules 6 and 9. 

(11) This eliminates all ICP's of form III in Fig. 1, 
in which both connecting propagators go out toward 
the right. 

(12) It also implies that the leftmost (latest) 

--~l!.o·.I!. 1=0 

FIG. 2. Diagram for M ,;(k, t). 

I~~---

i. r< 
I=~ 

FIG. 3. Diagram for C,;(k, t). 

I Pk 
I -

I 

vertex of an ICP must have a free propagation 
line attached to it. 

(13) Diagrams with semiconnected parts give no 
contribution, as shown in Appendix C. 

With these rules17 it is easy to show the general 
diagrammatic structure of S(k, t). By Rule 12, 
each diagram must end in a free propagator at 
time t. Let the end of t = 0 be a free propagator 
going to the left. Then the only allowable type of 
structure is of the form shown in Fig. 2, with ICP's 
of type I (one propagator going out to the right, 
one to the left) only. If the propagator starts out 
from t = 0 by going to the right, the only allowable 
type of structure is of the form shown in Fig. 3, with 
one ICP of type II (both propagators going out to 
the left). These results follow from Rule 11, which 
prohibits zig-zag structures. 

A third possibility is that the end at t = 0 is 
not a free propagator, but a vertical line attached 
to the rightmost lOP. The corresponding diagrams 
are in all other respects of the form shown in Fig. 2. 

Note that while by Rule 12, the latest vertex 
of an ICP must have a free propagation line at-

17 Rules 10, 11, and 12 depend on the direction of time 
and not alone on the topology of the diagrams. They depend 
on our definition of a thermal average as 

<1(t» = f dr fH(t)'P = f dr f(t)U(t, - 0:> )'1'0, 

with the distribution function written on the right. This 
corresponds to the purely mechanical development of the 
system from a system of noninteracting particles in the re­
mote past, where, however, an assumption of molecular chaos 
has been used at t = - 0:>. An initial molecular-chaos assump­
tion accords with the usual way of thinking about statistical 
mechanics. However, the same numerical values for thermal 
averages can equally well be computed from 

<1(t» = f dr 'PfH(t) = f dr 'I'OU( 0:>, t)f(t) 
in which the interaction is slowly turned off in the future and 
molecular chaos assumed at t = + 0:>. In that case, Rules 
10, 111 and 12 would refer to creation vertices, ICP's of the 
seconCl form, and the rightmost vertex, respectively. If we 
had chosen a symmetric description such as is used in quantum 
mechanics, i.e., 

<1(t» = f dr 'PVH(t)'P+ = f dr ('I'O)+[U( 0:>, - 0:> )f(t)]+('I'O)+, 
then the three rules would not hold in any form. 
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tached, the other free propagator is not necessarily 
attached at the earliest vertex, which may in fact 
go back in time to - ex:> • 

The integral equations corresponding to the three 
types of structure can be written down immediately. 
Corresponding to Fig. 2 we have the operator 
Mu(k, t) with 

M,j(k, t) = riCk, t)Oij 

+ { dt' 1o" dt" riCk, t - t') 

X LR;z(k, t' - t")M1j(k, t"). 
I 

(4.13) 

Here Ri! (k, t) is the sum of all ICP's of type I 
(Fig. 1) characterized by a vertex involving particle 
i at the left with the other external vertex occurring 
a time t earlier and involving particle I. The wave 
number k is associated with every part of the 
diagram. Corresponding to Fig. 3 plus the case with 
a vertical line at t = 0, we have the operator C;;(k, t), 
with 

C'j(k, t) = ~ f", dt' Mi,,(k, t - t') 

X {L JO dt" Mj~( -k, - t") 
~ -'" 

X T,,~(k, t' - t") + x,,;(k, t')}, (4.14) 

Here T ,,~(k, t) is the sum of all ICP's of type II 
[Fig. 3] characterized by one external vertex in­
volving particle a at t' and one involving particle 
f3 at til. X"j(k, t') is the sum of all ICP's with a 
vertex involving particle a at t' and one correspond­
ing to addition of wavenumber k to particle j at 
time zero. The latter vertex does not involve the 
interaction, and other than changing the wave­
number of particle j, has no effect on the contribu­
tion of the ICP. It should be noted that X "j(k, t) =0 
for t ::;; O. 

In terms of M and C, the correlation function is 

S(k, t) = g-1 L (M;;(k, t) + C'j(k, t», (4.15) 
i. ,. 

where the average is over the free particle dis­
tribution. 

M ij(k, t) takes into account correlations of par­
ticles i and j between 0 and t, although correlations 
between other particles that affect the motion of 
i and j indirectly may be involved into the remote 
past. Cij(k, t) takes the correlations of i and j into 
account in the past, although modifications of the 

motion i at times between zero and tare included.I8 

Because (4.13) and (4.14) are convolutions, it is 
convenient to work with the frequency transforms. 
We define the two-sided transforms by the typical 
relation 

S(k, w) = i: e''''S(k, t) dt (4.16) 

and one-sided transforms, identified by a bar, by 
the typical relation 

S(k, w) = 10'" ei"'S(k, t) dt. 

The transforms of (4.13) and (4.14) are 

M,;(k, w) = f\(k, w)o'j 

+ L ri(k, w)R;z(k, w)MI;(k, w), 
I 

C'j(k, w) = L M,,,(k, w) 
" 

X {L M j}(k, w)T "p(k, w) + t"j(k, w) } . 
~ 

(4.17) 

(4.18) 

(4.19) 

The symmetry properties can be seen from the 
fact that 

r i(k, W, {Pi}) = r i( -k, w, - {Pi}) 

= r~( -k, -w, {p,}) (4.20) 

and 

Lij(k, p" Pj) = Lij( -k, -Pi, -Pj) (4.21) 
= -L;;(-k, Pi, Pj)· 

It follows that Rij, Tij, Mij, and Cij have the same 
symmetry properties in k, w, and {p;} as r ,. These 
properties are given by (4.20). Since the averaging 
is symmetric in {Pi}, 

(M'j(k, w» = 2 Re (Mij(k, w». 
Symbolically, (4.18) can be written 

:M = r + rRM, 

(4.22) 

(4.23) 

where f is diagonal. Equation (4.23) has the solution 

(4.24) 

with I the unit operator. 
By Rule 9, if j = i in (4.18), then l = i. We define 

the diagonal matrix G by 

(4.25) 

18 This decomposition resembles that used by Prigogine 
(Ref. 4, Chap. 11), in which a Fourier component P'Y of the 
distribution function at time t is decomposed into two classes. 
However, two-time quantities are being considered here and 
the two decompositions, while related, are not identical. 
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so that 

(4.26) 

Defining 

(4.27) 

and using (4.26) in (4.23), we get the matrix equation 

M = G + GRM, 

with the solution 

:M = (I - GiriG. 

(4.28) 

(4.29) 

If (r,) describes the free-particle motion, then 
(L; M i ;) describes mot.ion in the actual system 
and may be identified with a quasiparticle. This 
identification becomes clearer in the context of the 
RP A discussed in the next section. 

V. THE RANDOM PHASE APPROXIMATION 

To solve the equations for M and C, one chooses 
some subclass of ICP's with which to approximate 
R on the basis of some argument as to why these 
ICP's are important. The simplest possible choice 
in which interactions are taken into account is to 
pick out those ICP's that consist of a single vertex, 
that is, 

Ru(k, t) = Tu(k, t) = L;;(k)o(t). (5.1) 

One way of looking at the approximation is to 
observe that in each Ri; terms proportional to n"A q 

are neglected for q > 1 relative to terms proportional 
to n"A. Since the application of an Ri; operator is 
associated with a time integral in (4.13), the result 
is a function of n"At and is valid for times such that 
the n"A2t contributions are small. The relaxation time 
is proportional to (n"A2)-\ so the approximation is 
valid for times short compared to the relaxation 
time, as pointed out by Balescu. 19 

With (5.1) and (4.11), Eqs. (4.18) and (4.19) 
become 

Mi;(k, w) = i";(k, W)Oii 

+ in-Iv(k)i\(k, w) L k·(i}i - i}1)MI;(k, w), (5.2) 
I 

Ci;(k, w) = in-Iv(k) 

X L Mia(k, w)MMk, w)k·(i}a - i}p). (5.3) 
ap 

Evidently, (5.1) is the (RPA)/ since there is no 
coupling between different k values in (5.2) and 
(5.3). In this approximation, the term in (4.14) 
involving X a; vanishes. 

lD R. Balescu, Statistical M echanic8 of Charged Particles 
(Interscience Publishers, Inc., New York, 1963). 

When (5.2) is summed on j, multiplied by r;-\ 
and averaged over the momentum of particle l, it 
becomes identical in form to the Fourier-transformed 
linearized Vlasov equationl9 for a one-component 
plasma with a uniform neutralizing background. The 
function (L, M l ;) is to be interpreted as a single­
particle density. This result illustrates for a classical 
system the well-known result that the RPA and 
the self-consistent field approximation are equiv­
alent.20 

It is also well-known that the solution of the 
linearized Vlasov equation gives the same result for 
the dielectric function as does the response function 
method2

•
3

•
21 in the RPA.7

•
22 The equivalence has 

been shown for quantum mechanical plasmas and 
the classical result follows by a limiting argument. 
It is nevertheless of interest to demonstrate the 
equivalence by a completely classical argument. The 
result is important, because it points out explicitly 
one approximation which can be carried out con­
sistently, so that a kinetic equation and a correlation 
function method give the same results for a transport 
coefficient, not only in the static case, but for all 
frequencies. 

The evaluation of the dielectric function either 
way involves taking thermal averages of (5.2) and 
(5.3). The key observation is that the terms in­
volving the momentum gradients uncouple on being 
thermally averaged. Thus 

(i\k·(i), - i}1)MI;) = (r,k·i}i)(M I ;), (5.4) 

(M'aM;~·(i}a - i}p» = (M,ak'i}a)(Mip)* 

- (M,a)(M;pk.i}p)*. (5.5) 

Averaging (5.2), using (5.4), and summing on i, 
we find 23 

where 

(5.7) 

The interpretation of M and r given above leads 
to the identification of E+ as a generalized dielectric 
function. 6 

From (4.11), 

riCk, w) = -i(k·v, - w - iofl, (5.8) 

where 0 is a positive infinitesimal. Inserting (5.8) 

20 H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 
(1959). 

21 P. Nozieres and D. Pines, Nuovo Cimento 9, 470 (1958). 
22 S. Ichimaru, Ann. Phys. (N.Y.) 20, 78 (1962). 
23 Most of the results involving E+ have been derived 

directly from the Vlasov equation by Balescu (Ref. 19) and 
by Ichimaru (Ref. 22). 
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into (5.7), one sees immediately that E+(k, w) is 
analytic for 1m w ;::: 0 and that lim._o E+(k, w) = 1. 

We find from (5.8) 

(r,k·(t,) = -P(i\k·v,) = iP(l + iw(f,», (5.9) 

and for real w, 

(1\(k, w» = (~~fY exp [-mj3w
2
/2k

2
] 

X {I + i<{ (~f3y ~J} , (5.10) 

where i<l> is the error function of imaginary argu­
ment; that is 

<I>(x) = (2/ V 1r) i Z 

exp (~) d~. (5.11) 

With (5.9) and (5.10), Eq. (5.7) becomes for real w 

E+(k, w) = 1 + nj3v(k){ 1 - (1r;f3)' ~ 

X exp ( - mf3w2 /2k2
) <1>[ ( ~(3)' ~]} 

+ inj3v(k) (1r;f3y ~ exp (- mf3w2/2k2
). (5.12) 

It can be shown that E+(k, w) has no zeros for 
1m w 2:: 0 for any distribution24 including a Max­
wellian. More directly, inserting (5.9) into (5.7), 
one sees that E+(k, w) = 0 implies Re (i\(k, w» = O. 
But for w = W1 + iW2, with W1 real and W2 > 0, 

Re (f,(k, w» = w2([(k·v, - (1)2 + w~r1). (5.13) 

The average is certainly positive, so Re (f ,) cannot 
vanish in the finite plane for 1m w > O. It does 
not vanish on the finite real axis either, by (5.10), 
so E+ has no zeros in the upper-half plane. It follows 
from (5.7), (5.8), and (5.9) that [E+(k, wr 1 

- 1 
approaches zero for w ~ co since it is analytic for 
1m w ;::: 0, it satisfies the Kramers-Kronig relation 

Re [E+(k, w)r 1 
- 1 

= (l/1r)P i: 1m [E+(k, w')r1dw' /(w' - w). (5.14) 

Now multiplying (5.2) on the right by k· a; and 
averaging, we find in the same way as for (5.6), 

L: (M;;k·a;) = <f,k.a i
). (5.15) 

i E+(k, w) 

It follows from (5.3), (5.6), (5.8), (5.15), (4.15), 
and (4.22) that 

24 See, for instance, O. Penrose, Phys. Fluids 3, 258 (1960). 

(5.16) 

Equation (5.16) can be simplified with the aid of 
(5.7) to give 

S(k w) = 2n Re (i\(k~ w». (5.17) 
, IE+(k, w) 1 

It can be seen either by direct computation or 
by putting v(k) = 0 into (5.7) that the correlation 
function for free particles is 

SoCk, w) = 2n Re (i\(k, w» 

= n(21rmj3/e)t exp (-mj3w2 /2k2
), (5.18) 

so that (5.17) can be written 

S(k, w) = SoCk, W)/IE+(k, w) 12. (5.19) 

Eq. (5.19) is one expression of the conclusion of 
Nozieres and Pines21 that in the RPA the dressed 
particles can be regarded as having their strength 
modified by a frequency and wavenumber depend­
ent factor [E+(k, w)r\ but otherwise behave like 
free particles. 

Inserting (5.9) into (5.7), taking the imaginary 
part, and using (5.17), we find 

Im [E+(k, w)r1 = -ij3v(k)wS(k, w). (5.20) 

But one can also compute a generalized dielectric 
function E(k, w) by considering the linear response 
to an external charge inserted into the system. One 
finds26 that (5.14) and (5.20) are satisfied with E+ 
replaced by E. It follows that E and E+ are identical. 
Thus in the RP A the kinetic equation (in this 
approach, the M equation) and the response func­
tion method give the same dielectric function for 
all frequencies. 

The absence of zeros of E+ implies that the plasma 
is stable. This is, of course, a necessary condition 
for a response function approach to give meaningful 
results. 

VI. COMPARISON WITH EQUILIBRIUM 
CORRELATIONS 

The correlation function in equilibrium is just 
S(k, t = 0). From (4.15), 

25 The quantum mechanical calculation of the dielectric 
function by a response function method is given by Nozieres 
and Pines, Ref. 21. The classical calculation can be done in 
the same way, with the Hamiltonian H replaced by the 
Liouville operator L. See P. Mazur, Ref. 3. 
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S(k, 0) = a-I L (M.;(k, 0) + C;;(k, 0». (6.1) with some essential (and some nonessential) dif-
_.i 

From (4.13), 

a-1(M;;(k,0» = n(r.(k, 0» = n. (6.2) 

This is just the Fourier transform of the autocor­
relation (a ~ function) in equilibrium. 

On the other hand, Eq. (4.14) evaluated for t = 0 
says to sum all possible diagrams with two free 
ends at t = 0, and all other vertices at negative 
times. But this is just the Fourier transform of the 
expansion of U(O, - ex> ). That is, 

C.;(k,O) = a-N f (drd 

X exp (-~k·r.) exp (~k'r;) U(O, - ex». (6.3) 

Since in Co the particles i and j must be different, 

a-I L (C;;(k, 0» 
i. i 

= a-I 1:' f dr exp [-~k·(r. - r;)]U(O, - co )CPo, 
I"~ 

a-I 1:' f dr exp [-~k·(ri - r;)]cp, 
I"~ 

a-I J dr dr' exp [ -~k'(r - r')] 

X 1:' f dr ~(r - r.) ~(r' - r;)cp. 
I,' 

(6.4) 

1:' J dr ~(r - r.)~(r' - r;)cp = n2g(r - r'), (6.5) 
!oJ 

where g is the radial distribution function. 
From (6.2), (6.4), and (6.5), we find on trans­

forming back to coordinate space 

S(r, 0) = n~(r) + n2 [g(r) - 1]. (6.6) 

The term _n2 comes from putting in the condition 
S(k = 0, 0) = O. Thus S(r, 0) is just the correlation 
function in equilibrium. 

The reduction of S in Sec. IV has an analog 
in equilibrium statistical mechanics. An ICP cor­
responds to an irreducible equilibrium cluster, 27-29 

26 See, for instance, T. L. Hill, Statistical Mechanics 
(McGraw-Hill Book Company, Inc., New York, 1956), 
Sec. 29. 

27 J. E. Mayer and M. G. Mayer, Statistical Mechanics 
John Wiley & Sons, Inc., New York, 1940). 

28 G. E. Uhlenbeck and G. W. Ford in Studies in Statistical 
Mechanics (North-Holland Publishing Company, Amsterdam, 
1962), Vol. 1. 

29 G. Stell in The Equilibrium Thoory of Classical Fluids, 
edited by H. L. Frisch and J. L. Lebowitz (W. A. Benjamin, 
Inc., New York, 1964). 

ferences. 
In order to make a comparison, we sum ladders, 

i.e., diagrams with 1, 2, ... successive interactions 
of each pair of interacting particles, the rest of the 
diagram structure remaining the same. One can draw 
new diagrams in which successive vertices cannot 
occur between the same two particles; each vertex 
is now interpreted as corresponding to -il.; (where 
.io; is the binary collision operator) rather than to 
-iL'i' The binary collision operator has been dis­
cussed in detail by Weinstock16 and we do not go 
into it further here. It suffices to say that it is a 
generalization of the Mayer I function for equilib­
rium, given by Iii = exp( -,BVo;) - 1. 

A Mayer diagram representing an irreducible 
cluster is characterized by having neither nodal 
points nor articulation points. 29 The Prigogine dia­
grams differ from the Mayer diagrams mainly in 
having interactions represented by points, and par­
ticles by lines, instead of the other way around. 
In a sense one type of diagram is the image of the 
other. Let us examine separately the Iep's entering 
into R i • which involve a single unidentifiable par­
ticle i, and those entering into R'i for i ;:e j which 
involve two identifiable particles. The second type 
of lep by definition corresponds to equilibrium 
diagrams with no nodal points since the two de­
fining particles are at least doubly connected. The 
first type of Iep just modifies the motion of par­
ticle i and, as we have pointed out, may be removed 
by replacing r by G. In a sense this corresponds 
to an equilibrium expansion in density rather than 
fugacity. 28.29 

A Mayer diagram is said to have an articulation 
point when the removal of one particle would cause 
a certain group or cluster of particles to be com­
pletely disconnected from the main cluster.29 The 
given cluster of particles may be regarded as hanging 
on a single particle. That is, the particles in the 
cluster interact only with each other and with the 
one particle by which they are connected to the 
main part of the diagram. We can speak of a hanging 
cluster in nonequiIibrium problems as well. 

The replacement of r by G removes certain hang­
ing clusters, but not all of them. As an example, 
consider a situation in which a certain particle l 
interacts with particles i and j in an ICP contributing 
to Ro;. If there is a particle m which interacts twice 
with particle i, the two (i, m) vertices straddling 
the (i, l) vertex, then m cannot be removed from 
explicit consideration by renormalization. 

One may now ask: If all hanging clusters cannot 
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be removed, why then do they not contribute to 
the correlation function in equilibrium? The reason 
is that an equilibrium diagram containing interac­
tions described by the pairs a, {3, '" (which need 
not all be different) corresponds to a sum of non­
equilibrium diagrams with the same interacting pairs 
present, but taken over all possible time orderings, 
that is, permuted in all possible ways. This is ap­
parent from the discussion in Appendix A in which 
a term in the expansion of exp(-{3H') involves L' 
operators which are sums over all possible binary 
interaction operators. At equilibrium, the interac­
tions in fact do take on all possible orderings, since 
there is a complete symmetry in the instants at 
which all the interactions are to take place, as 
shown by the expansion (3.3) of U(O, - <Xl). Away 
from equilibrium there are restrictions on the pos­
sible time orderings. For instance, in the terms of 
C'i(k, t) involving an ICP of the form T, no 
interactions of particle j can occur for positive times 
since particle j is not present in the diagram then. 
When there is symmetry in all the interaction times, 
the sum of all the diagrams with hanging clusters 
vanishes. The proof, given in Appendix C, is due 
in outline to Andrews. 12 

VII. SUMMARY 

Classical many-time thermal averages can be con­
veniently computed for a gas in an interaction 
picture. The distribution over which the interaction 
picture average is to be taken is the free-particle 
distribution at the temperature of interest. 

The diagrammatic representation of the operators 
whose interaction average gives the time-dependent 
two-particle correlation function is simply given for 
a uniform medium. Two distinct types of diagrams 
are seen to arise. One involves dynamical correla­
tions only. The other involves statistical correla­
tions in an intrinsic way. At equilibrium, the first 
type reduces to the autocorrelation function, and 
the second determines the radial distribution func­
tion. Integral equations can be written down in 
the time-dependent case for both types of diagrams. 

The integral equations were solved in the random 
phase approximation. The dielectric constant com­
puted from the kinetic equation (corresponding to 
dynamical correlations only) is seen to be identical 
to that found from the correlation function for all 
values of the frequency. 

Some of the quantities that appear in the equa­
tions and diagrams can be identified as generaliza­
tions of quantities of interest in equilibrium. It is 
clear, however, that there are additional complica-

tions away from equilibrium that for sometimes 
subtle reasons disappear in the equilibrium limit. 
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APPENDIXA. 

Proof That U(O, - <Xl) Induces an Isothermal Process 

Let <Po be the distribution function for a system 
of free particles. We want to prove (3.5) under the 
assumption that the perturbation depends on the 
particle positions only. The perturbation can be due 
to interactions or to external fields or both. 

Applying (3.3) to <Po and carrying out the time 
integrations with the help of (3.2), we obtain the 
expansion 

ro 

<p = lim L: <Pn(~), (A1) 
£-0 n=O 

with 

(A2) 

and 

<Po = exp (-{3Ho) / J dr exp (-(3Ho). (A3) 

Using the definition (2.3) of L, we find 

<P1(~) = {3(Lo - i~r1[L', Ho]<Po 

= i{3(Lo - i~)-1{H', HI<Po, (A4) 

where [A, B] is the commutator of A and B. Then 

<P1 = -{3 lim (Lo - i~)-lLoH'<po 

= -(3(1 - Po)H'<po, (A5) 

where Po is the projection operator onto the space 
spanned by the zero-eigenvalue eigenfunctions of Lo. 

Since H' depends on position only, Hamilton's 
equations give 

__ Pi. aiH = a,Ho = Vi 
m 

(A6) 

Consider the wavenumber representation of an 
arbitrary function f of the particle positions: 

f({ri !) = 0-1 L: f({kd) exp (tki'r,), (A7) 
Ik;l 

where {k,l represents the 3N-dimensional vector 
{k1' ... , knl. From (2.19) and (A6), 

Lof<po = [Lo, f]<po 

0-1 L: f({k,l) L: vi·k i exp (tki·r,)<po. (AS) 
Ik;l 
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The space defined by Po is characterized by 
[Lo, fJ = 0, independent of the particle positions 
and the form of f. That is, it is given by the condition 

L: p,·k; = O. (A9) 
; 

The phase space spanned by {p,J is a 3N-di­
mensional continuum in velocity. Consider a set 
{k, I ~ (0, ... , 0). Equation (A9) defines a hyper­
plane in p space. For finite volume, there is a finite 
number of sets {k;l ~ O. The union of all the planes 
defined by (A9) is of measure zero in p space, so 
gives no contribution to integrals over phase space. 

The single point {k,} = 0 satisfies (A9) for all 
{Pi I. But this point corresponds to a spatial average, 
which can be finite and must not be neglected. Thus 

(1 - Po)f({r,})~o = [f((r,}) - (f({r,}))]~o, (AlO) 

since the spatial average equals the average over 
the free-particle distribution. 

When the volume becomes very large, the k space 
becomes a 3N-dimensional continuum in the limit. 
So long as the Fourier components of f({r,}) exist 
for {k; I ~ 0, the corresponding part of the space 
onto which Po projects is again of measure zero. 
Only the {k,l = 0 component contributes some­
thing finite. If the Fourier components diverge for 
{k,J ~ 0, the calculation must be carried through 
for finite volume and the limit taken later. But 
since f ({ r,J) will be a polynomial in the Hamil­
tonian, the limiting process could not be carried 
out at this stage of the calculation in any case. 
This occurs, for instance, for a Coulomb gas. 

With (AlO), Eq. (A5) becomes 

(All) 

where 

x = H' - (H'). (AI2) 

We now proceed by induction. Assume 

" 
~" = (n!)-l( -(3)" L: a"kXk~o, (AI3) 

k-O 

where ~" = lim._o ~n(E). Then in the same way 
as for ~l we find, using (A2), that 

~"+l = en ~ I)! (-f3r+\l - Po) 

(AI4) 

It follows that ~n is given by (A13) with aoo = 1 
and the remaining a"k determined by the recursion 
relations 

a"k = (n/k)a..-l,k-l for k > 0, 

" 
a..o = - Po L: a"kXk . 

i-I 

(A15) 

The direct expansion of e-fJ:Je / (e-fJ:Je) in powers of f3 
gives .. .. .. 
l(J({3) = L: (-1)" L: L: '" 

p-o k-O ft1-1 

= f (-{3)" I: (-1)" 
,,-0 n! ",k,(", J 

X n! (X"') .. , (X"')Xk~o, (AI6) 
k!nl! ... n,,! 

where the inner summation in the last member is 
over values of p, k, m, ... , np such that k + nl + 
. .. + np = n. If we define ank by 

then 

a..k = I: (-1)" n! (X"I) . " (X''·), 
'P,!n;} kl nil··· n"l 

(AlS) 

where the summation is such that n 1 + ... + 
n" = n - k. Stepping nand k by one gives the same 
terms in n l, ... , n". It follows that 

a,,+l.k+1 = [en + 1)/(k + l)]a..k. (A19) 

Now multiply (AlS) by X\ sum on k from 1 to n, 
apply the operator Po, and write q = p + 1 and 
k = n •. Then 

(A20) 

where now n l + ... + n. = n. Comparing with 
(A17), we see that 

" 
ano = -Po L: ankXk. (A21) 

k-l 

Equations (A19) and (A21) are identical to (AI5). 
Since aoo = aoo = 1, the two expansions are identical, 
so (3.5) is proved. 

One can proceed one step further. Suppose there 
is no external field and the interaction Hamiltonian 
is written 



                                                                                                                                    

PAIR CORRELATION FUNCTIONS 601 

(A22) 

where a denotes a pair of particles and A is a strength 
parameter for the interaction of the pair a. The 
sum is over all the M pairs. Then the coefficients 
of A~' ••• A~M are the same in the two expansions, 
(AI) and (AI6), since the A'S are arbitrary. The 
equality can be written as 

(A23) 

The ai need not be distinct pairs. The left-hand 
side comes from the expansion of U(O, - 00 )<;'0' On 
the right, the projection operator peal ... , a,,) 
picks out the coefficient of A", .. , Aa. in the expan­
sion of the full canonical distribution function. This 
result is used in Appendix O. 

We note finally that if 

H' = ! L'v(r, - r;) 
i. ,. 

I 
= 20 L v(k) 2:' exp [at·(r i - r;)], (A24) 

k ,,, 

then 

X = ! tt' [vcr; - r;) - ~ f v(r) drJ 
1 

= 20 t; v(k) tt' exp [tk·(r; - r;)], (A25) 

80 that 

(X) = O. (A26) 

APPENDIXB. 

Diagrammatic Representation 

We summarize here the rules for constructing 
diagrams. A less condensed account can be found 
elsewhere.4,J9 Every diagram corresponds to a wave­
number representation of some expression. Time 
goes from right to left. Each vertex corresponds 
to an operator -iL;; defined in (4.11). A line 
labeled i k corresponds to free propagation and gives 
a factor riCk, t - t'), defined in (4.12). In general, 
then, two lines converge at a vertex from the right 
and two emerge to the left. Only two particles are 
involved at a vertex and wavenumber is conserved. 

Figure 4 shows the situation at a typical vertex. 
Particle i enters with wavenumber k j , and particle j 
with k2 • Wavenumber k is transferred from j to i 
at the vertex. 

A line corresponding to k = 0 is omitted in 

FIG. 4. Typical vertex. 

drawing diagrams so if, for instance, k = k2' then 
the jk.-k line is omitted. If in addition k j = -k2' 
the ik,+k line is also omitted and we have a destruc­
tion vertex. If, on the other hand, kl = k2 = 0, 
the two lines on the right are omitted and we have 
a creation vertex. If kl = 0 and k = k2' the vertex 
corresponds to the transfer of wavenumber k2 from 
j to i. 

APPENDIXC 

Proof That Semiconnected Parts and Certain Hanging 
Clusters Do Not Contribute to Thermal Averages 

We now prove that semiconnected parts and 
certain hanging clusters do not contribute to thermal 
averages. The proof involves a symmetry argument 
due to Andrewsl2 who considered hanging clusters 
in equilibrium. We prove the theorem first for the 
simpler case of semiconnected parts, then extend 
the proof to hanging clusters in equilibrium and 
certain kinds of hanging cluster diagrams out of 
equilibrium. Andrews' argument is made complete 
by supplementing it with the results of Appendix A. 

A semi connected part (SOP) is a part of a diagram 
disconnected from the main part (the part with 
external lines), but which has one or more particles 
in common with it. It can be thought of as being 
connected to the main diagram by a. k = 0 line 
of the common particles. In the limit N, 0 ~ ex> 

and N /n finite, Rule 8 of Sec. IV eliminates SOP's 
connected to the main diagram by more than a 
single particle. Rule 6 implies that the common 
particle is involved in the latest vertex of the SOP 
and at some later time in the main part. It cannot 
appear at an earlier time in the main part as well 
or Rule 8 would be violated. It follows that the 
interactions in the SOP precede all other inter­
actions of the connecting particle, but there is no 
constraint on the earliest time involved. 
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Consider diagrams involving vertices for the pairs 
ah ... , an in an SCP, and 131, •.• , 13m in the re­
mainder of the diagram. By the argument just given, 
one can write 

[L",(t1) ••• La.(t,,)L~,(tD ... L~m(t~)]+ 

= [L~,(t{) ... LPm(t~)]+[La.(tl) ... L".(tn)]+. (C1) 

That is, the ordered product factorizes. Consider 
all such diagrams in which tl is the latest time in 
the semiconnected part. Then al represents the 
particle pair (i, j), where i is the connecting particle 
and j is some other particle in the SCP. The ordered 
product is to be multiplied by functions of the 
coordinates and momenta of particles in the main 
part, integrated over the times, and averaged over 
the entire phase space. The averaging over the 
particles in the semiconnected part, except for par­
ticle i, can be done directly on the last ordered 
product in (C1). The integrations over the tl can 
also be carried out. Thus one has to compute 

= J dr" L,;(t1) L~ dt2 ••• L~ dt,. 

X [L",(t2) ••• L".(tn)]+~o •. (C2) 

Here ~o" is the part of ~o involving all particles 
in the semi connected part except i, and d r a is an 
element of the phase space of these particles. Now 

X [L".(t2 ) ••• La.(t .. )]+~o 

= fa> dt2 ••• fa> dt .. [L",(t2) ••• L".(t,.)]+~o. (C3) 

Inserting (C3) and (A23) into (C2), we find that 

where ~" is the part of ~ involving only particles 
in the SCP. Here exp(ivi • Viti) is the only part 
of exp(iLotl) that remains after integration over r ". 
In terms of the interactions, peal' ... , an) involves 
only H a., ... ,H '" and the momentum distribution 
function ({?o". 

We are dealing with interactions symmetric in 
the two particles. Let 

(C5) 

for all particles l in the SCP other than i. Both 
sides of (C4) are invariant under the transformation 
(C5) since the only position dependence is on r, -
rl ~ rl - r, for l ~ i, j and on rlt - rl ~ rl - rlt 
for k ~ i, j, and the interactions are symmetric. 
On the other hand, under (C5), 

L,,. = iV,H'(r, - r,.) ·(a, - a;) 

~ -iV,H(r, - r,.) ·(a. - it,.) = -L.,.. (C6) 

It follows that the integrand of the right-hand side 
of (C4) is odd, so the integral vanishes. Thus semi­
connected parts cannot contribute to thermal 
averages. 

To extend the result to hanging clusters, assume 
that the factorization (C1) holds in the more general 
situation when the vertices involving particles in 
the hanging cluster correspond to some, but not 
necessarily all, of the a,. That is, the interacting 
pairs in the hanging cluster form a subset of the a,. 
Assume also that the time integrations over all the 
t. in (C1) extend to some maximum time to. Then 
the symmetry argument above holds and hanging 
clusters which disappear before to cannot contribute. 

In equilibrium, to = 0 and all the interacting pairs 
are among the ai, so the result holds trivially. More 
generally, the conditions mean that at any time 
t~ < to, the part of the diagram involving the a, 
is detached from the main part. It is a component 
of U(t~, - 0:> )({?o, which is itself an equilibrium dis­
tribution. 
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High-~~er~ boundary c~ndit~ons upon the basic ~reen's functions which limit the types of diver­
gence ansIllg III any approXlmatlOnal method of solutIon of a field theory are derived and shown to be 
related to the recently defined stability criterion. 

I. AN ANALYSIS OF THE STABILITY CRITERION 

I N order to solve a set of field equations in a 
nonperturbative manner it is necessary to have 

some criterion which may aid the choice of a par­
ticular method. Apart from using the general sym­
metries of the theory to in part determine an 
approximate solution, 1 the requirement that such 
a solution be susceptible to renormalization may be 
applied to impose further conditions. We establish 
conditions, in the form of bounds on the asymptotic 
behavior of certain products of the basic Green's 
functions of the theory, which are sufficient to ensure 
the above requirement. Given a theory having an 
n-point vertex whose Green's function in momentum 
space is r(Ph '" , Pn) and whose attached prop­
agators are t:.(Pi), (i = 1, .,. , n), then the relevant 
product is 

t:.!(Pl) .. , t:.i(pn)r(Pl' ... ,Pn), 

where summation over spin and internal indices is 
implied. This product is the stability complex as­
sociated with the vertex. Using the concept of 
asymptotic coefficients,2 the limiting behavior of 
such an expression may be strictly defined. Stated 
roughly the derived conditions are 

t:.!(Pl) ... t:.1(Pn) r(pl' '" ,p,,) ::; O(1/p2n
-') (1.1) 

whenever all the momenta Pi become large, while 

t:.!(Pl) ... t:.i(Pn)r(Pl' ... ,p,,) <O(1/p2 (n-mH) (1.2) 

whenever m of them are held finite. 
Specifically, these conditions ensure that the num­

ber of types of divergence which occur in any 
relevant multiple integral constructed from the basic 
Green's function is finite. This property implies that 
the subtraction procedure formulated by Dyson3 and 

* Present address: Imperial College of Science and Tech­
nology, London. 

1 This idea is the basis of the gauge method formulated 
by Abdus Salam and R. Delbourgo, Phys. Rev. 135, B1398 
(1964). 

2 S. Weinberg, Phys. Rev. 118,838 (1960). 
3 F. J. Dyson, Phys. Rev. 75, 1736 (1949). 

Salam' is equivalent to a renormalization of the 
masses and coupling constants of the theory.6 It 
is found that for the case of electrodynamics the 
above conditions become identical with the stability 
criterion6 and hence, although based upon quite 
different grounds, may be regarded as a general­
ization of it. 

In Sec. II, the case of a single field, interacting 
with itself via a three-point vertex, is used to 
illustrate the meaning of the renormalizability con­
ditions. The general case of any number of fields 
and any number of vertices is dealt with in Sec. III, 
while the definition in terms of Weinberg's asymp­
totic coefficients forms the content of the Appendix. 

II. THE MEANING OF THE RENORMALIZABILITY 
CONDITIONS 

Consider a theory having one propagator t:.(q) 
and a three-point vertex reg, r, s), momenta being 
directed inwards. The perturbative approximations 
to these quantities have evident asymptotic be­
haviors which allow the possible divergences of the 
theory to be easily identified. We shall adopt the 
inverse procedure by assuming power-law asymp­
totic behaviors and then determining how limiting 
the divergences affects the powers. However, it is 
preferable to consider the stability complex 

t:.1(q)t:.!(r)t:.1(s)r(q, r, s), 

rather than the individual Green's functions. Since 
the amplitude corresponding to a general two-par­
ticle connected diagram having lloops and E external 
lines is expressible in the form 

it is sufficient to consider the stability complex alone. 

• Abdus Salam, Phys. Rev. 82, 217 (1951)' Phys Rev 84 
426 (1951). ' . ., 

6 P. T. Matthews and Abdus Salam, Phys. Rev 94 185 
(1954). . , 

6 See Ref. 1, Part 1, Sec. A. 
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We assume that for all momenta large 

A'(q)A'(r)A'(S)r(q, r, 8) = O(I/p~), 

while if one is held finite 

(2.2) 

A'(q)A'(r)A'(S)r(q, r, s) = O(I/pa). (2.3) 

A precise definition of the meanings of these 
equations is given in the Appendix. It follows 
rigorously from them, and in an intuitive manner 
directly from Eqs. (2.2) and (2.3), that since any 
internal line of a two-particle-connected diagram 
carries at least one loop momentum the overall 
degree of diverence7 is 

D = 4l - (N - E){3 - Ea 

where N is the number of vertices. An immediate 
advantage of its expression in this form is the 
avoidance of the overcounting of divergences when 
the terms responsible for them cancel between the 
propagators and the vertex, one example where this 
occurs being vector electrodynamics. 

Since l = !eN - E) + 1, (2.4) 

D = 4 - ({3 - 2)N - (2 - (3 + a)E. (2.5) 

The requirement that the degree of divergence 
should not increase whenever the number of internal 
vertices is increased implies 

{3 ? 2, (2.6) 

where the inequality corresponds to super-renormal­
izability. The additional condition for the degree 
of divergence to decrease upon increasing the number 
of external lines is 

a> O. (2.7) 

These two equations constitute the renormal­
izability conditions. They exist on two different 
levels which are characteristic of the general con­
ditions. 

In order to exhibit the meaning of Eq. (2.6) we 
consider a general two-particle-connected diagram 
from which all external lines have been removed. 
The result is a vacuum diagram having the same 
internal structure as the original. Now it follows 
from Eq. (2.4) that any single increase in the number 
of its loops requires an insertion of two vertices. 
This insertion between two of its lines must be of 
one of the three forms shown in Fig. 1. But Eq. (2.6) 
just ensures that such insertions do not increase the 
overall degree of divergence of the diagram. This 

FIG. 1. Basic internal insertions. 

implies by consistency, and it may be verified by 
a detailed analysis, that when {3 = 2, the degree 
of divergence of all such vacuum diagrams is four. 
It means that if the theory is just renormalizable, 
then the degree of divergence of any diagram may 
be characterized by its external line structure. For 
the general case f3 ? 2, an upper bound on the 
degree of divergence may be so characterized. This 
is the necessary and sufficient condition for the 
primitively divergent diagrams3 to be sufficient to 
characterize all the divergences of the theory. 

The introduction of E external lines serves to 
reduce the degree of divergence by aE. Hence, given 
Eq. (2.6), the degree of divergence of any two­
particle connected diagram satisfies 

D:::; 4 - aE. (2.8) 

Thus Eq. (2.7) ensures that the number of prim­
itive divergents, and hence of types of divergence, 
is finite. In general, however, since a may be small, 
the number of primitive divergents may be very 
large. 

In brief, the first of the renormalizability con­
ditions ensures that the types of divergence con­
tained within the theory are exhibited by the 
primitive divergents, while the second ensures that 
the number of such primitive divergents is finite. 

m. THE GENERAL RENORMALIZABILITY 
CONDITIONS AND THEIR RELATION TO THE 

STABILITY CRITERION 

Consider a theory composed of propagators A" 
(i = 1 '" m) and vertices r (a = 1 ... ",) , , 0" , u, 
the vertex r a having n! attached propagators of 
type i. The stability complex corresponding to this 
vertex is 

Let the asymptotic coefficient of this quantity when­
ever m1 of the momenta of lines of type 1, m2 of 
type 2, etc., are held fixed and all the remaining 
momenta tend independently to infinity be 

{ O}) 12m a( m' = a(m , m , ... , m ), 7 The degree of divergence, obtained by a power count of 
the integration momenta, was first employed in Sec. 5 of 
~a ~~ 
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{m'} = (m\ ... , m'i1l.). 

Consider a two-particle connected diagram having 
E external lines, with I internal lines, of which I, 
are of type i, and N vertices, of which No are of 
type a. Then 

1= L1., 1 5, i 5, ~; , 
N= LNo , 15,a5,<t; 

0 

21 + E = L L n!N 0; 
, 0 

while the number 1 of loops is given by 

1 = I - N + 1, (3.1) 
L [! L n! - 1] - !E + l. , 

Since no L, n! is the total number of lines 
emanating from the vertex r 0, 

! Ln! - 1 > 0 , 
for three- and higher-point vertices. 

Let there be Ao({m'l) vertices ra in the diagram 
which have the set {m'} as external lines. Thence 

E = L L (m1 + m2 + ... + m'i1l.)Ao({m'}), 
o IP 

where LIP signifies summation over all sets {m'} 
which allow at least two lines of the vertex to be 
internal, except the case of all m' zero, which occurs 
when none of the lines is external. More compactly, 

E = L L mAoC{m'}), (3.2) 
o IP 

where 

m = L m' , 
and LIP signifies summation over all partitions of 
1 5, n 5, no - 2 into sets {m'} having ~ elements. 

The total degree of divergence of the diagram is 

D = 41 - L L aa({m'})Aa({m'}) 
IP 

- L (jo{No - L Aa{{m'})}, 
o IP 

where (jo = aa({m'}), m' = 0 for all i, viz., -f3a 
is the asymptotic coefficient of the vertex whenever 
all the momenta tend to infinity. 

Utilizing Eqs. (3.1) and (3.2) 

D = 4 + L [2no - 4 - (jo]N a 
a 

If D is not to increase whenever the number of any 
of the vertices increases 

(jo 2': 2no - 4, 

while, if the equality holds then 

D = 4 - L L [aa({m'}) 
IP 

(3.4) 

- 2(no - m) + 4]Ao({m'}). (3.5) 

The additional condition for the number of primitive 
divergents to be finite is 

aa{{m'}) > f30 - 2m, 
(3.6) 

i.e., aa({m'}) > 2(no - m) - 4. 

Equations (3.4) and (3.6) may be identified with 
(1.1) and (1.2). 

Their contents correspond exactly to those of 
Eqs. (2.6) and (2.7). They may be compared with 
the renormalization condition derived by Bogoliubov 
and Shirkov8 by identifying the index of a vertex 
having all lines internal w!nt, with 

w!nt = ! L (rl + 2) - 4 = 2no - f30 - 4, 
I 

while 

! L h + 2) 
l,ext 

= L L [aa({m'}) + 2m - f3a]Aa({m'}). 
o IP 

Equations (3.4) and (3.6) have wider applicability 
since it has not been assumed that the asymptotic 
behavior of the vertices may be incorporated with 
the attached propagators, a restriction which makes 
the Bogoliubov and Shirkov condition inapplicable 
to the general case. They differ in that no positive­
definite conditions have been imposed on the spectral 
functions, viz., r, > 0 implying w!nt = w';=. Upon 
applying these additional conditions agreement is 
reached in all cases where both are applicable. 

In the case of spinor electrodynamics, for approx­
imations to which these conditions apply, Eq. (3.4) 
implies Eq. (3.6). It may then be identified with 
the stability criterion,6 established as a necessary 
condition for the stability of any approximational 
method of solution of the Dyson-8chwinger equa­
tions. Due to the destructive interference which may 
occur between the divergent parts of separate con­
tributions to an amplitude the conditions are in 
general too stringent. No general method for de-

8 N. N. Bogoliubov and D. V. Shirkov, Introduction to the 
Theory of Quantized Fields (Interscience Publishers, Inc., 
New York, 1959), Sec. 28. 
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termining the allowed relaxation in response to a 
given over-all symmetry is known. 

CONCLUSION 

Since it may be shown that an extension of the 
Dyson-Salam subtraction procedure9 is applicable 
to a general approximation scheme, the basic con­
dition of renormalizability, that the number of types 
of ?ivergence involved in the theory be finite, re­
mams unaltered. Sufficient conditions for this to be 
satisfied are expressed by Eqs. (3.4) and (3.6) in 
the form of bounds upon the asymptotic behaviors 
of the products of Green's functions which form 
the stability complexes of the theory. They then 
have a form which is applicable to any approxima­
tional method of solution of any set of field equations 
which is expressed in terms of the Green's functions. 
It is conjectured that they have sufficient content 
as to be meaningful restrictions on the choice of 
approximation procedures. It is intended to give 
applications of them and to consider their con­
sistency with the gauge invariance of the theory. 

APPENDIX 

The validity of the degree of divergence as a 
significant quantity is based upon Weinberg's asymp­
totic theorem. 2 This requires the concept of a special 
class of functions A defined as follows. A function 
t(P) of n real variables (PI, '" , Pn) which are 
united to form a vector P in the n-dimensional space 
R is a member of the class of functions An if, given 
any subspace S C R spanned by the m independent 
vectors {Ll' ... , Lm) and finite region W, then 

It(Ll77l ... 77m + L2772 ... 77m + ... + Lm77m + C) I 

:::; M77:(L')(In 77ll(L') ... (77m)a({L •.... ,LmJl 

X (In 77m)'J(L., ... ,Lm) 

provided that 771 ~ bl, ... , 77m ~ bm and C E W, 
where blJ .,. , bm , and M are dependent only on 
Ll, '" ,L ... , and W. 

ex(S) = ex({Ll' ... , Lm}) 

is the asymptotic coefficient which is characteristic 
of the subspace S, while the purpose of the lower 
bound conditions on the 77'S is to ensure that such 
characteristic behavior is indeed achieved. 

Consider a general vertex r to which N prop-

. • It can be shown, and is to be published elsewhere, that 
thiS .procedure may be formulated in a manner which is 
apph?able to the case of general approximations to the Green's 
fu~ctlOns, and that Weinberg's asymptotic theorem upon 
which the efficacy of the procedure IS based, still appli~, 

agators having momenta (Pll '" , PN) may be 
attached. Let (Ph ... , Pn) be united to form a 
vector p, If vectors Vi are defined such that 

pi = p·Vi, 

then the V,: form a basis in a real 4N-dimensional 
space, R. The conservation of momenta may be 
expressed as 

p·V~ = 0, 

where 
N 

V~ = :E Vi, 
2'=1 

and all momenta have been directed inwards. Hence 
P spans the space R' obtained by projecting V, 
the subspace spanned by the V~ along R, viz., 
R' = /\ (V)R. The hypothesis that rep) E A 4CN- U 

implies a direct correspondence between the asymp­
totic coefficients exeS) and the limiting behavior of 
r whenever a subset of its momenta tends to in­
finity, The statement that 

r(Pl, ... ,PN) = O(pa) as (PI"'" Pi) ~ co 

means that ex is the asymptotic coefficient associated 
wit.h S, the subspace spanned by {VI' ... , Vi)' 
ThIS makes the statements concerning limits which 
are made in the text perfectly definite. 

It should be noted that the hypothesis that the 
Green's functions belong to one of the classes A 
assumes that the contours of integration may b; 
rotated in the energy plane so as to obtain a definite 
scalar product, 

In order to state Weinberg's theorem we require 
several definitions. Any integral 

where (Pi, ... , Pi) is a subset of (p ) 1, ••• , Pn, 
may be expressed in the form 

i: '" i: dYI , .. dYk t(P + L~Yl + ... + L~Yk) , 
where (LL .,. , LO are the unit vectors which 
correspond to the components of the set of four 
vectors (Pi, ". , Pi)' If 

i: '" i: dYI ... dYk IfcP + L{YI + ... + L£Yk) I 

is convergent, then the preceding integral is said 
to exist, and it follows that 

fr(P) = 1 dkp' t(P + P') 
PIEI ' 
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where PEE = R 1\ I, I being the subspace 
spanned by {LL ... , L~ I. Upon defining the super­
ficial divergence associated with the subspace S by 

:D(S) = a(S) + dim S, 

where dim S is the dimension of S, then the asymp­
totic theorem takes the following form. 

Given the function f(P) E An which is integrable 
over any finite region of R, then the condition 

max :D(S) < 0 
SCI 

implies that (a) MP) exists and E A n - k ; and 
(b) the asymptotic coefficient of fI(P) associated 
with SeE is given by 

aI(S) = max :D(S') - dim S. 
A(IlS'-S 

It may be shown that in the maximizing operations 
it is sufficient to consider those subspaces of R which 
are spanned by bases which correspond to subsets 
of the external and loop momenta, providing that 

all such subsets are considered. Hence, if the integral 
is superficially convergent with respect to all loop 
integrations for all possible choices of loop momenta, 
it is absolutely convergent. However, it is just these 
conditions which the Dyson-8alam subtraction pro­
cedure is designed to provide. Thus the asymptotic 
coefficients are meaningful in that they govern the 
number of subtractions to be made corresponding 
to a particular loop or set of loops and hence they 
provide a valid method for the identification of the 
divergences even in the general case. 
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The null tetrad notation of Newman and Penrose is used to investigate empty space-times of 
embedding class two. Necessary conditions are found for algebraically special empty space-times to 
have this property. 

1. INTRODUCTION 

INTEREST has been renewed recently in the 
classical problem of embedding space-times in 

pseudo-Euclidean space. The motivation for this 
interest, together with several new results, is to be 
found in a series of papers appearing under the gen­
eral title "Seminar on the Embedding problem"l-e. 
One of the few-known general results is that no 
empty space-time is of embedding class one (the 
embedding class of a space is the least number of 
extra dimensions required to perform the embedding). 

In this paper, empty space-times are considered 
which can be embedded (locally and isometrically) 
in a pseudo-Euclidean space of six dimensions. The 
necessary and sufficient conditions for a space-time 
to be of embedding class two are that there exist 
two symmetric tensors aij, bij , and a vector 8i 

satisfying the following equations:7 

Gauss equation: 

R ijkl = el(aikajl - ai/a;k) + e2(b ik b;1 - bijb jk); 

Codazzi equations: 

Ricci equation: 

8i,; - 8;,i + gkl(akiblj - ak;b1i) = O. 

In the above, gkl and Riikl are the metric and cur­
vature tensors of the space-time, and e1 and e2 are 
real constants of unit modulus. 

Newman and Penrose8 have introduced a formal­
ism based on a tetrad of complex null vectors li, 

1 A. Friedman, Rev. Mod. Phys. 37, 201 (1965). 
2 J. Rosen, Rev. Mod. Phys. 37, 204 (1965). 
a R. Penrose, Rev. Mod. Phys. 37, 215 (1965). 
4 C. Fronsdal, Rev. Mod. Phys. 37, 221 (1965). 
6 D. W. Joseph, Rev. Mod. Phys. 37, 225 (1965). 
e Y. Ne'eman, Rev. Mod. Phys. 37, 227 (1965). 
7 L. P. Eisenhart, Riemannian Geometry (Princeton Uni­

versity Press, Princeton, New Jersey, 1925). 
8 E. NelVman and R. Penrose, J. Math. Phys. 3, 566 (1962). 

n°, mi, and m/. Algebraic manipulation within this 
formalism is comparable to manipulation in a local 
Minkowski coordinate system and the curvature 
tensor of an empty space-time is described concisely 
by five complex scalars 1/10, ••• , 1/14' It seems reason­
able, therefore, to expect the formalism to simplify, 
at least, the Gauss equation. The following two 
theorems are proved. 

Theorem 1: 
An empty space-time of embedding class two and 

type II or III (ie., having a nondegenerate algebra­
ically special curvature tensor) must possess hyper­
surface orthogonal geodesic rays with zero shear and 
divergence. 

Theorem 2: 
An empty space-time of embedding class two 

and type N or D (ie., having a degenerate algebra­
ically special curvature tensor) must possess hyper­
surface orthogonal geodesic rays with zero shear. 

2. THE GAUSS-CODAZZI-RICCI EQUATIONS IN 
TETRAD NOTATION 

All indices are now tetrad indices and 'Ymnp are 
the complex Ricci rotation coefficients.7

•
s In tetrad 

notation the Gauss-Codazzi-Ricci equations are 

and 

where ; denotes the intrinsic derivative. On writing 
down each component of the Gauss equation ex­
plicitly, it proves useful to work not in terms of 
the amn and bm .. but rather in terms of certain 
quadratics of these arrays. The notation is now 
introduced. 

608 
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3. USEFUL IDENTITIES The components of the Gauss equation can be 

Consider a tensor T mn". which is proportional to written in empty space-time as 
the skew product of a symmetrical tensor tm .. , 

The twelve scalars To, ••• , Tn, defined by 

To = Tlaal = cf>(tlatI3 - tutaa), 

TI = T1321 = cf>(tI2t13 - tu~a), 

T2 = T1324 = cf>(tI2 ta4 - t14 t2a) , 

Ta = T2412 = cf>(tI2~4 - t22 t14) , 

T4 = T2442 = cf>(t24~4 - t22 tH ) , 

T s = T 1334 = cf>(tla t34 - t14 taa) , 

T6 = Tlal4 = cf>(tuta4 - tla t14) , 

T 7 = T 1332 = cf>( tla t23 - t12 taa), 

Ts = T242a = cf>(t22 ta4 - t23 t24), 

Tg = T2443 = cf>(t24 ta4 - t23 t44), 

TIO = TI212 = cf>(tub - tI2 t12), 

Tn = T3434 = cf>(t33t44 - t34 ta4) ' 

satisfy twelve quadratic identities, namely, 

T7(T2 - T2) - TsTa + TgTI + T4T6 - ToTs = 0, 
CIa) 

TIT2 + T6Ta + TIT7 + T IOT 5 + ToTa = 0, (lb) 

TaT2 + TsTI + TaL 7 + TloTg + T4TI = 0, (lc) 

TsT2 - T7Ts - T9T6 + TITll + ToTg = 0, (ld) 

T gT2 - T7Tg - TsTs + TaTll + T4TS = 0, (Ie) 

T6(T2 - 1'2) - TITs + TITs - '['OT7 + ToT7 = 0, 
(1 f) 

Ts(T2 - 1'2) - TaTg + TaTg - 1',1'7 + T,T7 = 0, 
(lg) 

ToT2 - TIT5 - T6T7 = 0, (lh) 

Ao + Bo = 1/;0, (2a) 

Al + BI = 1/;1 , (2b) 

A2 + B2 = 1/;2, (2 c) 

As + Ba = I/;a, (2d) 

A4 + B4 = 1/;4' (2e) 

As + Bs = 1/;1' (2f) 

A6 + B6 = 0, (2g) 

A7 + B7 = 0, (2h) 

As + Bs = 0, (2 i) 

Ag + Bg = I/;a, (2j) 

A lo + BIO = -1/;2 - iJ2' (2k) 

An + Bn = -1/;2 - iJ2, (21) 

where 1/;0, •.• , 1/;, are the tetrad components of 
the curvature tensor introduced by Newman and 
Penroses and the scalars Ao, AI, ..• , and Bo, B l , ••• , 

are defined in terms of am .. and bmn in the same way 
as To, T I , '" , are defined in terms of tmn• Thus 

Ao = el(al3ala - allaaa) , 

B o = e2(b la b13 - bnbaa) , etc. 

Substituting B for T in the quadratic identities 
(la), .. , , (11) and using (2a), '" , (21) to eliminate 
Bo, B l , ••• , in terms of Ao, AI, '" , yields twelve 
equations linear in Ao, AI) '" (the terms quadratic 
in Ao, All ... , are identically zero). These equations 
are 

I/;oAs - I/;lAg - Aa) + (1/;2 - iJ2)A7 

+ iJa(As - AI) - iJ,A6 = 0, (3a) 

I/;ol/;a - 1/;11/;2 - I/;oAa - I/;1(A lO + A2) - iJIA7 

- iJ2A l + (1/;2 + iJ2)A5 - I/;aAo - iJaA6 = 0, (3b) 

T,T2 - TaTg - TsT7 = 0, 

-TIO(T2 - 1'2) - TITa + 1. ITa = 0, 

(1 i) - ) .T.-1/;11/;4 - I/;al/;2 - I/;,A l - I/;a(Alo + A2 - 'YaA7 

(1 j) - iJ2Aa + (1/;2 + iJ2)Ag - I/;IA, - iJIAs = 0, (3 c) 

-Tll(T2 - 1'2) - TsTg + TsTg = 0, (lk) I/;ol/;a - 1/;11/;2 - I/;oAg - I/;1(A2 + All) + iJIA7 

TioTn - ToT, + T6Ts - .L ITg + T7T7 

+ 1': - TaTs - 2T2T2 = 0. 

- iJ2As + (1/;2 + iJ2)AI - I/;aAo + iJaA6 = 0, (3d) 

(11) 1/;11/;4 - I/;al/;2 - I/;4As - I/;a(A2 + All) + iJaA7 

These identities were found by inspection. Using 
each identity to eliminate a product of the T's it 
can be shown that no further independent quadratic 
identities exist. 

- iJ2A g + (1/;2 + iJ2)A3 - I/;I A4 + iJIAs = 0, (3 e) 

- I/;oA7 + iJoA 7 + I/;1(A 5 - AI) 

- ViI(A 5 - AI) - (1/;2 - Vi2)A 6 = 0, (3 f) 
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-1f4A7 + If,Ltr + 1fa(Ag - Aa) 

- lfa(A g - Aa) - (1f2 - lf2)As = 0, (3g) 

1f01f2 - 1f~ - 1fOA2 + 1f1(A l + A5) - 1f2A O = 0, 
(3h) 

1f41f2 - 1f~ - 1f4A2 + 1fa(Aa + Ag) - 1f2A4 = 0, 
(3 i) 

1f: - lf~ - 1f11fa + lf1 lf3 + 1f1Ag - lflAg 

+ (1f2 - lf2)A u + (1f2 + lf2)(A2 - A2) 

+ 1faAs - lfa.tL = 0, 

1f: - If; - 1f11fa + lf1 lfa + 1f1Aa - lf1Aa 

+ (1f2 - lf2)A lO + (1f2 + lf2)(A 2 - A 2) 

(3 j) 

+ 1faAl - 1faLL = 0, (3k) 

1f: + 21f~ - 1fo1f4 - 2lf1lfa 

+ 1foA, + lf1(A g + Aa) + 21f2A2 

+ 2lf2(A2 - A 2 ) + (1f2 + lf2)(A 10 + Au) 

+ lfa(Al + As) + 1f4AO = 0. 

The same equations hold with A replaced by B. 
The usefulness of these equations can be demon­

strated. The null tetrad can always be chosen so 
that 1fo = 0. If am.. = ° the equations yield, with 
1fo = 0, 1f1 = 1f2 = 1fa = 1f4 = 0. Hence the space­
time is flat. This proves that no empty space-time 
is of embedding class one, since, for such space­
times, am .. and 8m could be put zero. Furthermore, 
if the determinant of the coefficients of A o, •• , , All 
in the Eqs. (3) is nonzero, then A o, •• , , All can be 
determined in terms of 1fo, '" , 1f4' By symmetry 
B o, ••• , Bll can also be determined and will be 
equal to A o, •• , , All' Thus Eqs. (2a), ... , (2l), 
can be written with A = ° and B replaced by 2B. 
However, it has just been shown that such a system 
of equations is only possible in a flat space-time. 
Hence for embedding class two the determinant must 
be zero. This imposes a condition on the curvature 
tensor. 

The two theorems stated in the Introduction can 
now be proven. Since these concern algebraically 
special space-times the null tetrad can be chosen 
so that 1fo = 1f1 = 0. The converse of the Goldberg­
Sachs theoremS gives 'Y131 = 'Y133 = 0. Geometrically 
this means that the tetrad vector I' defines a con­
gruence of geodesic rays with zero shear.9 If 'Y134 ='Y14a 
the congruence is irrotational and therefore hyper­
surface-orthogona1. lo If 'Y134 = -'Y14a the congruence 

9 R. Sachs. Proc. Roy. Soc. A264, 309 (1961). 
10 P. Jordan, J. Ehlers, and R. Sachs, Akad. Wiss. Mainz. 

1 (1961). 

is nondiverging. These results will all be used in 
proving the theorems. 

4. TYPEID 

The null tetrad can be chosen so that 1fa is the 
only nonzero 1f and 1fa = lIa. The Eqs. (3a), ... , (31) 
yield Ao = Al = A5 = A6 = 0, A IO + A2 + A7 = 
All + A2 - A7 = 0, 1fa = Aa + A g, with Aa = A a, 
and Ag = A9 • These are consistent with the condi­
tion 1fa ~ ° only if all = ala = ° and a l2 ~ 0. 
In this case the following further equations are ob-
tained, aaa = a44, a23 = a24, a12 + a44 - aa4 = 0, 
and 1fa = 2e l a l2a24' Similar results hold for bm .. and 
substituting into the Gauss equation gives e1 = -ea 
(i.e., the embedding space is of signature 2), a2a = 
- cb2a, and amn = cbmn for all other choices of mn, 
where c = ±1. 

Putting mnp = 124 in the Codazzi equations, 

= -e1( -s,al2). 

Adding -c times the first equation to the second 
leaves 

a24'Yla4 = 0. 

Hence, since a24 ~ ° (1fa ~ 0), one has 'Y1a, = 0 
which proves Theorem 1 for type III space-times. 

5. TYPE II 

The null tetrad can be chosen so that 1fa and 1fa 
are the only nonzero 1f, and 1fa = lIa. If 1fa ;;t. 112, 
the Eqs. (3a), ... , (31) yield 

Ao = Al = A4 = As = As = A7 = As = 0, 

A2 = !1f2, 

AlO = Au = -H1f2 + 112) and Ag = Aa = !1f3' 

Substituting these into the identity (Ii) gives 1fa = 0 
which contradicts the hypothesis. Hence, for em­
bedding class two 1f2 = 112' In this case the calcula­
tion proceeds as in Sec. 4 and it is found that 

Equation (2k) then reads 

Putting mnp = 121 in the Codazzi equations gives 

and 
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Multiplying the first equation by e1a 12, the second -'Y143'Y132a24 + 'Y143'Y134a22 - 'Y134'Y142a23 = o. 
by e2bU, and adding yields S.J. 0 Th uppose 1'134"..... en 

!(e1a~2 + e2b~2);1 = O. a23 = Ua33 

Hence 1/12;1 = O. However with the present choice 
of tetrad, one component of the Bianchi identities8 

becomes 

Thus 1'134 
orem 1. 

"'2;1 = 31'1341/12' 

o which completes the proof of The-

6. TYPE N. 

The null tetrad can be chosen so that 1/14 is the 
only nonzero 1/1 and 1/14 = lP4. Equations (3a), ... , 
(31) yield 

Ao = A1 = A2 = As = A6 = 0 with A7 = A7. 

These and the Gauss equations are consistent only 
if all = a 13 = bll = b13 = O. The calculation divides 
into three subcases. 

(1) a12 ;6 O. 

From Eq. (2k) b12 ;6 0, and so A2 = B2 = 0 
imply a34 = b34 = O. Putting mnp = 314 in the 
Codazzi equations gives 

a12'Y134 = O. 
Hence 

1'134 = O. 

(2) au = 0, not both a34, b34 are zero. 

From Eq. (2k) b12 = O. Putting mnp 134 
in the Codazzi equations gives 

a34('Y134 - 1'143) = 0 
and 

Hence 

1'134 = 1'143' 

(3) au = b12 = a34 = b34 = O. 

Putting mnp = 123, 324, 334 in the first Codazzi 
equation gives 

a23;4 - a23'Y214 - a22'Y314 + a32'Y412 + a42'Y312 

+ a33'Y244 - a23'Y344 = e2( -s4b23) , 

a33;4 - 2a32'Y314 + a32'Y413 + 2a33'Y344 = e2( -S4b33)' 

Taking 1'142 times the last equation from 1'143 times 
the second, using the first to eliminate derivatives 
of a,1OftI and finally using the N ewman-Penrose field 
equations8 to eliminate derivatives of the 'Y's yields 

and 

where U 
gives 

a22 = U2a33 + iPa44, 

1'14211'143' Substituting these into (2e) 

1/14 = - U
2

[e1a33a44 + e2b33b44] ' 

which is zero because of (21). Hence, since 1/14 ;6 0, 
1'134 = 0 and this completes the proof of Theorem 2 
for type-N space-times. 

7. TYPE D. 

The null tetrad can be chosen so that "'2 is the 
only nonzero 1/1. As in type II space-times it is 
found that embedding is only possible if 1/12 = lP2. 
Using the Bianchi identity 1/12;1 = 31'1341/12 yields 
immediately 1'134 = 1'143 which proves Theorem 2 
for these space-times. 

8. REMARKS 

The metrics possessing hypersurface orthogonal 
geodesic rays with zero shear have been studied 
by Robinson and Trautman 11 and Kundt. 12 The 
Gauss-Codazzi-Ricci equations can be written ex­
plicitly for the metrics but are too difficult to solve. 
Further analysis of the type-D space-times for 
1'134 ;6 0 limits one to the D-S space-times of Robin­
son and Trautman. These include the Schwarzchild 
solution which is known to be of embedding class 
twO.13 

For space-times of type I the null tetrad can be 
chosen so that 1/10 = "'4 = 0, "'1 = "'3 ;6 0 and 
91/1~ ;6 161/1~. Equations (3a), ... , (31) possess 
solutions consistent with the identities (la), ... , (11) 
only if at least one of the expressions "'2 - lP2' 
21/1~ - 1/1~, 41/1~ + 2lP~ - 1/1~ - 1/I2lP2 is zero. The 
geometrical significance of this result is obscure. In 
each case the general solutions to (la), ... , (11) 
can be found but these contain several arbitrary 
scalars and the method becomes too unwieldy to 
yield further information. 

The method depends on the simplicity of Eqs. 
(3a), ... , (31). For space-times of higher embedding 
classes these equations will become multilinear 
equations in several sets of unknowns A, B, C, .... 
These equations are unlikely to be of help in analyz­
ing such space-times. 

11 1. Robinson and A. Trautman, Proc. Roy. Soc. A26S, 
463 (1962). 

12 W. Kundt, Z. Physik. 163,77 (1961). 
13 C. Fronsdal, Phys. Rev. 116, 778 (1958). 
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The symmetry properties of the 3j-symbols are studied for an arbitrary compact group. It is shown 
that when the three j's are all inequivalent it is possible to choose 3j-symbols which are invariant 
under any permutation of the fs and of the corresponding m's (generalized magnetic quantum num­
bers). When two of the three j's are equivalent, the 3j-symbols can be chosen in such a way that at 
most a minus sign appears when the j's and m's are permuted. It is also shown that when the three 
j's are equivalent it is in general not possible to choose the 3j-symbol such that its absolute value is 
invariant under every permutation of the m's. 

INTRODUCTION 

I N the development of Racah algebra for an 
arbitrary compact group it is possible to use 

3j-symbols which are defined only up to a unitary 
transformation in the multiplicity variable.1 In this 
paper we show how this arbitrariness in the defini­
tion of the 3i-symbol can be used to impose some 
simple symmetry relations among the various 31-
symbols. 

It has been shown by Wigner2 that the symmetry 
properties of the 3i-symbols for an arbitrary simply 
reducible (SR) group are essentially the same as 
for the rotation group in three dimensions. Hamer­
mesh8 has given the properties of the 3j-symbols 
of S.,., the symmetric group on n symbols, which is 
not SR if n > 4 and de Swart4 has obtained the 
symmetry properties of the 3i-symbols for 8U(3). 
More recently Masudao has given the symmetry 
properties of the 3i-symbols for an arbitrary (com­
pact) group. For non-SR groups it is usually assumed 
that the 3i-symbol (i1Ma)r ............. can be chosen such 
that its absolute value is invariant under any permu­
tation of the j's and of the corresponding m's. How­
ever, as we will show, this assumption is in general 

... This work was supported by the National Research 
Council of Canada. 

t This paper is based upon a thesis submitted in May 1965 
in partial fulfillment of the requirements for the Ph.D. degree 
in mathematics at the University of Toronto. 

t Present address: Laboratoire de Physique Theorique 
et Hautes Energies, Batiment 211, Faculte des Sciences, 
91-0rsay, France. 

1 Jean-Robert Derome and W. T. Sharp, J. Math. Phys. 
6, 1584 (1965). 

2 E. P. Wigner, "On the Matrices Which Reduce the 
Kronecker Product of Representations of S.R. Groups" 
in Selected Papers on the Quantum Theory of Angular MomM­
tum, edited by L. C. Biedenharn and H. Van Dam (Academic 
Press Inc., New York, 1965). See also E. P. Wigner, Group 
Theory (Academic Press Inc., New York, 1959). 

aM. Hamermesh, Group Theory (Addison-Wesley Pub­
lishing Company, Inc., Reading, Massachusetts, 1962). 

4 J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963). 
iN. Masuda, Nuovo Cimento 36, 693 (1965). 

valid only when at least two of the three i's are 
inequivalent. 

THE TRANSPOSITION MATRICES 

The matrix elements of the irreducible representa­
tion i of the group G are denoted by i(R)m ... " where 
REG. We write i(R)", m' for the complex conjugate 
of fCR)"'",' and [f] for the degree of i. Sums are implied 
over repeated m (generalized magnetic quantum 
number) and r (multiplicity) indices; the 3j-symbol 
is denoted by (i1Ma)r ..... m.",. [by (M2ia)r in short­
hand form]. It is defined by 

iteR)"" ",.,MRr m.' = Li. [ja] {(jlMa)r.m,m.",.1 * 
X ja(R)m,"'·'(jlMa)r''''''m.''''''' (1) 

where the indicated sum runs over all the equiv­
alence classes of irreducible representations of G 
since (j1Ma)r is chosen to be zero whenever j: is not 
a constituent of i1 X i2 (Le., whenever ilMa do not 
form a triad). The Ij-symbol (j)mm' = [j]!(jOj*) ... om' = 
{(i)mm'} * can then be used as a metric tensor to 
define 3i-symbols with some of the m's contra­
variant. For instance 

In shorthand notation UJMa)r. ""m.m. is written 
(ilMa)r. 1 Similarly the unitary matrix 

A(123) .. = Cidzia)rGIMa). 

can be used as a multiplicity metric tensor to raise 
the multiplicity indices. It is then easy to show that l 

GIMa)' = {(iIMa)r I * . 
We assume that for each representation space a 
definite choice of basis has been made. The 3j-symbol 
CilMa)r is then determined up to a unitary trans­
formation in the multiplicity variable. We will say 
that two sets of 3i-symbols are U-equivalent if they 

612 
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are related by a unitary transformation in the 
multiplicity variable and we write 

W1Ma) •. m,m,m. J' = U(123):' (j1Ma).· .m,m,m.' (2) 

We now introduce the unitary matrices 

(3) 

and 

M(ab, c):' = (Majc).(jajbjcY', (3') 

where jaMc can be any permutation of the triad 
j1Ma. Using the unitarity of the 3j-symbols1 we 
obtain 

and 

(Majc). = M(ab, e):'(jaMc)." (4') 

In view of Eqs. (4) and (4') we call the matrices 
M(a, be) and M(ab, c) transposition matrices. Given 
a triad jd2ja, there are at most twelve such trans­
position matrices: M(l, 23), M(2, 13), M(3, 12), 
M(12, 3), M(13, 2), M(23, 1), M(l, 32), M(2, 31), 
M(3, 21), M(21, 3), M(31, 2), and M(32, 1). There 
are six other unitary matrices which correspond to 
transpositions of the first and third j's in the 3j­
symbol, but these are not new because they are 
products of some of the above twelve. Similarly, the 
cyclic permutations of the j's and m's in a 3j-symbol 
can be expressed as a product of transposition 
matrices. Moreover the twelve transposition ma­
trices listed above are not all independent since 

M(ab, c) = M(ba, er1
, (5) 

M(a, be) = M(a, ebr1, 

and 

M(23, 1) M(2, 13) M(12, 3) 

= M(3, 12) M(13, 2) M(l, 23). (5') 

Using Eqs. (5) and (5') we can express every trans­
position matrix in terms of five of them. We call 
such a set of five "independent" transposition ma­
trices a fundamental set for the triad jlMa. Without 
any loss in generality we choose M(12, 3), M(13, 2), 
M(23, 1), M(l, 23), and M(2, 13) to be the funda­
mental transposition matrices (i.e., members of the 
fundamental set). Any permutation of the j's and 
m's in a 3j-symbol can be obtained by applying 
successively a number of fundamental transpositions 
and their inverses. 

According to Eqs. (3) and (3') the transposition 
matrices are completely determined by the 3j­
symbols and the transformations of the 3j- symbols 

realized by the matrices U(abe) induce the following 
transformations of the five fundamental transposi­
tion matrices: 

M(12, 3)' = U(213) M(12, 3) U(123f1, 

M(13, 2)' = U(312) M(13, 2) U(132)-1, 

M(23, I)' = U(321) M(23, 1) U(231)-\ 

M(l, 23)' = U(132) M(l, 23) U(123r1, 

M(2, 13)' = U(231) M(2, 13) U(213f1. 

(6) 

The transformation properties of the other permuta­
tion matrices are easily obtained from those of the 
fundamental set. 

Let j1M3 be three irreducible representations of 
a compact group G which form a triad, and suppose 
we are given a complete set of 3j-symbols for this 
triad, i.e., we are given all (jaibj.)., where jaibjc can 
be any permutation of jd2ja. We now wish to find 
a new complete set of 3i-symbols which is U-equiv­
alent to the given set and which yields the "simplest" 
permutation matrices, i.e., the simplest symmetry 
properties for the 3j-symbols.6 

For SR groups the usual choice of symmetry 
properties for the 3i-symbols is that of Wigner.2

•
7 

I t consists in takingS 

M(a, be) = M(ab, c) = (_1);·+;6+;., 

where (-1); is a certain phase associated with j. 
For a general group such a simple choice is not 
possible. 

Several authors assume that it is in general possible 
to diagonalize simultaneously all the fundamental 
transposition matrices of any triad. They then choose 
their 3j-symbols such that the effect of a permutation 
of the j's and m's is at most a multiplicative phase. 
Below we give a counterexample which shows that 
this assumption is in general wrong. 

In order to discuss the symmetry properties of 
the 3j-symbols of a general group it is convenient 
to consider three different cases corresponding to 
three different types of triad. 

CASE 1 

If the three members of a triad are all inequiv­
alent, i.e., j1 ~ j2 ~ ja ~ jll the five fundamental 
transposition matrices can be transformed to the 

6 It should be emphasized that this set is not necessarily 
unique, i.e., two U-equivalent but distinct sets of 3j-symbols 
may satisfy the same symmetry relations. 

7 W. T. Sharp, "Racah Algebra and the Contraction of 
Groups." Report AECL-1098, AtOlniC Energy of Canada. 
Ltd., Chalk River, Ontario, 1960. 

8 For SR groups the transposition matrices are just complex 
numbers of modulus one. 
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same unitary Hermitian matrix D by taking9 

U(2l3) = D, 

U(123) = M(12, 3), 

U(13l) 

U(3ll) 

we obtain 

U(1l3) M(ll, 3) M(l, 31), 

U(1l3) M(l, 31) M(3l, 1), 

U(132) = D M(12, 3) M(l, 32), 

U(3l2) = M(12, 3) M(l, 32) M(3l, 2), 
(7) M(13, 1)' = M(l, 13)' = M(ll, 3)' = [Is 0] . 

o -1..1. 

U(32l) = D M(12, 3) M(l, 32) M(3l, 2) M(3, 21), 

U(23l) = M(12, 3) M(l, 32) 

X M(3l, 2) M(3, 21) M(23, 1). 

This is easily checked by substituting Eq. (7) into 
Eq. (6). 

It then follows that the transformed transposition 
matrices are all equal to D since every transposition 
corresponds to a product of an odd number of 
fundamental transpositions. A cyclic permutation 
corresponds to a product of an even number of 
transpositions and each new 3j-symbol is therefore 
invariant under any cyclic permutation of its argu­
ments. 

Since one can always take D = lone can choose 
the 3j-symbols to be invariant under any permuta­
tion of the j's and m's provided the three j's are 
inequivalent. 

CASE 2 

If exactly two of the three j's are equivalent, say 
jt = ja ~ ja, Eqs. (6) become 

M(ll, 3)' = U(1l3) M(ll, 3) U(1l3)-I, 

M(13, 1)' = U(3ll) M(13, 1) U(13l)-t, (8) 

M(l, 13)' = U(13l) M(l, 13) U(1l3)-I. 

Clearly it may be possible to choose M(ll, 3)' equal 
to the unit matrix only if M(ll, 3) has no eigen­
value other than +1. Since M(ll, 3) = M(ll, 3)-1 
its possible eigenvalues are + 1 and -1. There­
fore, if M(ll, 3) has eigenvalues +1 and -1 with 
degeneracies 8 and A, respectively,IO then by a 
suitable choice of U(1l3) we can take 

M(ll, 3)' = [1 8 0 1 
o -1..1. 

If we now take 

(9) 

v This matrix D must be unitary and Hermitan but it is 
otherwise arbitrary. For a non-SR group one usually takes 
D = 1. If the group is SR, D = (-I)i1+i.+i. is the most 
convenient choice because it is then possible to consider the 
three different types of triad on the same footing. 

10 One easily shows that 8 and A are the multiplicities of 
i.* in the symmetric and antisymmetric squares of ib re­
spectively. 

Since M(ll, 3)' = (M(ll, 3),)-1 it then follows that 
every new transposition matrix is equal to M(ll, 3)' 
and that every cyclic permutation leaves the 3j­
symbol invariant. 

CASE 3 

Finally if jl = j2 = ja (= j) the Eqs. (6) become 

M(jj, Jl' = U(jjj) M(jj, j) U(jjJ)-I, 
(10) 

M(j, iJl' = U(jiJ) M(j, jJ) U(jjjfl. 

Clearly the two fundamental transposition matrices 
M (H, j) and M (j, jj) can be diagonalized simulta­
neously only if they commute, in which case 

where x\R) is the character of j and the integration 
is to be performed over the (compact) group. To 
prove this we use the fact that 

(M(j, iJ) M(jj, J))2 = 1 

which follows from the commutativity of the two 
Hermitian unitary matrices M(j, jj) and M(jj, j). 
This means that the 3j-symbol (jjj)r.mm'm" is in­
variant under any cyclic permutation of the m's. 
It then follows from the propertiesll of the 3j­
symbols that 

J j(R)m"j(R)m' ",j(R)m" n" dR 

= J j(R)mn,j(R)m'n"j(R)"'''" dR. 

Setting m = n, m' = n', m" = nfl, and performing 
the sums we then obtain Eq. (11).12 

We conclude by giving an example for which 
Eq. (11) does not hold. Consider 8 6 the symmetric 
group on six symbols and let j be the irreducible 
representation of degree 16 usually denoted by the 

11 See for instance Ref. I, Eq. (2.5). 
12 Equation (11) can also be obtained as follows. We first 

observe that the matrices M(jj, i) and M(j, ij) generate a 
representation M of the group 8 3• The transposltion matrices 
can be taken in diagonal form only if M does not contain the 
irreducible representation [21] of Sa and the multiplicity of 
[21] in M is easily found to be t f [(xi(R»S - xi(RI)] dR/J dR. 
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Young diagram [321].13 A simple calculation shows 
that 

L: (X;(R)3 - L: x;(R3) = 2160. 
R R 

Thus if j is the 16~dimensional irreducible represent~ 
tion of 8 6 it is not possible to diagonalize simulta~ 
neously M(ij, i) and M(j, jj). In other words, it 
is not possible to choose the 3j-symbols of 8 6 in the 
"symmetric" form (iii)r.".".'''''' = Or(ijj)r,""m"." = 
Or'(jjj)r,mm""'" where Or and Or' are just phase 

13 G. de B. Robinson, Representation Theory of the Sym~ 
metric Group (University of Toronto Press, Toronto Ontario, 
Canada, 1961). 

factors.14 For 8U(3), although we could not find 
a similar counterexample, to our knowledge no proof 
has yet been given that the 3i-symbols can all be 
chosen in diagonal form. 
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A quantum mechanical perturbation expansion of the partition function is used to evaluate the 
free energy of the electron gas and muiticomponent plasmas to logarithmic accuracy in the particle 
number density, thus including the next important contribution beyond the ring approximation. The 
quantum generalization of Abe's work on the classical electron gas is given for the ladder interactions 
with the dynamic screened Coulomb potential, and each ladder is shown to be separately finite be­
cause of the finite size of the wave packets describing point electrons [of the order of the thermal de 
Broglie wavelength l\ = n{p/2m)1/2J. The results show that quantum effects due to the uncertainty 
principle persist at high temperature, and that when kT > Ryd plasmas are quantum systems, 
rather than classical, because l\ is greater than the average distance of closest approach, pel, Results 
are also obtained for the Wigner-Kirkwood wave mechanical diffraction corrections to the classical 
electron-gas free energy which are valid for low temperature (kT < Ryd). The connection between 
the high- and low-temperature formula is discussed, and it is shown how the logarithmic divergence in 
the free energy that is cut off at pel in the low-temperature electron gas in the Abe theory is cut off 
at l\ in the high-temperature case. Also it is shown that the quantum diffraction effects contained in 
the Montroll-Ward ring sum formula are valid only for kT > Ryd, even though the quantum ring 
sum formula contains the classical Debye-Hiickel result. 

I. INTRODUCTION 

I N this paper we consider the evaluation of the 
free energy of single-component and multicom­

ponent plasmas at high temperature to logarithmic 
accuracy in the particle number density. The general 
method to be used is an evaluation of terms in the 
perturbation expansion of the partition function 
along the lines initiated by Montroll and Ward l 

some years ago. A quantum mechanical treatment 
is necessary from the beginning since quantum effects 
persist even at high temperature, These quantum 
effects, however, are primarily due to the uncertainty 
principle and not particle indistinguishability; thus 
in this paper we assume Maxwell-Boltzmann statis­
tics. Over a very wide temperature and density 
regime the dominant contribution to the plasma 
free energy due to Coulombic interactions is given 
by the ring interactions, the equivalent of the Bohm 
and Pines random phase approximation (RPA) , 2 The 
quantum mechanical ring sum formula obtained 
first by Montroll and Ward l has been evaluated for 
high-temperature plasmas and gives wave mechan­
ical corrections3 to the classical liInit, the Debye-­
Huckel result. If these usually small wave mechanical 
corrections are retained, then it is also necessary 
to include additional corrections not in the RPA 

* Worked performed under the auspices of the U. S. 
Atomic Commission, Contract No. W-7405-eng-48. 

1 E. W. Montroll and J. C. Ward, Phys. Fluids 1, 55 (1958). 
J (a) D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951); 

see also (b) D. Bohm and D. Pines, Phys. Rev. 85, 338 (1952). 
a H. E. DeWitt, J. Math. Phys. 3, 1216 (1962). 

arising from a more accurate treatment of two-body 
interactions. The Feynman diagrams describing the 
higher-order contributions to the two-particle scat­
tering amplitude are often described as ladders' and 
in this paper we will use this term to describe the 
analogous contributions to the free energy. The 
ladder diagrams were evaluated for the classical one­
component plasma, a gas of point charges in a con­
tinuous neutralizing background, by Abe. & Here we 
give the quantum theory of the ladder diagrams. 

It is helpful to consider the divergence difficulties 
that one finds with a siluple perturbation expansion 
of the free energy of a system of point charges. 
These difficulties are simply illustrated by the class­
ical electron gas. The Helmholtz free energy ob­
tained from the first three terms of the expansion 
of the second virial coefficient in powers of e2 is 

N
2 1'" f3(F - Fo) = -- 47r1'2 dr 

2V 0 

[ 1 (f3e2) 
2 

1 (fJe2) 
3 

X - - -- - + 2! r 3! r ... J 
= -47rN p(i(fJl)2Lma:< - fi(fJe")l 

X log (LmaxILmin) ",1, (1) 

where F 0 is the ideal-gas free energy, fJ = llkT, 
and p = N IV is the number density for N particles 

4 S. S. Schweber, H. A. Bethe, and F. de Hoffman, Mesons 
and Fields (Row, Peterson and Company, Evanston, Illinois, 
Vol. I, p. 81. 

6 R. Abe, Progr. Theoret. Phys. (Kyoto) 22,213 (1959). 

616 
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in volume V. In the second line of Eq. (1) the 
cutoff lengths Lmax and L min indicate the linear and 
logarithmic divergencies which a correct theory 
should take care of automatically. Note that the 
first-order term in e2 is removed by electrical neutral­
ity. The summation of the ring diagrams replaces 
the second-order term in Eq. (1) with 

_! 11 dg J V d3k 47rge2~p 47rge2~p 
2 0 g (27r)3 k2 e + 47rge2~p 

-~ J ~~33k {(kL)2 - log [ 1 + (kL)2]} (2) 

-47rN pl(~e2)2AD' 

from which one sees that the cutoff of the linear 
divergence is the Debye length, AD = (47re2~p)-i. 
Essentially the ring sum is a modification of second­
order perturbation theory in which one Coulomb 
interaction is replaced by the screened Coulomb 
interaction: 

(3) 

The logarithmic divergencies of the third-order term 
in Eq. (1) are removed following Abe6 by replacing 
the simple third-order perturbation theory with 

- N
2 1'" 41rr2 dr f (-~u,(r)t 

2V 0 "'-3 m! 

= +47rNpr~(~e2)3[log(AD/~e2) - Dc "'J, (4) 

D. = log 3 + 2C - 11/6, C = 0.5772. 

In the third-order term, the long-distance cutoff 
is again the Debye length, and the short-distance 
cutoff is the only other length in the classical prob­
lem, the average distance of closest approach, ~e2. 
Equation (4) is the first term of the nodal expansion 
developed independently by Abe,6 Meeron,6 and 
Friedman.7 As applied to the electron gas, the nodal 
expansion is a rearrangement of the complete per­
turbation expansion of the free energy such that 
long- and short-distance divergencies are systemat­
ically cut off at AD and ~e2, respectively. Note that 
two steps are necessary to cut off the logarithmic 
divergencies in the third-order term of Eq. (1): 
(i) chains of Coulomb interactions are summed to 
give screened interactions, u.(r), between two par­
ticles, and (ii) the resulting ladder diagrams with 
screened interactions are summed from 3 to ex). 

Step (i) gives Lmax = AD and step (ii) gives Lmin = ~e2. 
The classical diagrams are shown in Fig. 1. 

• E. Meeron, Phys. Fluids 1, 139 (1958). 
7 (a) H. F. Friedman, Mol. Phys. 2, 23 (1959); see also 

(b) H. F. Friedman, Mol. Phys. 2, 190,436 (1959). 

. 
IHF-F.o ) = c:::::7 + ~ E7 

m=3 : 

U.(r) = - = + .. 
FIG. 1. Diagrammatic representation of the leading con­

tribution to the free energy of the classical electron gas. 
Points represent charges, horizontal lines the Coulomb inter­
action, and wavy lines the screened interaction. 

Wave mechanics introduces a third length, the 
thermal de Broglie wavelength, l\ = h/(2mkT)i. 
The point charges of the classical problem must 
now be considered as interacting wave packets of 
spatial extension l\. This finite extension has the 
important consequence that each ladder term is 
separately finite. Thus the quantum theory of the 
third-order term in Eq. (1) gives L min = l\, and 
the mth-orderterm will be proportional to (~e2) '" /l\ ",-3. 

It is important to realize that at high temperatures 
the thermal wavelength is larger than ~e2, i.e., 
l\ > ~e2 when kT > Ryd. Consequently the ladder 
interactions for m ;::: 4 may be neglected in com­
parison with the m = 3 term at high enough tem­
peratures. Thus the quantum theory of high-tem­
perature plasmas is in one respect simpler than the 
theory of the classical electron gas, namely, step (ii), 
the summation of ladder diagrams, is not necessary. 
The uncertainty principle provides the necessary 
short-distance cutoff. The two diagrams required 
for the quantum treatment of the divergencies in 
Eq. (1) are shown in Fig. 2. Each particle is in­
dicated by a bubble in which the downward line 
indicates the hole in the equilibrium Maxwellian 
momentum distribution after interaction and the 
upward line indicates the various excited states of 
the particle. The intermediate temperatures go from 
o to {3, and indicate the "times" at which the inter­
actions take place. In the classical limit, h = 0, 
the bubbles shrink down to the points shown in 
Fig. 1. 

FIG. 2. Diagrams representing the leading contribution of 
electron-ion interactions to the free energy of a high-tempera­
ture plasma. Light bubbles represent electrons, and heavy 
bubbles, ions. The wavy lines indicate the dynamic screened 
interaction. 
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n. QUANTUM MECHANICAL FORMS OF THE 
LADDER INTERACTIONS 

In this section we use the formalism of Bloch and 
de Dominicis8 in conjunction with the Montroll and 
Ward procedure for summing chains of Coulomb 
interactions. Even with the neglect of quantum 
statistics the mathematical form of the ladder dia­
grams of Fig. 2 is vastly more complicated than 
the simple classical form appearing in Eq. (4). In 
place of the simple static screened interaction, u.(r), 
the quantum theory for the electron gas requires 
the nonstatic dynamic screened potential whose 
spatial Fourier transform is 

u.(k., fJ. - fJ~) 

,. __ co 

(.-O,±l.···,±oo) 

u(k,) exp 27riv(fJi - fJ~)/fJ 

1 + fJU(kJA2('Aki' 27riv) 

1: u.(k., 27riv) exp [27riv(f3. - f3~)/f3] 

= u(k.) O(f3i - f3~) + Uv(ki' 13. - f3~), (5) 

with u(k) = 47re/k2V, and u.(k, 27riv) is the four­
dimensional Fourier transform: 

u.(k,27riv) = u(k)/[1 + f3U(k)'A2('Ak, 27riv)]. (6) 

In the third line of Eq. (5) the screened potential 
is broken into the static Coulomb part and the 
nonstatic polarization potential whose four-dimen­
sional Fourier transform is 

uv(k, 27riv) = - f3u(k)u.(k, 27riV)'A2('Ak, 27riv). (7) 

The function 'A2(Xk, 27riv) is the Fourier transform 
of the simplest charge density fluctuation, and has 
the form 

"\ ("k 2 .) = J V d
3
p exp (a - f3p2/2m) ! IfJ d 

"2 ", 7r'/,V (27r1i)3 13 0 T 

X exp {27riT/f3 - T[(p + lik? - p2]/2m} 

= NL(Z2, 27riv), (8) 

where Z = 'Ak, 'A = Ii (f3/2m) t, and a = I3IJ. is the 
chemical potential defined by 

ea = (27r1i) 3 p/(27rmkT)J(2s + 1). 

Explicit forms and various properties of the L(Z2, 27riv) 
functions are given in Ref. 3. Note that the quantity 
1 + fJu (k)'A 2 ('Ak, 27riv) is the RPA expression for 
the plasma dielectric function for imaginary fre­
quency values, fJliw. = 27riv. 

The results for the ladder diagrams will be given 
for a two-component plasma composed of N. elec-

8 (a) C. Bloch and C. de Dominicis, Nucl. Phys. 7, 459 
(1958); see also (b) C. Bloch and C. de Dominicis, ibid. 10, 
181, 509 (1959). 

trons and N j ions in a volume V. Electrical neutral­
ity requires that z.N. + zjNi = 0, where z. and Zj 

are the charge numbers of electron and ion, respec­
tively. The electrons comprise a fraction I. = N./N 
and the ions Ii = Ni/N of the total number of 
particles, N = N. + N j. The screened potential 
for the two-component system is the same as Eq. (5) 
except that the plasma dielectric function becomes 

E(k, 27riv) 

= 1 + f3u(k)[z!'Ai'A.k, 27riv) + Z~'A2('Aik, 27riv)] 

= 1 + (47rf3e2p)k-2[z!/.L('A!k2, 27riv) 

+ zUiL('A~k2, 27riv)] ~ 1 + l/(k'AD)\ 

*-0 

where 'AD = (47rf3pe2(z2»-t is the multi component 
Debye length with (Z2) = z!/. + ZUi' 

The free energy will be denoted as 

f3(F - Fo) = -N{8ring + 1: 8 2 .", ... }, 
",-3 

where 8 2 •m is the contribution of a ladder diagram 
with m dynamic screened interactions as given by 
Eq. (5). After the sum of all two-body interactions 
there will be similar contributions from clusters of 
n particles interacting via the dynamic screened 
potential, i.e., the complete quantum generalization 
of the Abe nodal expansion. 9 8 2 • 110 must include elec­
tron-electron interactions, electrons with ions, and 
ions with ions. The portion of 8 2 • 110 arising from the 
temperature orderings shown in Fig. 2 is 

(-z.z;)'" J V d3p. exp (a. - fJp!/2m.) 
2 (27r1i) 3 

X J V d3p; exp (a; - f3pU2m;) 
(27r1i) 3 

J J V"'-1 d3k1 ... d
3km (... ) 

X . . . (271')3(110 1) 0 ~ k i 

I
fJ >fJm > •• '>fJ, 1 1 

X df3110 . . . df31 (.1m 

o 0 ~ 

I
fJ >fJ m '>"'>fJ,' 1 

X df3:" .. . df3~ 
o 0 

X exp {-[(f3, - (31)(P!.1 - P:) + 
+ (13m - fJ11O-1)(P!.",-1 - p:)]/2m.) 

X exp {-[(f3~ - f3D(P~.1 - p~) + ... 
+ (fJ:" - f3:"-1)(P~.m-l - p:)]/2m,) 

X U.(k1' 131 - fJD .. , u.(km, 13m - fJ:'), (9) 

g E. Meeron (Ref. 6) introduced the term "nodal expan­
sion." A node is a particle with three or more interactioIl8 
ending on it. 
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where 

P.,; = P. + Ii(k, + 
Pi,; = Pi - Ii(k, + 

The other contributions come from the remaining 
m! different orderings of the intermediate temper­
ature variables. When all m! time orderings are 
added together and the classical limit taken, the 
result is 

which gives the Abe result for the electron gas, 
Eq. (4). 

For a static potential, u(k)O({3i - {3D, the expres­
sion (10) with each {3~ going from 0 to {3 is the entire 
quantum form of 8 2,,,. since the {3~ ... {3:' integra­
tions are removed by the O({3i - {3D functions. For 
plasmas, however, the actual dynamic screened po­
tential, Eq. (5), allows the m different interactions 
to cross. There are m! possibilities corresponding 
to the different permutations of the intermediate 
temperature variables. As an example, if in Fig. 2 
we have {3~ < {3L then the exponential in (10) con­
taining Pi becomes 

exp [-«({3~ - {3m(pi - 1ik2/ - p!] 

+ ({3~ - {3D ([Pi - li(k2 + k,)]~ - p! l) 12mi]. 

Since we have assumed MB statistics the mo­
menta P. and Pi occur only in exponentials and 
can be easily integrated out. The complete result 
with all m! time orderings is 

J ... J V m
-

1 
d

3
k , '" d

3
k". 

X (2'nl('" 1) 

X O(L k i ) { ... { d{3m ... d{3, 

X { ... { d{3:" ... d{3~ 

X Gm ({3" J\.k
" 

'" , 13m, J\.km) 

X G m({3~, J\iki, ... , (3:", J\ik".) 

X U.(k" {3, - (3i) ..• u.(km, (3". - (3:'), (11) 

where G".({3" J\kl) ... ) is the m interaction propagator 
defined by 

ml 

L Gm ,a({3" J\.k
" 

., .), (12) 

where the summation over a gives the m! permuta­
tions of the {3, ... {3".. For the ordering {3". > {3m-l > 
... > {3, the result with km = - (k, + ... + k",_I) 
IS 

G".,lhfJm>"'>fJ, = exp (-J\2{[({32 - {3,)k~ + 
+ ({3". - {3m-,)(k, + ... + k m _ 1)2] 

- [({32 - {3,)k, + ... + (13m - 13m-I) 

X (k, + ... + km _ 1)]2l). (13) 

The propagators are periodic from 0 to {3 for each 
of the m - 1 intervals 13m - (3i and thus may be 
expanded in Fourier series as 

Gm({3" J\k" ... ) = ,,~, .. exp (~27riVi{3'/{3) 

where 1 0 

Vi = 0, ±1, ... , ± OJ, 

m-l 
Pm = - LVi, 

i-I 

= ftLm,a = ;m { ... { d{3,'" d{3 ... 

X exp [27riv,({3m - (3,) + 
+ 27riVm-l({3m - (3m-,)]G ... ({3" Ak" ... ). (15) 

By using the Fourier expansions for G .. and u., 
Eqs. (14) and (5), the temperature integrals in 8 2 , .. 

may be immediately performed to give 

_ (-zezi{3)mN.Ni J V ... - 1 d3k , ... d3k", 
N82,m,ei - 2m! V (27r)3(m 1) 

X O(L k i ) L OK(L IIi) 
.. "1···"" 

X L m (J\.k
" 

27riVl, '" , J\.km-l, 27riV .. _l) 

X L(J\ik" 27rill
" 

... , J\ikm-l, 27riv ... _t) 

X u.(k
" 

27rivl) .,. u.(km , 27rivm). (16) 

This result, Eq. (16), is the exact quantum form 
of the Abe theory. Unfortunately there is little hope 

10 E. W. Montroll, Les Houches Summer School 1ectl:lre 
notes, in La theorie des gaz neutres et ionises, Hermann & Cle., 
Paris, 1960). 
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of evaluating it very far when m > 2 since there 
are m - 1 wave vectors (momentum transfers) to 
be integrated over, and m - 1 discrete frequencies 
2?riv to be summed over, and the L". functions are 
intractably complicated because of the m! time 
orderings. 

Equation (16) simplifies very much if there is a 
static potential u(k) in place of u.(k, 211"iv) since 
then {3. = (3~. One notes that, since the propagators 
Gm involve the thermal wavelength quadratically 
in an exponential [see Eq. (13)], we have 

G".({3I, ~.kl' .. ·)Gm ({3I, Xikl , .•. ) 

= Gm ({3I, X.ikl , ... ), (17) 

since 

m.ml 
/Lei = m + . 

e mi 

By using the Fourier expansion of G". in Eq. (17) 
and integrating over the temperatures, one finds 

.L: Lm(X.kl , 211"ivI' ... , X.km_I' 211"ivm _l) 

X Lm(Xlkl, 211"ivI, .•• ~lk"'_I' 211"ivm _l) 

= Lm(~'lkl' 0, ... , X.ik"._I, 0). , (18) 

This relation holds only for Maxwell-Boltzmann 
statistics. For static potentials, the v summations 
in the 8 2 •m expression (16) disappear since all time 
orderings are equivalent, and we have 

8 ( t t · ) f f (-z.zY' 
2 ...... 1 s a lC = P • I 2 , m. 

J ... J V"'-I d3k l ••• d3k", 
X (211")3(m I) 

I
fJ>fJm> •• '>fJ, J 

X c5( 2: k,) 0 d{3... .•• d{31 

X exp ( - X!d [({32 - (31)k~ + '" 
+ ({3". - {3m-I)(kl + .. , + km_I)2] 

- [({32 - (31)kl + ... + ({3". - (3m-l) 

X (kl + ... + k.._I)]2))U(kl) •.. u(km). (19) 

A ladder diagram with two screened interactions , 
8 2 • 2, in the present notation is not part of the Abe 
8 2 function since it is included in the ring diagrams. 
At this point, however, it is useful to discuss the 
ring diagrams in the same manner as 8 2 • m• Note 
that the ring diagrams as drawn in Fig. 2 appear 
to distinguish the electron and ion bubbles on the 
ends from the electron and ion bubbles in the 
screened interaction, as is actually the case in the 

ladder diagrams with m ;::: 3. Since a ring diagram 
with n charges in the Montroll-Ward method is 
proportional to (1/n)[{3u(k)A2]", it is convenient to 
replace the l/n with an integration over the coupling 
constant, e,2 = ge2, so that 

11 dg g" = ! 
o g n 

as in Eq. (2). Thus the ring diagrams in Fig. 2 
give l1 

NS. . = (Z.ZI? 11 dg 
rmg •• ' 2 0 g 

X J V d3
p. exp (a. - (3p!/2m.) 

(211"h)3 

X J V d3PI exp (al - (3pU2ml) J V d3
k 

(211"h)3 (211")3 

X 2 { d{32 {' d{31 ~ { d{3~ 
X exp ( - {({32 - (31) [(Pe + hk)2 - p!]/2m • 

+ 1{32 - {3fl [(PI - hk)2 - p~]/2ml}) 

X u.(k)u •.• (k, {31 - {3D 

= N.NI(ZeZI{3)21
1 

dg ~ J V d
3
k (k) (k 2 .) 

2 £.... (2 )3 u. u... , mv o g , __ 00 11" 

X L2(~:k2, 211"iv)L2(X;k2, 2?riv). (20) 

If we add together the results corresponding to 
Eq. (20) for Sring ••• and 8 ring . 1i and perform the 
elementary g integration, then the complete ring 
sum becomes 

1 00 J V d3
k (411"{3e

2 
p 

N Sring = 2' .~oo (211")3 -r 
X [z!f.L2(X!k2, 211"iv) + Z~fIL2(X;k2, 211"iv)] 

1 {I + 411"{3e2 P [ 2 (2 2 • ) - og -r z.f .L2 }".k , 2mv 

+ zUILl~~k2, 2?riv)]}). (21) 

This is the Montroll-Ward result for multicom­
ponent plasmas. 

It might appear at first sight that the separate 
evaluation of a part of the ring sum such as Srlng •• ; 

is a meaningless exercise. In fact it will be shown 

11 The evaluation of B2 • 2 and Bring is simplified by the fact 
the 21 pieces of G2 in Eq. (12) are identical so that we have 

G.({3., hk, (3., -hk) = G(I{32 - f3J[, hk) 

= exp {-(hk)2[ff32 - f3J[ - 1f3! - {3J[2]}. 

Similarly the two pieces of the Fourier transform, L, "" 
L ,,ft. >fJ, + L'.fJ,>fJ" are identical and one sees that L. 88 
defined by Eq. (15) reduces to Eq. (8). 
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in the following sections that the quantum diffrac­
tion effects contained in the total ring sum, Eq. (21), 
are correct only when both l\. and l\1 are greater 
than {3l. If, as is usually the case, l\1 < (3e2 then 
the pieces of the ring sum must be evaluated 
separately. The result for Sring •• i exact to O(e6

) 

obtained using the method described in Ref. 3 is 

Sring •• i = !Z!zU.fiA {1 - (311"; 124)')'.i 

+ nth! + 'YD + l~(z!f.'Y! + z~fi'YD/<l)] + ... }, 
(22) 

where 

'Y. = l\./AD' 

m. EVALUATION OF THE THREE-RUNG LADDER 

The complete form of S2 .... as given by Eq. (16) 
is much too complicated to allow a complete ana­
lytical evaluation. Nevertheless, some useful com­
ments may be made about it. For m = 2, i.e., 
essentially the ring sum, the complete quantum me­
chanical form can be evaluated to give a series 
expansion in powers of 'Y as indicated in Eq. (22). 
This exact evaluation is possible because there is 
only one wave vector to integrate, a simplification 
which is due to the fact that the ring integrals in 
configuration space are convolutions which become 
powers of u(k) in k space. For m ~ 3 the reverse 
is true, i.e., in general one has m - lk-vectors to 
integrate over, but in the classical form one gets 
powers of u.(r) in configuration space as shown in 
Eqs. (4) and (10). Thus it is expected that S2 .... will 
be mathematically more tractable in configuration 
space than in k space. Unfortunately there seems 
to be no practical way to convert the exact expression 
for S2 .... into a configuration-space integral. The 
reason is that we would have to find the Fourier 
transform of u.(k, {3i - ,sD in order to take into 

account the retardation effects that occur for Pi ~ (3~. 
However, it should be further noted that the retarda­
tion effects [essentially the contributions from 
u.(k, 21ii1l) for II ~ 0] play no role in cutting off 
the divergencies. Only the Debye screening length 
in the II = 0 is needed for the larger cutoff for m = 3, 
and only the pure Coulomb part of the screened 
potential is needed for r < l\. Thus to get the leading 
term of S2 .... we can neglect retardation effects, and 
use the static approximation, Eq. (19). The ladder 
diagram integrals for static potentials can be written 
in configuration space; the result is 

S2 ...... I(static) = !pf.fi( -z.z;(3)'" 

X J ... J d3r, '" dar", u(r) ... u(r .. ) 

1
1> ... >"'». 1 

X dv... ••• dV 1 
o 0 

X exp [-(r2 - r1)2/4l\!i(V2 - v1)] 

[41rl\!i(V2 - V1)]t 

exp [-(ra - r2)2/4l\!i(Va - V2)] 
[41J"l\!i(Va - v2)]i 

X 
exp [-(rot - r1)2/4l\:i(1 - v", + V1)] 

2 t' [41rl\.i(1 - v", + V1)] 
(23) 

Equation (23) is the mth term of the perturbation 
expansion of the quantum mechanical second virial 
coefficient. By using u(r) = (e2/r) exp (-r/AD) in 
(23) we have an approximation to the exact expres­
sion, Eq. (16), that is sufficient to give for m = 3 
the logarithmic leading term and constant following 
it. For r » l\.i the integrand of (23) reduces to the 
classical form, [u(r)yn 1m!. After a change of vari­
ables in (23) for m = 3, 

we have 

X fa dV1 u(r)u(lr + l\.lx1\)u(lr + l\.iX2!) 

X exp {- [X~/4(V2 - v1) + (X2 - x1?/4(Va - V2) + x~/4(1 - Va + V1)]} • (24) 
[(41J")2(V2 - V1)(Va - v2)(1 - Va + V1)]t 

In order to obtain the asymptotic form of this still where R is any length such that l\.1 < R < AD. 
difficult integral for the Debye potential we break For r > R the potentials are essentially independent 
the integration into two regions, r < R and r > R of l\.i and the classical form may be worked out 
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to be 

8 .(r > R) = pf./;( -{3z.z ii)3 
2.3.e1 2.3! 

1'" 2 (e-rIXD)S zSzSf f A2 
X R 47r1" dr -r- = - e(;2}S i 12 [- log R/AD - log 3 - C + O(R/AD) ... ], (25) 

where A is defined as in Eq. (22). 
For r < R the simplest procedure seems to be to neglect the unnecessary screening factor, 

exp (-r/AD), since R < AD, and to make explicit use of the l/r form of the potential. Thus we have 

3 3f f A21l 1" 1" J l R1XD 

82 •3 •• i (r < R) = - z·(z~)·s i'2 0 dvs 0 dV2 0 dVl dSXl 0 y2 dy 

X y-l[y2 + 2'YeiYXl cos (}l + 'Y!ix~rl[y2 + 2'YeiYX2 cos (}2 + 'Y:iX~rt 
X exp (- [XU4(V2 - VI) + (X2 - XI )2/4(vs - v2) + xU4(1 - Vs + VI)]} . (26) 

[(471f(V2 - vl)(VS - v2)(1 - Vs + VI)]} 

The r integration (y = r /AD) is done in three regions, 

with the result 

(27) 

where cos () is the angle between Xl and X2, and 

( ()) _ -1 + " (Xl/X2)"P,,(cos ()) [1 _ ('YeiX2)2"] + (X2 - Xl) " (Xt/X2)"P,,(cos ()) 
g Xl' X2, cos - og X2 !::t 2n(2n + 1) '\R/AD X2 f::f. (2n + 1) 

+ L: (Xl/X2rlp,,(cos ()) ~ -log X2 + 1. L: P,,(cos (})[(Xl/X"t - (Xl/X2r
l
] = -log X2 + !(Xl/X2) ,,-1 (2n + 1)(2n + 2) 2 II-I n n + 1 

+ ! log (2(1 - cos (}){[ 1 - 2 :: cos () + (::YJ' _ cos () + ::}-l 
X {[1-'- 2 :: cos () + (::YT - :: cos () + It)· (28) 

For X2 < Xl in expression (28), Xl and X2 are interchanged. Combining (26) with (25) removes the 
joining point R to logarithmic accuracy and one has 

(29) 

where 

Dq = -log 3 - C + I, 

I = 3! 11 dvsl" dV21"' dVl J d3Xl d3x2 g(xl , X2, cos (}) 

X exp (-[XU4(V2 - VI) + (X2 - Xl)2/4(vs - V2) + x~/4(1 - Va + VI)]} 
[(4'llf(Va - V2)(VS - v2)(1 - Va + VI)]} • 

The constant Dc in the classical case can be evaluated exactly, and the result is given in Eq. (4). The 
quantum constant Dq has not proved tractable, but presumably is of the same order of magnitude as Do. 

IV. HIGH AND LOW FREE ENERGY OF THE ELECTRON GAS 

We have seen from the results of the previous sections that when the fundamental lengths of an 
electron gas are ordered as {3e2 < l\ < AD then the appropriate dimensionless parameters for expressing 
the thermodynamic functions are the ratios A = {3e2/AD and 'Yee = l\ee/AD' The free energy has the form 
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(3(F - Fo) = -N[iAg2(-}' •• ) 

+ -hA2 gkt.e) + A3 gkY.e) + ... ], (30) 

where 

gky) 1 - llr11.i'Y + h 2 
- ••• , 

g3('Y) 10g'Y + Dq + O('Y) 
(31) 

gm("') - aml
_ + am2_ + 

I - m-3 111'-4 

'Y 'Y 

The function g2( 'Y) from the ring sum may be worked 
out to all orders in 'Y (see Ref. 3). In Sec. III the 
10g'Y part of g3('Y) has been obtained, and the con­
stant Dq appears as an intractable integral. The 
coefficients amI of the leading term of gm('Y) may 
be reduced to integrals something like the expression 
for Dq , but no way has been found to evaluate them. 
The coefficient of 'Y in g2('Y) includes nonstatic 
effects.12 For m ~ 3 the nonstatic effects also appear 
in the coefficient of the O('Y). 

The exact results that have been obtained so far 
are useful, though limited. One sees that the O(A'Y) 
term from the ring sum is the most important 
quantum correction, and this is followed by the 
0(A2 log 'Y) term from the three-rung ladder. The 
pressure of the electron gas obtained from (30) and 
(31) is 

a 
{3PV = p ap (3F 

= N[l - lA(l - h''Yee + h!e - ... ) 

- T-2A2(log 'Yee + Dq + !) ... ]. (32) 

The 0(A'Y3) term in the ring sum is known, but 
there is little point in retaining it unless the 0(A3h) 
term from the four-rung ladder is also retained. 

We now compare the high-temperature quantum 
mechanical result, Eq. (30), with the result for a 
nearly classical electron gas. Nearly classical will 
be taken to mean kT < Ryd so the )I. < {le2

•
13 The 

classical limit (li = 0) was obtained by Abe,3 and 
small wave mechanical corrections may be calculated 

12 If the" r! 0 contributions to the ring sum are neglected, 
the coefficient of the OCy) term is ("Vv'2'8)(5 - 2v'2) 
which differs from the correct value 3".t/16 by only about 
1.5%. 

13 Evidently since nearly classical means .h?w temperat~re, 
there may be some question about the validIty of assummg 
Maxwell-Boltzmann statistics. The importance of quantum 
statistics is measured by the size of the quan~ity p'A3 /(2~ + ~), 
where s is the particle spin. Note that !tssu~~g ~n a~bltr~r:ly 
large spin s is a way of removing partlcle mdistmgUlshabllity 
from the quantum mechanical problem. 

from the Wigner-Kirkwood (WK) expansion.14 The 
appropriate dimensionless parameters are now A = 
{3e2 lAD and the WK expansion parameter nee = 

)l.e.1 {le2 = 'Y eel A. The free energy now has the form 

(3(F - Fo) 

= -N[Sring(A) + L: S,,(A) + A2G(n2
)], (33) 

,.-2 

and exact results for A < 1 and n < 1 as far as 
they are known at this time are 

{l(F - Fo) = - N[!A + T\-A2(log A + Dc) 

+ T-2: A 3 log A + ... 
+ A2( -2~YJ2 + r}oYJ4 + mYJ6 ••. )], (34) 

The functions S,.(A) are the terms of the nodal 
expansion9 which describe a cluster of n particles 
interacting in all possible allowed ways via the 
Debye screened potential. The function G(n2

) gives 
the residual wave mechanical effects as calculated 
from the terms of the WK expansion. IS In Eq. (34) 
the terms of order A2 log A, A2, and A3 log A are 
the first terms in the expansion of S2(A). The three­
node term, S3(A), was shown by Friedman to begin 
with aA3 + bA4 log A, but the constants a and b 
are not yet evaluated. According to Friedman, S4(A) 
also begins with 0(A3

), while S5(A) and S6(A) begin 
with 0(A4) and S7(A) with O(AS). It seems likely 
that the 8,,(A) functions become smaller than the 
beginning terms in a systematic way but there is 
no proof yet. The expansion does apparently con­
verge.16 The parameter A in the nodal expansion 
takes the place of the density when compared with 
the Mayer cluster expansion for ordinary nonideal 
gases. However, unlike the Mayer expansion for 
which the irreducible cluster integrals of order n 
form the coefficients of p", the nodal expansion is 
nonanalytic in A, as evidenced by the appearance 
of log A. Equations (30) and (34) give exact results 
for the wave mechanical corrections in the respective 
limits {le 2 < )I.(kT > Ryd) and {3e2 > )I. (kT < Ryd). 
In order for the two results to pass from one to the 
other when kT ~ Ryd the function G(n2

), for which 
only the first three terms of the series expansion 
are known, must have the form for YJ > 1: 

14 L. D. Landau and E. M. Lifshitz, Statistical Physics 
(Addison-Wesley Publishing Company, Reading, Mass~­
chusetts, 1958), pp. 96-103. The lI:uthor than~ Jan Grz~slk 
for performing the extremely tedious calculatIOns reqUlred 
for obtaining the 0('16 ) term m Eq. (34). . 

16 H. E. DeWitt, J. Math. Phys. 3, 1003 (196~). EquatIOn 
(52) in this paper is incorrect since it gives the high-tempera­
ture form of S 2.2 and the WK expansion of the higher-order 
ladders. . IF' 5 16 S. Brush, H. E. DeWitt, and J. Truho, Nuc. USlon 3, 
(1963). 
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11"; 
G(r/) = --71 

1>1 16 

+ fi(log 71 + Dq - Do) + Cia.d71 + (35) 

It is reasonable to expect that G(712
) is a smooth 

function between the known limiting results (24) 
and (35), but at present it is not known how to 
calculate it when 71 ~ 1 (kT ~ Ryd). To understand 
the two results it is helpful to draw on analogies 
with scattering theory. Note that the parameter 71 
may be written as 

1/71 = e2/h(v) , 

where (v) is a thermal velocity. Thus 1/71 is a measure 
of the validity of a scattering calculation in the near 
classical limit (e2/hv » 1) or scattering in the Born 
approximation (e2/hv « 1). In the quantum me­
chanical form of the free energy, Eq. (30), the RPA 
term is something like the calculation of the scat­
tering amplitude with the dynamic screened po­
tential in first Born approximation, the three-rung 
ladder giving the log 'Y is roughly equivalent to 
a second Born approximation of scattering in the 
static screened potential, and the evaluation of 
gm('Y) ~ (J,"'lh",-a is equivalent to higher Born 
approximations with the pure Coulomb potential. 
The function G(712) is shown in Fig. 3 with the 
region of uncertainty between the known limits 
shown as a dashed line. This region, 71 ~ 1, requires 
a complete quantum mechanical calculation, and 
no expansion procedure will help. Since, however, 
only the Coulomb potential is involved, it seems 
likely that this function can be exactly calculated 
because the Schrodinger equation can be solved 
exactly for the 11r potential. 

It is important to note that the quantum correc­
tion in the ring sum, O(A'Y), O(A'Y2

), etc., are valid 
only at high temperature, i.e., when A < 'Y. It is 
deceptive that these corrections apparently vanish 

-0.1 

FIG. 3. Plot of G(fJ!) vs '1. The solid portion for '1 < 1 is 
given by Eq. (34), and the solid portion for '1 > 1 is given 
by Eq. (35). The dashed line for '1 ,...., 1 connecting the two 
solid pieces indicates the region of uncertainty which can pre­
sumably be calculated with the exact Coulomb wavefunctions. 

as 'Y ~ 0, since when 'Y < A, Eq. (34) is valid 
rather than (32). If one considers the ring sum 
alone, it is easy to come to the erroneous conclusion 
that the free energy is an analytic function of h 
in contradiction to the WK expansion. 

V. THE MULTICOMPONENT PLASMA 

Using the results of the previous sections we can 
now write down the free energy of a real plasma, 
such as fully ionized hydrogen. Because of the dif­
ferent particle masses, m. and ml, of a two-com­
ponent plasma there will be three thermal wave­
lengths, x •• , X. I , and Xii, which must be compared 
with {3e2• Since protons and other ions are 2000 
times and more heavier than electrons, the normal 
situation in a fully ionized plasma such as hydrogen 
with kT > Ryd is that the lengths are ordered as 

Xii < (3e2 < X.i, X •• < An 

and the appropriate dimensionless parameters are 

'Yii < A < 'Y.i, 'Y •• < 1. 

Consequently the electron-electron and electron-ion 
interaction contributions to the free energy are given 
by the quantum mechanical limit, Eq. (30), while 
the ion-ion interactions are nearly classical and 
their contribution is given by Eq. (34). Note that 
in this situation the ring sum must be broken up 
into the various parts Bring ••• , Bring •• !) and Brlne.1I 

as given by Eq. (22), because the ion-ion quantum 
corrections in the complete ring sum are not valid 
when XII < {3e2• The complete result for the multi­
component free energy to logarithmic accuracy is 

(3(F - Fo) = -N{~ [1 _ ;~l 
X (z!t:'Y •• + 2Z:Z~t.ti'Y.i)/(l)2 

+ 1 z!fe'Y! ] + A2 [ 612(1 + D) 4 (z~) ... 12 z.. og 'Y.. q 

+ 2z:z~f.Mlog 'Y.i + Dq) 

+ zU~(IOgZ~:2 + Do) J/ (l)a + <;l;a A2G(71~i)}' 
(36) 

Equation (36) is valid for hydrogen for the tem­
perature region Ryd < kT < (mdm.) Ryd. At much 
higher temperature when Xii > z~{3e2 the ion-ion 
interaction must also be described quantum me­
chanically. 

A low-temperature result for the free energy of 
a multicomponent plasma analogous to Eq. (34) is 
not poSsible since the multicomponent plasma has 
no classical limit. As the temperature is reduced 
below a rydberg, bound states between electrons 



                                                                                                                                    

STATISTICAL MECHANICS OF QUANTUM PLASMAS 625 

and ions begin to form. A rigorous calculation of 
the free energy of a partially ionized plasma in­
cluding hydrogenic bound states has yet to be 
carried out.17 

VI. DISCUSSION 

The principal results of this paper, Eqs. (30) and 
(36), show that wave mechanical effects persist at 
high temperature. Thus plasmas with kT > Ryd 
are not classical. In order to understand physically 
how this happens it is useful for a moment to con­
sider a many-body system interacting with a more 
singular pair potential, u(r) = gp/rv. The average 
distance of closest approach defined by (u(r» ~ kT 
is l. = (grJkT) liP, while the thermal wave length 
is i\ = h/(2mkT)t. At high temperature we see that 
l. > i\ when p > 2. Thus the repulsive l/rv potential 
is sufficiently hard that the particle wave packets 
with extension i\ cannot intermingle at high tem­
perature. Thus such a many-body system is evidently 
classical in the high-temperature limit, and the WK 
expansion may be used to give wave mechanical cor­
rections since the WK expansion parameter '11 = 'All. 
is indeed small for large T('I1 ex TH/p). In the plasma 
case, p = 1, the l/r potential is sufficiently soft 
that the distance of closest approach becomes less 
than the de Broglie wavelength at high temperature, 
i.e., e2/kT < i\ when kT > Ryd, and consequently 
the particle wave packets overlap more at high 
temperature. 

In this paper we have assumed Maxwell-Boltz­
mann statistics because we wished to focus attention 
on the quantum effects due to the uncertainty 
principle rather than effects due to particle in­
distinguishability. Nevertheless a complete accurate 
treatment of plasmas requires the inclusion of quan­
tum statistics even at high temperature because 
exchange interactions are of the same order of 
magnitude as some of the wave mechanical effects. 
The first-order exchange term is of the order of 
"l/(2s + 1) and seems to be safely negligible com­
pared with A from the Debye-Huckel term. The 
second-order exchange term is also finite and is of 
order ky/(2s + 1), and hence is comparable to the 
first diffraction correction in the ring sum. The third­
order exchange appears to be of order A2/(2s + 1) 
and thus contributes an additional constant to be 
added to Dq in Eq. (31). A complete discussion 
of statistic effects will be deferred to a later paper. 

In view of the exact results now known for the 

17 T. Nakayama and H. E. DeWitt, J. Quant. Spectr. 
Bad. Transfer 4, 623 (1964). 

plasma free energy it is worthwhile to comment 
on one approximation method used by various 
authors in recent years. This method is the attempt 
to find an effective or pseudo-potential replacing 
e2/r in the classical calculation which is to include 
to some degree quantum effects. Such an effective 
potential must reduce to the pure Coulomb potential 
when r » i\ and be finite as r ---+ O. One of the earliest 
forms and also the most tractable one for analytical 
evaluation is 

2 

U (r) ZeZie (1 -a.,,) 
eff = -r- - e , (37) 

which was used by Glauberman and Yukhnovskii. IS 

In order to describe wave mechanical effects the 
quantity ael must be a/i\ei where a is a constant 
to be chosen by some suitable criterion. Recently 
Kelbg has proposed19 

( ) _ ZeZie2 {(I -r·/2~.I·) 
U.ff r - -r- - e 

v21rtr } + -i\- [1 - Erf (v2 r/i\.i)] , 
.1 

(38) 

and a rather similar form has been obtained by 
Koppe and Hagenow20 by approximating the Wigner 
distribution. These effective potentials may be put 
into classical expressions such as the ring sum, Eq. 
(2), and the ladder integrals, Eq. (4), and one can 
obtain quantum corrections of the same form as 
the exact results exhibited for the high-temperature 
electron gas in Eq. (30). Any such effective potential 
that is finite at r = 0 (usually proportional to e2/i\) 
will cut off the short-range divergence of the three­
rung ladder and give correctly the -h A 2 log "'( term 
in the free energy. Getting the exact value for the 
coefficient l61r1 of the A"'( term in the ring sum is 
harder since the region r ~ i\ contributes most. 
Kelbg's potential gives this result very closely and 
also the coefficient of A"'(2. The simpler form, Eq. 
(37), gives the coefficient of A",( when a is chosen 
properly, but not the coefficient of A"'(2. Such effec­
tive potentials are interesting to try since the calcula­
tions of the free energy are much easier than the 
exact integrals of the quantum mechanical per­
turbation theory. For example, by using Eq. (37) 
one can obtain an approximate value for Dq and 

18 (a) A. E. Glauberman and I. R. Yukhnovskii, Dokl. 
Akad. Nauk SSSR 93, 999 (1953); see also (b) translation, 
UCRL Trans. 668 (L). 

18 G. Kelbg, Ann. Phys. (N.Y.) 12, 354 (1954). 
20 K. Hagenow and H. Koppe, Proc. 5th Int. Conf. Ioniza­

tion Phenomena in Gases, Paris 1963, p. 221. 
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the coefficients amI in Eq. (31) for the higher-order 
ladder terms. Nevertheless, in the opinion of this 
author, this semiclassical approach is of limited 
usefulness since the validity of the results obtained 
by using any u./! can be tested only by comparison 
with exact results. 
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Limiting Forms of the Screened Coulomb T Matrix 

WILLIAM F. FORD 

Lewis Research Center, Cleveland, Ohio 
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In the complex energy plane, the pure Coulomb T matrix possesses branch points which would not 
appear if the force were properly defined. This is demonstrated by a study of the screened Coulomb T 
matrix in the limit as the screening radius R tends to infinity. No branch points develop if the proper 
order of limiting processes is observed and the results agree with previous calculationS; however, the T 
matrix is discontinuous in the limit. A formula for the screened Coulomb T matrix is given which is 
valid to order 1/R for all energies. 

I. INTRODUCTION 

T HE T matrix for a system undergoing scattering 
is given by 

T = V + V[l/(E + if - K - V)]V. (1) 

Here K is the Hamiltonian for the system in the 
absence of interaction, and V is the interaction giving 
rise to the scattering. The total energy of the system 
is denoted by Ej the small imaginary term if serves 
to make the Green's function 

G = 1/(E + if - K - V) 

well defined. 

(2) 

We consider the T matrix in the momentum rep­
resentation, with matrix elements denoted by 
(k2\ TikI)' It is convenient to introduce a complex 
wavenumber k, which is related to the total energy 
by 

0< arg(k) < 1Tj 

thus the energy dependence of the T matrix may be 
indicated explicitly by (k2 \T(k)\k I ), or simply T(k). 

For most quantum-mechanical systems, the T 
matrix cannot be given in closed form. However, 
the case of a two-particle system with pure Coulomb 
interaction has been studied extensively, and re­
cently Hostler and others l derived integral repre­
sentations for the Coulomb Green's function which 

I L. Hostler, J. Math. Phys. 5, 591 (1964); J. Schwinger, 
ibid. 5, 1606 (1964); E. H. Wichmann and C. H. Woo, ibid. 
2, 178 (1961). 

reduce to hypergeometric functions. From these 
the Coulomb T matrix can be obtained directly. 

The resulting expression for T(k), however, has 
the drawback that it does not approach a well­
defined limit as e ~ k~ or e ~ k~, and indeed has 
branch points there. This behavior is certainly not 
correct, for one can show on very general grounds 
that the only singularities of T(k) should be a branch 
point at k = 0 and simple poles on the imaginary 
k axis corresponding to the bound-state energies 
of K + V. 

The correct form of the T matrix when e = k~ 
is given in Ref. 2, where a similar anomaly in the 
limiting process \k2\~\kt! was studied. The difficulty 
there was traced back to the long-range nature of 
the Coulomb force and disappeared when the effects 
of shielding were introduced. 

In the present case the unphysical branch points 
are also due to neglect of shielding effects. The 
scattering of charged particles is caused by an in­
teraction which is always screened at very large 
distancesj the T matrix may therefore properly be 
regarded as depending on two parameters, f and the 
screening radius R. To find the value of T(k, R) 
for real k, one must take E ~ 0 followed by R ~ co. 

Usually, the ordering is unimportant, but the branch 
points at k~ and k~ occur in Hostler's expression 
because the limit R ~ co has been (implicitly) taken 
first. 

2 W. F. Ford, Phys. Rev. B133, 1616 (1964). 
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the coefficients amI in Eq. (31) for the higher-order 
ladder terms. Nevertheless, in the opinion of this 
author, this semiclassical approach is of limited 
usefulness since the validity of the results obtained 
by using any u./! can be tested only by comparison 
with exact results. 
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For most quantum-mechanical systems, the T 
matrix cannot be given in closed form. However, 
the case of a two-particle system with pure Coulomb 
interaction has been studied extensively, and re­
cently Hostler and others l derived integral repre­
sentations for the Coulomb Green's function which 

I L. Hostler, J. Math. Phys. 5, 591 (1964); J. Schwinger, 
ibid. 5, 1606 (1964); E. H. Wichmann and C. H. Woo, ibid. 
2, 178 (1961). 

reduce to hypergeometric functions. From these 
the Coulomb T matrix can be obtained directly. 

The resulting expression for T(k), however, has 
the drawback that it does not approach a well­
defined limit as e ~ k~ or e ~ k~, and indeed has 
branch points there. This behavior is certainly not 
correct, for one can show on very general grounds 
that the only singularities of T(k) should be a branch 
point at k = 0 and simple poles on the imaginary 
k axis corresponding to the bound-state energies 
of K + V. 

The correct form of the T matrix when e = k~ 
is given in Ref. 2, where a similar anomaly in the 
limiting process \k2\~\kt! was studied. The difficulty 
there was traced back to the long-range nature of 
the Coulomb force and disappeared when the effects 
of shielding were introduced. 

In the present case the unphysical branch points 
are also due to neglect of shielding effects. The 
scattering of charged particles is caused by an in­
teraction which is always screened at very large 
distancesj the T matrix may therefore properly be 
regarded as depending on two parameters, f and the 
screening radius R. To find the value of T(k, R) 
for real k, one must take E ~ 0 followed by R ~ co. 

Usually, the ordering is unimportant, but the branch 
points at k~ and k~ occur in Hostler's expression 
because the limit R ~ co has been (implicitly) taken 
first. 

2 W. F. Ford, Phys. Rev. B133, 1616 (1964). 
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The present work is intended to clarify the situa­
tion by studying the behavior of the screened 
Coulomb T matrix in the limit R -? 00. In Sec. II 
the formalism is established and applied to the cutoff 
Coulomb potential. This interaction is chosen be­
cause it allows one to determine unambiguously the 
effects caused by extending the potential past the 
cutoff radius. In Sec. III these effects are isolated, 
and a general expression for the screened Coulomb 
T matrix is derived, which is valid to order l/R for 
all k. 

In Sec. IV the limits E -? 0 and R -? 00 are taken. 
We find that branch points at k~ and k~ do not appear 
if the proper order of limits is used; furthermore, the 
resulting T matrix agrees with that obtained in Ref. 
2. For other values of k, the screened and pure 
Coulomb T matrices are identical in the limit 
R -? 00. Hence, the order of limiting processes is 
unimportant except in the vicinity of k 2 = k~ 
and k2 = k; or when Ikd = Ik2 1. (The last case 
requires special treatment and is not considered 
here; in the following sections it is assumed that 
Ikll ¢ Ik2 1.) The branch points in the pure Coulomb 
T matrix are due to that part of the potential beyond 
the screening radius R; Sec. V treats the effects of 
this part of the potential on the plane wave part of 
the pure Coulomb wavefunction. 

ll. SCREENED COULOMB T MATRIX 

We begin by making an expansion in Legendre 
polynomials of the T matrix for an arbitrary central 
potential V (r): 

(k21 Tiki) 

(6) 

where 

and 

Mz = 10'" r2 dr 10'" r,2 dr' jz(k2r)W(r) 

X (rl Gz Ir')W(r')jz(klr') (8) 

with W(r) = (2m/1i2)V(r). 
To obtain the partial wave Green's function 

(rIGzlr'), we write the operator equation 

(E + if - K - V)G = 1 

in the coordinate representation, which leads to 

[~ ::2 r + k2 
- l(l: 1) - W(r) J<rl G1 Ir') 

6(r - r') 
r2 (9) 

The solution to this equation is easily shown to be 

(rl GI Ir') = (l/ikrr')F z(r<)H z(r», (10) 

where r < is the smaller and r> the larger of r, r', and 
where F I and Hz are the regular and irregular 
solutions of 

[::2 + k 2 
- l(l: 1) - W(r) ]tl(r) = 0 (11) 

having the asymptotic forms 

Fz(r) "-' cos [kr - !7r(l + 1) + 6z], (12) 

(3) With this normalization the Wronskian of F, and 
Hz is equal to ik. 

and may be obtained by using Eq. (1) if the Green's 
function is known. This is accomplished by making 
an expansion of the coordinate representation of the 
Green's function: 

2m ~ 2l + 1 A I I (rl G Ir') = ~ £..oJ -4-Pz(f'·r')(r Gz r'). 
n z-o 11' 

(5) 

Mter the angular integrations are carried out, we 
have 

8 The expansion here differs by a minus sign from that 
used in Ref. 2. 

We now apply these formulas to the cutoff 
Coulomb potential 

VCr) = {Voir, 
0, 

r < R, 

r > R. 
(13) 

The solutions of Eq. (11) must in this case be pro­
portional to pure Coulomb functions for r < R, and 
to free-particle functions for r > R. The Coulomb 
functions are normalized so that their Wronskian 
is equal to ik, and the free-particle functions are 
so chosen that the asymptotic forms of Eq. (12) are 
obtained for large r: 

r < R, FI(r) = {NzF~(r), 
!kr[eH'h\o(kr) + e- i5 'h\2)(kr)], r > R, 

(14) 
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r < R, 

r > R. 
(15) 

Here h~l) and h?) are spherical Hankel functions; 
the pure Coulomb functions F~ and H~ may be 
written4 

F~(r) = !GI(n)(2kr)/+l eikr 

X tJ>(l + 1 + in, 2l + 2; -2ikr), (16) 

Hier) = et"~+i~l( - 2kr)/+leikr 

X w(l + 1 + in, 2l + 2; -2ikr), (17) 
where 

GI(n) = e-tq-i~'[r(l + 1 + in)/r(2l + 2)], (18) 

e2i
" = r(l + 1 + in)/r(l + 1 - in), (19) 

and n = m Vo/h2k. The quantities N, and 01 are 
determined by equating logarithmic derivatives of 
FI at r = R, but to first order in I/R this is equiv­
alent to matching amplitudes and phases; ac­
cordingly, 

o/(k) I'J 0'1 - n In (2kR). (20) 

For brevity we introduce the functions 

ul(r, K) == rj,(Kr)W(r)F~(r), (21) 

vl(r, K) == rj,(Kr)W(r)H~(r), (22) 

so ~hat M I may be written 

(23) 

Now, by reversing the order of integration in the 
second term, we can show that 

(24) 

where 

1 18 18 

ml(k2 , k l) = ik 0 UI(r, k2) r VI(r', kl) dr' dr. (25) 

In principle, therefore, evaluation of the cutoff 
Coulomb T matrix has been reduced to evaluation 
of ml(k2 , kJ) and the integral 

B, = 2nk 18 

jl(k2r)jl(k1r)r dr. (26) 

[A detailed study of the l = 0 terms mOCk2' k 1) and 
Bo is given in NASA TN D-2781.] 

• Notation and formulas for the confluent hypergeometric 
functions cI> and 'Ir are taken from Bateman Manuscript 
Project, Higher Transcendental Functions, edited by A. Erdelyi 
(McGraw-Hill Book Company, Inc., New York, 1953), 
Vol. I, Chap. 6. 

m. T MATRIX FOR LARGE R 

The difficulty with the foregoing analysis is that 
it leads to expressions so complicated that the sum­
mation over l cannot be carried out in closed form. 
Since in practice the screening radius is always very 
large, one is then tempted to take limit R -+ co in 
the hope that the resulting series can be summed. 
This approach is successful, but care must be taken 
when k2 

-+ k~ or e -+ k: because the limiting process 
is nonuniform. 

We begin by rewriting ml in the form 

ikm, = 1'" Ul(r) 1'" vl(r') dr' dr 

- L'" uI(r) t" vI(r') dr' dr, (27) 

which is possible if UI and VI are given some suitable 
definition for r > R. For the present purpose it is 
convenient to require that UI and VI have the same 
functional form for r > R as for r < R; i.e., UI and 
V I are proportional to pure Coulomb functions times 
spherical Bessel functions for all r. With this de­
finition, the first term in Eq. (27) is just what one 
would write for the pure Coulomb ll T matrix, and 
to emphasize this we write 

m,(R) = ml( co ) 

- (l/ik)UI (R) V,(R) + 0(1/R), (28) 
where 

(29) 

and 

VI(R) = In'" vI(r) dr. (30) 

The third term in Eq. (27) has been dropped because, 
as shown in Appendix A, it is 0(I/R) for all cases 
considered here. 6 

Generally speaking, the second term in Eq. (27) 
may also be neglected. To see this, consider the 
asymptotic forms of UI and VI, 

( ) 2 k 
sin (k2r - !7l'l) 

UI r I'J n k 
2r 

X sin [kr - !7l'l + 0'1 - n In (2kr)], (31) 

6 By "pure Coulomb" we mean a quantity obtained by 
assummg R = co at the outset, as opposed to taking the 
limit R --> co at the last. 

6 For simplicity, the symbole(l/x) is used loosely through­
out to denote any term which vanishes when x --> co. 
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. sin (k1r - !7rl) eHk,-tr/+vI) 
vl(r) rv -2~1]k . . (32) 

k1r (2kr)'~ 

From Eq. (32) it follows, on integration by parts, 
that 

e
OR 

[ I J V,(R) = (2kR)i~ 0 W - ki)R . (33) 

From Eq. (31) one can show that 

[e ikR/(2kR) '''][rul(r)] 

is a bounded function of r for r ::; R, R ~ GO; con­
sequently, the quantity eikRUI(R)j(2kR)i~ has no 
worse than a logarithmic singularity as R ~ GO, and 
therefore 

UI(R) VI(R) = 0[I/W - ki)R]. (34) 

Equation (28) shows that ml (R) is given by its 
unscreened value ml ( GO) except when contributions 
to the latter from large r are important, and these 
occur only when k2 ~ k~. Similar conclusions may 
be drawn for ml(R), the critical condition becoming 
e ~ k:. Since BI(R) = BI( GO) + 0(I/R), we may 
write 

(k21 TI(k, R) Ikl) = (k21 TI(k, GO) Ik1) + 0~) 

+ 0[W ! ki)RJ + 0[(e ! k~)RJ ' (35) 

or, after the summation over l has been performed, 

(k21 T(k, R) Ik1) = (k21 T(k, GO) Ik1) + 0~) 

+ 0[(k2 ! k~)RJ + 0Lk2 ! k~)RJ· (36) 

Now let us attempt to obtain a result more general 
than Eq. (36). This requires that we extract from 
the neglected terms and retain those parts which 
are important when 

(k2 - kDR ~ 0 or W - k:)R ~ o. 
For this purpose the quantity UI VI must be ex­
amined in greater detail. 

We begin with VI, which is given asymptotically 
by 

VI(R) rv 1]k eiv'l°° ~ 
kl R (2kr)'~ 

X [e-ik,r + (_I)/+leik,'] dr. (37) 
r 

A change to t = r/R as the variable of integration 
yields 

VI(R) rv .kk eU1(k) {f[(k - k1)R] 
~ 1 

+ (-I)/+lf[(k + k1)R]} , (38) 
where 

f(x) == i1] 100 

t-l-i~ei~' dt 

= i1]eiZw(l, I - i1]; -ix) , larg(-ix)1 < 111". 
(39) 

The asymptotic form of f(x) is easily found to 
be _1]eiZ / x, while for values of x approaching zero, 
the relation 

i1]ei %w(l, I - i1]; - ix) 

= .p( -i1], I - i1]; ix) - (-ix) i~r(1 - i1]) (40) 

yields 

f(x) ~ I - (-ix)i~r(1 - i1]). 
.. -+0 

When applied to f[(k - k1)R], Eq. (41) gives 

f[(k - k1)R] 

= 1 - CO(1])e-iVO[(kl - k)R]'~ + 0[(k - k1)R] 

(41) 

= I - Co(1])e-Uo(k)[(k~ - k2)/4k~]i~ + 0[(k - k1)R] , 
(42) 

where 

(43) 

The corresponding result for f[ (k + kl)R] is exactly 
the same, except that the neglected terms are, of 
course, 0[(k + k])R]. Combining these results, we 
have for the behavior of f[(k ± k1)R] as R ~ GO 

(44a) 

+ 0[(k2 - k~)R]. (44b) 

Before proceeding, let us note that to 0(I/R) the 
product U I V I can be written in the form 

Af[(k - k1)R] + Bf[(k + k1)R] + 0(I/R) , 

where A and B are yet to be determined. We are, 
in fact, able to give exact expressions for A and B, 
valid for all k. However, since f[(k - k1)R] is al­
ready 0(ljR) except when k ~ kl' an exact expres­
sion for A is really necessary only in the vicinity of 
k = kl • Similarly, an exact expression for B is really 
necessary only in the vicinity of k = - k1• For this 
reason we immediately put k/kl = ±1 in Eq. (38) 
and write 
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VI(R) = _ie,a. {t[(k - k1)R] 

+ (-1) If[(k + k1)R]} + e(I/R). 

Next we demonstrate that 

(46) 

i.e., UI is proportional to (k2ITI(k, R)lk1) for the 
special case where kl is complex and equal to k. The 
proof begins with the observation that Eqs. (6) 
to (8) may also be written as follows: 

(k21 TI(k, R) Ik) = 1'" jl(k2r)W(r)!/tI(r)r2 dr, 

where 

!/tl(r) = jl(kr) 

+ 1'" (rl GI(k) Ir')W(r')jl(kr')r,2 dr', 

and kl has been set equal to k. 

(47) 

(48) 

Equation (48) is almost identical to one of the 
well-known integral equations for the radial wave­
function F I (r); it differs in that the wavenumbers 
in jl(kr) and Gl(k) are exactly equal instead of equal 
in the limit E ~ o. This circumstance makes the 
integrand in Eq. (48) a perfect derivative, however, 
and, as shown in Appendix B, the result is what one 
might naively expect: 

!/tl(r) = ei6 '[FI(r)/kr]. (49) 

Equations (47) and (49) then lead directly to the 
desired expression for U I (R). 

As mentioned above, in order to determine UI VI 
to e(I/R), the coefficient of trek - k1)R] must be 
known exactly only when k = k1 ; therefore, 

(eu , /k) UI(R)t[(k - k1)R] 

= f[(k - k1)R][(ei!'/k)UI(R)h=k. + e(I/R) 

= t[(k - kl)R](k21 TI(kl , R) Ikl ) + e(I/R). (50) 

In like manner we may write 

(ei!'/k)UI(R)f[(k + kl)R] 

= f[(k + kl)R](k21 T I( -ku R) I-kl ) + e(I/R) 

= (-l)lt[(k + kl)R](k21 T l( -kl' R) Ik l ) + e(l/R). 
(51) 

[The fact that jl(-x) = (_I)ljl(X) is used to obtain 
the final form of Eq. (51).] From Eqs. (45), (50), 
and (51) it follows that 

ml(R) = ml( 00) + trek - kl)R](k21 TI(k l , R) Ikl ) 

+ trek + kl)R](k21 Tl(-kl' R) Ikl ) + e(I/R). (52) 

The expression for m, (R) is similar, but with kl and 

k2 interchanged. Using the symmetry property 

and its consequence 

(54) 

which can be readily established from Eqs. (7) and 
(8), we may give a general expression for the screened 
Coulomb T matrix, correct to e(I/R) and valid for 
all k: 

(k21 T(k, R) Ikl ) = (k21 T(k, 00) Ikl ) 

+ trek - k1)R](k2 1 T(kl' R) Ikl ) 

+ trek + k l)R](k21 T( -kl' R) Ik1) 

+ f[(k - k2)R](k21 T(k2' R) Ikl ) 

+ trek + k2)R](k21 T( - k2' R) Ikl ) + e(I/R). 
(55) 

IV. LIMITING CASES 

To complete the study of the screened Coulomb 
T matrix, we need closed-form expressions for the 
T matrices that appear on the right side of Eq. (55). 
The first is the pure Coulomb T matrix with complex 
k, which may be obtained from Hostler's work and 
written as follows: 

where 

lex) = 2i1/(l - e-2rT l Ll+) (: ~ D i~ i ~ x2 ds, 

(57) 

x2 = 1 + [(k; - k2)(k~ - k2)/e(k2 - k1)2]. (58) 

The integral lex) may be evaluated by changing to 

t = (s - 1)/(s + 1) 

as the variable of integration, with the result 

lex) = ; [2Fl( 1, i1/; 1 + i1/;: ~ ~) 
- 2Fl(l, i1/; 1 + i1/;: ~ D 1 (59) 

Considered as a function of k, I (x) has simple poles 
at i1/ = -n(n = 1, 2, 3 ... ) and branch points at 
x2 = 1 and x2 = 00. These latter points correspond 
to k2 = k~, k2 = k~, e = 0, and k2 = 00. The be­
havior of lex) as x ~ 1 may be determined by an­
alytic continuation of the hypergeometric series and 
is given by 

(
X 1)'~ lex) ~ C~(1/) x ~ 1 - 1, 

(
X - 1) 

-2'/1" < arg x + 1 < o. (60) 
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Applying this specifically to the case k2 ~ k~, we 
can write 

where 
-71" < arg (k; - k2

) < 71", 

-271" < arg (k~ - k2
) < o. 

(61) 

(62a) 

(62b) 

Next we consider the screened Coulomb T matrices 
appearing in Eq. (55). All these can be obtained in 
closed form from the basic result of Ref. 2, 

(k21 T(k, R) Ik1)lk'-k., 

= Vo C ()eiO.(k) (k~ - e)i' . + i 1.). (63) 
27r2 

0 TJ [(k2 _ k1)2]1+.. '\R 
Although Eq. (63) was originally derived with the 
assumption that k = kl' it also holds for k = -k1• 

To show this, we note from Eq. (1) that TeE - ie) = 
T(E + ie)*, if V and K are real. From this, in the 
limit e ~ 0, 

T(k ~ k1e"i) = [T(k ~ k1)]*. 

Equation (63) satisfies this relation and therefore 
holds for k2 = k~. The symmetry property (54) 
may be used to obtain the result for k" = k;. 

We can now see explicitly how the screened 
Coulomb T matrix behaves as R ~ co. If k is com­
plex, or is real but not equal to ±kl or ±k2, all the 
f functions in Eq. (55) are e(ljR), and therefore 

lim (k21 T(k, R) Ik1) = (k21 T(k, co) Ik1) 
R~<D 

Vo 1 + lex) (64) 
= 27r2 (k2 - k1)2· 

But when k approaches one of the critical values, 
say kl' Eq. (55) reduces to 

(k21 T(k, R) Ik1) = (k21 T(k, co) Ik1) 

+ f[(k - k1)R](k2 1 T(kl' R) Ik1) + e(ljR). (65) 

The T matrix is thus represented by a combination 
of two terms, one correct for R = co, k :;z!f kl' and 
the other correct for k = kl' R < co; which term 
dominates is determined by t[(k - k1)Rj. If R ~ co 
faster than k ~ kl' the first term dominates, and we 
are led ~gain to Eq. (64). As discussed previously, 
however, the limit R ~ co is actually a convenience 
and should be performed last, which corresponds to 
(k - k1)R ~ O. Comparing Eq. (44b) to the T 
matrices as given in Eqs. (61) and (63) reveals that 
in this situation a cancellation takes place and 
yields 

(k21 T(k, R) Ik1) = (k21 T(kl' R) Ik1) 

+ 0[(k - k1)R] + e~) 

= Vo C ()eiO. (k; - e)i' 
27r2 

0 TJ [(k2 _ k1)2]1+i. 

+ 0[(k - k1)R] + e(~). (66a) 

In the general case, where (k - k1)R approaches 
some fixed value as R ~ co, use of Eq. (40) leads to 

(k21 T(k, R) Ik1) = (k21 T(kl' R) Ik1) 

X cJ>[ -iTJ, 1 - iTJ; i(k - k1)R] + 0(ljR). (66b) 

Obviously, similar results are obtained when k ap­
proaches any of the other critical values. 

We may summarize our findings as follows: Gen­
erally, it makes no difference when the limit R ~ co 

is taken in the expression for the screened Coulomb 
T matrix; the result is identical to the pure Coulomb 
T matrix and does not depend on R. The exception 
to this generalization occurs when k 2 approaches 
k~ or k;. In this case the screened Coulomb T matrix 
admits of an asymptotic expansion, the leading term 
of which is a well-behaved function of k and depends 
on R through the logarithmic phase factor eiO 

•• In 
contrast, the pure Coulomb T matrix has branch 
points at k~ and k;, in addition to being independent 
of R. 

N ear these critical points, the difference between 
the pure and screened Coulomb T matrices is due 
to contributions to the former from r' > R. These 
contributions do not affect the angular dependence 
of the T matrix, but only its magnitude and phase. 
The effect on the magnitude is such as to make the 
T matrix discontinuous in the limit R ~ co. This 
effect is strikingly displayed when k is on the real 
axis; near kl' for instance, we have 

lim l(k21 T(k, R) Ik1)1 
R--.<D 

where 

{

CO(TJ) , 

;ntl = 1, 

e"'CO(TJ) , 

;nt2 = {CO(TJ) , 

e"'C o( TJ), 

kl > k, 

kl = k, 

kl < k, 

k2 > kl' 

k2 < k1 • 

(68) 
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V. WAVEFUNCTIONS 

A remarkable finding of the preceding section 
is that when e approaches k~ or k:, the entire con­
tribution to the pure Coulomb T matrix comes from 
large values of r'. More precisely, the contribution 
from r' > R consists of two parts identical except 
in normalization, one of which exactly cancels the 
contribution from r' < R. When screening is in­
troduced, the cancellation is prevented. It is perhaps 
worth noting that this same phenomenon is re­
sponsible for the well-known distortion of the in­
cident plane wave in a pure Coulomb field. 

To see this, consider the wave operator n(k), 
which is related to the Green's function by the 
equation 

n(k) = 1 + G(k) V. (69) 

Suppose that n(k) operates on a plane wave of 
momentum Akl , with k ¢ Ikll. A partial wave ex­
pansion yields .. 
n(k)4>k, = (211rl L: i'(2l + l)P,(f"kl )R,(r), (70) 

'-0 
where 

R,(r) = j,(klr) 

+ 1" (rl G,(k) Ir')W(r')j,(klr')r,2 dr'. (71) 

[The radial function R,(r) is generally different from 
1/I,(r) of Sec. IV, because the wavenumbers in j,(klr) 
and G,(k) are different.] By making use of quantities 
defined in previous sections, we may develop the 
following exact expression for R,(r): 

R,(r) = j,(klr) + 'k1 
{N,H,(r) UI(r <, kl ) 

~ r 

+ NilFI(r) [V,(r <) - V,(R)]} , (72) 

where r < is the smaller of rand R. [We have written 
U,(r<,kl) to indicate explicitly that kl is involved, 
not k2 as before.] 

Now let us determine the asymptotic form of 
R,(r). Since k2 

¢ k~, we have Vier) = e,kre(l/r) as 
before. Thus, if we suppose r < to be large enough 
that N, '" 1, 

R,(r) '" j,(klr) + (l/ikr) [H,(r) UI(r <, kl ) + e(l/r <)] 

'" jl(klr) - (e,cr /r)( -~)' (kl T,(k, r <) Ikl ) 

+ e(l/r~). (73) 

This equation may be inserted into Eq. (70) and 
the summation over l performed, which yields 

n(k)4>k, '" (211r {e'k,.r - e;r (kl T(k, r<) Ikl ) ] ' 

(74) 

where k == kr/r. The II scattering amplitude" 
- (kIT(k, r <)lk1 ) depends only weakly on r<, through 
a logarithmic phase factor e-" I .. C2kr<lj the plane 
wave e,k"r is unaffected. 

Although Eq. (74) has been derived assuming a 
cutoff Coulomb potential for W(r), this restriction 
is not necessary. We can return to Eq. (72), set 
R = ex>, and proceed as before; now the only re­
ference to a cutoff potential is to identify UI(r, k1) 

as proportional to (kIT,(k, r)lkl ). Thus we conclude 
that even in a pure Coulomb field, the incident plane 
wave is undistorted if e ¢ k~. 

However, if e -+ k~, the result depends critically 
on when the limit R -+ ex> is taken. Equation (74) is 
still valid when e = k~ provided that r ~ R, i.e., 
the limit R -+ ex> is taken last. Here the factor 
VI(r<) - V,(R) in Eq. (72) prevents any cancel­
lation due to contributions from r' > R. But if the 
limit R -+ ex> is taken first, the term F,(r)V,(r) 
survives and becomes important as k2 -+ k~. Now 
cancellation does take place, and after some re­
arrangement we find that 

R,(r) '" CO(7J)(k~ 4~~ k
2
) "ei~' Fi~) + e(;~) (75) 

or 

n(k)4>k, '" Co(7J)[(k~ - k2)/4k~]"1/IUr), (76) 

where 1/Ii., (r) is the pure Coulomb wavefunction. 7 As 
is well known, 1/Ii., is given asymptotically by a 
scattered wave plus a distorted plane wave. We 
also note from Eq. (76) that n(k),Pk, does not have 
unit amplitude for large r, a fact first pointed out 
by Mapleton.s Both these features which appear as 
k2 -+ k~, the plane-wave distortion and the amplitude 
renormalization, are due to (unphysical) contribu­
tions from r' > R. 
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APPENDIX A. ORDER OF MAGNITUDE OF SHU, V, dr 

In the text, the third term in Eq. (27), which may 
be written 

i'" ul(r)V,(r) dr, (AI) 

7 Equation (76) is actually an identity holding for 
all r,. not an. asymptotic equality. This can be proved 
by usmg the mt.egral representation. (56) in. the relation 
(l = 1 + (!£ + ~E -: K)-lT and. taking the limit k! -+ k 12. 

The result IS proportIOnal to an mtegral representation for 
the pure Coulomb wavefunction. 

8 R. A. Mapleton, J. Math. Phys. 3, 297 (1962). 
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was neglected on the premise that it is always O(I/R) 
for cases of interest. To prove this, we first observe 
that (using the asymptotic form of UI) the integral 
may be decomposed into four integrals of the type 

i<D r~:x:,~ VI(r) dr, (A2) 

where A and v take on the values v(k ± k2 ) and ± 1, 
respectively. From Eq. (33) for VI(r), we see im­
mediately that eiXrVz(r)/ri •• = O(I/r) unless e ~ k~; 
therefore 

To derive an expression valid when k2 ~ k~, we 
integrate (A2) by parts and obtain 

1 {e
iXr I r-<D 

~A r1+i •• VI(r) r-R 

1
<D eiXr [1 + i ] } + R r1+i,. r VTJ VI(r) + vl(r) dr , (A4) 

since dV,/dr = -VI' From Eqs. (38)-(41) we can 
show that, for all values of k, eiXrVI(r)/ri'~ is bounded 
and ei>.rVI(r)/ri •• is O(I/r) as r ~ co. Consequently, 
(A4) is O(I/AR), which leads to 

i<D UI VI dr = o[w ~ k~)R]' (A5) 

Equations (A3) and (A5) indicate that the integral 
is negligible unless k~ = k~, which is excluded from 
the present discussion. 

APPENDIX B. EVALUATION OF1l!,(kr) 

In Eq. (48) we encounter the integral 

p = 1<D (rl G,(k) lr')W(r')j,(kr')r,a dr', 

which may be written explicitly as 

p = ii2r [F,(r) 1<D H ,(r')W(r')5",(r') dr' 

+ H,(r) L F ,(r')W(r')5",(r') dr'] , 

where 5"1(r) == krj,(kr). Recalling that F,(r) and 
H,(r) are both solutions of 

[::2 + e - l(l rt 1) - W(r) ]Mr) = 0, 

and observing that 5"1(r) satisfies a similar equation 
but with W(r) == 0, we can readily verify that 

!L(r)W(r)5"I(r) =! (5"1 ~; - f, :1) = ! W(5"" iL), 

where W(5"I, f,) is the Wronskian of 5"1 and fl' 
Therefore, 

p = 'k\ [F ,(r)W(5"" HI)l:::; '/, r 
+ H ,(r)W(5"" FI)I:::~], 

and after some rearrangement, 

- 5"1(r)W(FI, HI)r'_' - H IW(5"I, FI)r'_o], 

Since both F, and 5"1 vanish as (kr)l+l when kr -+ 0, 
the last term is zero. The Wronskian of F, and HI 
is equal to ik, and from Eq. (12) one can establish 
that as kr ~ co 

W(trl, HI) -+ ikei3l (k.r). 

For the cutoff Coulomb potential, the upper limit 
for the integral P should actually be r' = R, and 
thus finally 

P = eH1(Io,R)[FI(r)/kr] - jl(kr). 

This equation leads immediately to the result given 
in Eq. (49). 
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Multipole Theory in the Time Domain* 
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Spherical outgoing waves of arbitrary time dependence are first written in the usual way as a 
Fourier integral of a sinusoidally time-varying multipole expansion. It is then shown that the integrals 
over w of the r- and t-dependent part of the multipole terms can be replaced by differential operators 
operating on arbitrary functions of retarded time. Thus a form of the multipole expansion is ob­
tained that does not explicitly contain the frequency spectrum of the multipoles. Given the value 
of E. (for electric multipoles, or B. for magnetic multipoles) as a function of time on the surface of 
a sphere, expressions for the multipole expansions of all the spherical field components are derived. 
The method employs a convolution integral and is useful in problems involving a very broad fre­
quency spectrum. 

1. INTRODUCTION 

THE classical treatment of spherical waves in 
terms of a multipole expansion is usually carried 

out with an assumed sinusoidal time variation. Since 
the frequency spectrum and phase are arbitrary, the 
actual time variation (after mathematically per­
forming a Fourier integration) is also arbitrary. In 
this paper a multipole expansion is formulated that 
does not explicitly contain the frequency spectrum. 
The Fourier integral of the multipole spectrum 
multiplied by the spherical Hankel function, which 
appears in the classical formalism, is replaced in the 
present treatment by a differential operator and an 
arbitrary function of retarded time. Using the multi­
pole expansion in this form, the problem of extrap­
olating to larger radii field values given on the surface 
of a sphere (which contains the source) can be solved 
in the time domain, i.e., without Fourier analysis. 
This is an advantage when dealing with electro­
magnetic fields consisting of a single (non-oscillatory) 
pulse. Numerically performing the Fourier transform 
of such a pulse requires integration of the product of 
the pulse function and a sinusoidal kernel; such 
numerical integration with a kernel which is periodic 
and whose sign oscillates necessarily involves much 
cancellation and hence buildup of roundoff error. 
Furthermore, two such integrals would be required 
if the result were to be obtained in the time domain 
by this method. The second such integration would 
be especially difficult because the frequency spec­
trum of such a pulse is necessarily broad. In the 
present treatment only one integration is involved 
and the kernel is not periodic. 

The starting point is Jackson's form of the multi-

* Research supported by Air Force Weapons Laboratory, 
Kirtland Air Force Base, New Mexico, under contract 
AF 29( 601 )-6634. 

pole expansion. l Only the electric multipole field 
will be considered; the magnetic multipoles can be 
treated in the identical manner with E replacing 
Band -B replacing E. Only outward moving waves 
will be treated in detail; the corresponding expres­
sions for inward moving waves are only slightly 
different even though there are theoretical difficulties 
in applying them. Inward moving waves are dis­
cussed in the appendix. Some of the methods pre­
sented in this paper are generalizations of methods 
that have been applied to the dipole by Wicklund.2 

n. MULTIPOLE EXPANSION TRANSFORMED 
TO THE TIME DOMAIN 

The electric multipole field for outgoing waves 
can be writtenl 

B = L aE(l, m)hi l )(kr)X/m (8, ct», (1) 
l.m 

E = t; ~ aE(l, m)\1 X h~l)(kr)Xlm(rJ, ct», (2) 

where X/ m (6, ct» = (1/[l(l + 1)]i)LY'm(6, ct» (the 
vector spherical harmonic), the time dependence is 
e - i '" t, hi 1) is the spherical Hankel function, and 
aE(l, m) is the amplitude of the multipoles. The 
coefficients aE(l, m) are arbitrary complex functions 
of w. The spherical components of Eqs. (1) and (2) 
can be written 

Br 0, 

L aE(l, m)hi1)(kr) [ 1 
l.m 2[1(1 + I)]! [(21 + 1)(2l + 3)]! 

X {r(Z + m + 1)(Z + m + 2)]!e- i 4>YI +1 •m +l 

1 J. D. Jackson, Classical Electrodynamics (John Wiley & 
Sons, Inc., New York, 1962), pp. 545, 546. 

• 2 J; S. ~icklund, "Extrapolation of the Electromagnetic 
FIeld,' DIamond Ordnance Fuze Laboratories, TR-1058 
1962 (unpublished). ' 
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+ [(l - m + 1)(l - m + 2)]'e'<I>YI+l .... -l} 

1 + 1 + [(2l - 1)(2l + 1) ]l {[(l - m) 

X (l - m - l)j!e- i </>Yl-l. m +l 

1 "</> ] + [(l + m)(l + m - 1)] e' Y,-1.m-d , 

B - i. L: aE(l, m)hil)(kr) 
<I> - 2 I... [l(l + 1)]l 

and 

Er= 

X {[(l + m)(l - m + l)jle i</>Y,.m _ 1 

- [(l - m)(l + m + l)]le- i<l>Y,.m+l} ' 

t; -aE(l, m)[l(l + 1)]1 hil~~kr) Y, .. , 

L: aE(l, m) 1 
I.m 2[l(l + 1)]' (2l + 1) 

X [lhi~\(kr) - (l + l)hi~\(kr)] 
X ([(l - m)(l + m + 1)]'e- i</>Yz.m+l 

- [(l + m)(l - m + 1)]le+ i</>Yl,m_l), 

E</> = ~ t; U(~1\)i~ {[(2l ~~;(~t~ 3)]\ 

X {[(l + m + 1)(l + m + 2)jle-i<l>Y,+l.m+l 

+ [(l - m + 1)(l - m + 2)]!e+ i</>YZ+1 •m_d 

(l + l)hi:>l(kr) {[(l ) 
[(2l - 1)(2l + 1)]; - m 

X (l - m - 1)]'e-i<l>Y,_l.m+l 

(3) 

+ [(l + m)(l + m - 1)]Vi<l>Yz_1.m_d}· (4) 

A Fourier transform of Eqs. (3) and (4) can then 
be performed to yield multipole expansions of the 
field components in the time domain. Thus, in Eqs. 
(3), if aE(l, m)hil) (kr) is replaced by 

aEB(l, m, r, t) = i:'" e-i""aE(l, m)hil)(kr) dw, 

and, in Eqs. (4), if 

aE(l, m)h?) (kr)/kr, aE(l, m)h,c~~ (kr) 

and aE(l, m)h/2.~ (kr) are replaced by 

1+'" h(l)(k) 
aEr(l, m, r, t) = e-i""aE(l, m) ~k r dw, 

_'" r 

(5) 

(6) 

(7) 

and 

aE_(l, m, r, t) = i:'" e-i""aE(l, m)hi':)l(kr) aw, (8) 

respectively, the resultant multipole expansions are 
in the time domain. In the following, expressions 
will be found for aEB, aE" aB+, and aB_ that do not 
explicitly contain the frequency spectrum aBel, m) of 
the multipoles, but instead contain arbitrary func­
tions of retarded time aBel, m, t*). 

The spherical Hankel function can be written3
•
4 

(9) 

where t* = t - ric and :E:n(r) is the differential 
operator 

where 
; 

II (n + k)(n - k + 1) 
f1.n; = -""k-'-0'---n....,.(n-+-l-:--)2"...,i~j ,--

(10) 

The variable t is a dummy in Eq. (9). If, at a given 
constant radius r, a dimensionless retarded time T is 
defined by the equation T = ct*/r, the operator 
:E:n(r) can be written in the simpler form 

1 n rt'-; 
:E:n(r) = n+I L: f1.n; d n-;' (11) 

r ;-0 T 

Substituting the expression for h~I) in Eq. (9) 
into Eq. (6), and associating the dummy t with time, 
one obtains 

X exp [-itt:
2 
+ '11'/2)] aw. (12) 

The operator, (l/r):E: I (r), may be taken out from 
under the integral sign since it is not a function of 
w [assuming that the coefficients aBel, m) are well 
enough behaved functions of w to allow the change 
in order of integration and differentiation]. The 
functions aE(l, m, t*) of retarded time are now 
defined by 

aE(l, m, t*) = i:'" [aE(l, m) 

X exp [-i(wt* + 'II'/2)lIk1
+

2
] aw. (13) 

3 M. Abromowitz and 1. A. Stegun, Handbook of Mathe­
matical Functions (National Bureau of Standards, Applied 
Mathematics Series 55, 1964), p. 439. 

4 J. A. Stratton, Electromagnetic Theory (McGraw-Hill 
Book Company, Inc., New York, 1941), p. 405. 
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Equation (12) can then be written 

O'.Br(l, m, r, t) = (l/r):a:/(r)O'.g(l, m, t*). (14) 

Since the functions O'.g(l, m, t*) are Fourier transforms 
of arbitrary functions of w, they are arbitrary func­
tions of retarded time. Similarly, one can write 

(15) 

(16) 

The multipole expansion for the B field [Eqs. (3)] 
can now be written in the time domain as follows: 

B, = 0, 

B - " 1 ! ~ .... (: ) (l t*) e - t:. 2[1(l + 1)]1 c at* '""/ r alI ,m, 

X [[(2l + 1)~2l + 3)]1 {[(l + m + 1) 

X (l + m + 2)]ie-i~Y/+l.m+l 

t .~ } + [(Z - m + 1)(l - m + 2)] e' Y/+l. m - 1 

l + 1 { + [(2l - 1)(2l + 1)]{ [(l - m) 

X (l - m - 1)]te-i~YI_l."'+l 

t .~ }] + [(l + m)(l + m - 1)] e' Y I - 1 .... - 1 , 

B~ = ~ 2[l(l ~1 lW ; a~* :a:/(r)O'.g(l, m, t*) 

X {[(l + m)(l - m + I)Jtei~YI.m_l 
- [(l - m)(l + m + 1)]te-i~YI.m+d. (18) 

Likewise, the multipole expansion for the E field 
[Eqs. (4)] can be written 

Er= 

Ee= 

L: -[l(l + 1)]11: :a:1(r)aB(l, m, t*)Y1m , I.... r 

t; 2[1(1 ~ 1)]1 (2l ~ 1) [l:a:l+tCr) 

+ (l + 1) a
2

..... ( ) J- (l t*) 
c2 at*2 A/-l r ag ,m, 

X {[(l - m)(l + m + 1)]te-i~YI."'+l 
- [(l + m)(l - m + 1)]ie+i~YI."'_l}, 

i" -1 
E~ = 2 t:. [l(l + 1)]' 

X {[(l + m + 1)(l + m + 2)]ie-i~YI+l.m+l 
+ [(l - m + 1)(l - m + 2)]ie+i~YI+l.m_d 

+ l + 1 1 a
2

..... ( ) (l t*) 
[(2l _ I)(2l + 1)]1? at*2 AI-l raE ,m, 

X {[(l - m)(l - m - 1)]!e-i~Y!-1,"'+l 

+ [(l + m)(l + m - 1)]!e+i~Y!-1 .... _d}· (19) 

If the field to be described is independent of cp, 
then m = 0, and the multipole expansion reduces to 

Br = 0, 

Be = 0, 

B _1 " ! ~ .... (: ) (l ° t*)P-l ~ - (2'ni '7' c at* '""I r alI " I, 

Er = (~)l ~ - [l(l + 1)]1;' :a:1(r)O'.g(l, 0, t*)P~, 

Ee = (2!)t ~ (2l ~ 1) [l:a:I +1(r) 

+ (l + 1) a
2

..... (:)] (l ° t*)P-l 
c2 at*2 A/-l r O'.g " I, 

Eq, = 0, (20) 

where P"; is the normalized Legendre function. 6 

Only in the special case of m = ° are the field values 
real if O'.g(l, 0, t*) is real. For general values of m, 
the functions O'.g(l, m, t*) can be arbitrary complex 
functions of t*. The real or imaginary parts of the 
expressions given in Eqs. (18) and (19) then rep­
resent the actual values of the field components. 
Since the operator :a:1(r) plays a role similar to that 
of the Hankel function in the frequency domain 
expressions, it will be referred to as the Hankel 
operator. 

m. SPHERICAL BOUNDARY-VALUE PROBLEM 

Suppose electromagnetic field components are 
known as functions of time on the surface of a 
sphere that contains all the sources of the field of 
interest. Then (it will be shown that) the functions 
agel, m, t*) and 0 1 (r)O'.B(l, m, t*), where Ol(r) is 
any of the operators in Eqs. (18) or (19), can be 
expressed as integrals of the given field. 

• Reference 3, p. 332. 
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Only the components Er will be used to obtain the 
functions aE(l, m, t*) and OlaE(l, m, t*). The reason 
for this is twofold. First, the dependence of the terms 
of the expansion of Er on the angle coordinates 
8, cp is given simply by the spherical harmonic. Thus, 
on a sphere of radius To, Er can be expressed in the 
form 

Er(t*) = L - [l(l + 1)]' 1 f3E(I, m, t*) Yl,m, (21) 
I,.. To 

where f3li1(l, m, t*) is given by 

f3E(l, m, t*) 

[l(l ~ 1) ]l Lhere of Er(t*) Yr,m dn. (22) 
radius ro 

Second, the component Er is due only to the electric 
multipole; even if a magnetic multipole is present, 
it does not contribute to E r • Thus, if both types of 
multipole sources are assumed present simultane­
ously, the electric part will be selected from the 
total field if Er is used to analyze the fields. The 
magnetic multipole part can be analyzed in an 
identical manner by replacing E by - Band B by 
E. Thus only Br would be used to analyze the mag­
netic multipoles. All fields (and their derivatives) 
are assumed to be zero initially, i.e., at t* = O. 

Equating the coefficients of YI, .. in Eq. (21) and 
the first of Eqs. (19) (with T = To), one obtains 

'Z1(To)aE(l, m, t*) = f3E(l, m, t*). (23) 

Defining the dimensionless retarded time To = t*C/To, 
one can write Eq. (23) as 

'Z1(To)a~(l, m, To) = f3~(l, m, To), (24) 
where 

and 

f3~(l, m, To) = f3E(l, m, ToTo/C). 

To solve Eq. (24), Green's functions will be found 
that satisfy the equations 

'Z1(To)GI(To, T6) = ~(To - T6), 1 = 0, .,. , co, (25) 

with the initial conditions, GI (0, T6) = Gll) (0, T6) 
= Gll-1)(O, T6) = 0, where 

Glil(O, T6) = diGlh, T6)/dT~lr._o. 

The functions a~(l, m, To) will then be given by 

(26) 

Due to the initial conditions below Eq. (25), 
GZ(TO, T6) == 0 for 0 S To < T6. For 0 < T6 < TO, the 

Green's functions are given by 

{ 

,I,leven 
i(l-1),lodd 

GI(To, T6) = T~+1 fj exp [Pli(To - T6)] 

X [Cli sin qli(TO - T6) + dli cos qlj(To - T~)] 

+ 11 exp [Pq(I+1)(To - Tm} , (27) 

where 11 = 0 if 1 is even and (Pli ± iqli) are roots of 
the polynomial equation 

where 
FI(z) = 0, 

I 

FI(z) = L I-'liZI - i . 
;-0 

(28) 

The roots of FI(z) are the roots of H/':Wz) , the 
half-odd-integer-order Hankel function of the first 
kind. In Jahnke and Emde's notation,6 

F/.~) = ZISI+i(2z) = ZI(!1!"Z)t exp (z)(i)l+im~l(iz). 

Note that H/':Wz) has a singular point at z = 0 
which annihilates the zero and branch point in its 
coefficient; thus FI(z) is analytic and nonzero at 
z = O. The general behavior of the roots of H/':Wz) 
can be deduced from the graph on p. 243 of Jahnke 
and Emde (Ref. 6). It is found that for 1 odd, FI(z) 
has one real negative root and (l - 1) complex roots 
which appear in complex conjugate pairs and have 
negative real parts. For l even, all of the l roots of 
FI(z) are complex (appearing, of course, in complex 
conjugate pairs) and have negative real parts. 
Numerical values of the roots for 1 <: 16 are given 
in the appendix. It is significant to note that all 
of the roots are distinct. Thus, GI(To, T6) can be 
written in the form of Eq. (27). The derivatives of 
GI(To, T~) for 0 < T6 < To can be written 

{

,I,! even 

dkG (') t(l-1).1 odd 

IdTok, TO = T~+1 L T~i exp [Pli(TO - T~)l 
TO i-I 

X [(d li cos k81i + Cli sin k8li) cos q/j(To - T6) 

+ (eli cos k81i - dli sin k8li) sin qli(To - T6)] 

+ Ilp~,!(I+1) exp [PI,!(I+l)(To - Tm} , (29) 

where Tli exp (i8Ii) = Pli + iqli' Integration of both 
sides of Eq. (25) from T~ - E to T6 + E and taking 
the limit as E ~ 0 reveals that dl- 1GI(To, T~)/dT~-1 
must have a positive discontinuous jump of mag­
nitude T~+1 at the point To = T6. Thus 

6 E. Jahnke and F. Erode, Table of Functions (Dover 
Publications, Inc., New York, 1945), pp. 136-137. 
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I · dl-IG ( ')/d 1-11 1+1 1m l To, To To 1'o=1"o'+E = To . 
.~o 

Since the lower-order derivatives must be continuous 
at To = T~ to satisfy Eq. (25), the equations deter­
mining the constants Cli, d li , and fl in the Green's 
function for 0 < T~ < To are 

il.l even 
\(1-1), I odd 

L r~;(dli COS keli + eli sin keli) 
i=1 

+ fIP~,!(I+l) = Ok,l-l, k = 0, 1, ... , 1 - 1, (30) 

where O.i is the Kronecker delta. 
Now that the Green's functions are determined, 

the next step is to find explicit expressions for 
OI(r)aJ:(l, m, To), where, again, Ol(r) is any of the 
operators appearing in Eqs. (18) and (19). Terms of 
the form 

1 dka~(l, m, To) k = 1,2, ... , 1 + 1, ;:r+I dTk 

must be evaluated. By successive differentiations of 
Eq. (26) one obtains 

dka~(l, m, To) 
dT~ 

dla~(l, m, To) 
dT~ 

{o G?)(To, T6)f3Ml, m, Tt) dT6, 

k = 1, '" , 1 - 1, 

{o Gjl)(To, T~)f3~(l, m, T~) dT~ 

+ r~+1f3~(l, m, To), 

dl+1a~~~+~, To) = {o Gjl+1)(To, T~)f3~(l, m, T~) dT~ 

where Gjil{To, T~) = diGI(TO, T~)/dT~. Noting that 
To = Tr/ro and hence that 

one can write 

1 dka~ 1 
r l +1 dTk = rl-k+1r~ 

+ oklr~+1f3~(l, m, To) + Ok,I+1r~+1 

X [df3~(l, m, To)/dTo - !l(l + 1)f3Hl, m, TO)]} , 

k = 1,2, ... , 1 + 1. (32) 

To obtain the final expression for the terms of 
0 1 (r)ak' the expression for Gjk) given by Eq. (29) 
is substituted into Eq. (32) which yields 

X [(dli cos keli + eli sin keli) cos qli(t*c/ro - T~) 

+ (eli cos kelj - dli sin keli) sin qli(t*c/ro - T~)] 

+ fIP~,!(1+1) exp [PQ(l+1)(t*c/ro - Tm] 

X f3~(l, m, T~) dT~ + Oklf3'E(l, m, To) + OU+1 

X [df3~(l, m, TO)/dTo - !l(l + 1)f3~(l, m, TO)]} , 

k = 1, 2, ... , 1 + 1. (33) 

The integrals in Eq. (33) are independent of r, 
that is, independent of the radius of observation 
of the field. Hence, for a given source, the integration 
need only be performed once to give field values 
everywhere outside the sphere. 

The integrals required in Eq. (33) are 

l ,oc
l

r
o (t* ) 

Ic(l, m, j, t*) = 0 cos qli roC - T~ 

X exp [pli(~e - T~) }'E(l, m, T~) dT~, (35) 

where j = 1, 2, ... , !l if 1 is even. If 1 is odd, j = 
1, 2, ... , Hl + 1) and qq(I+1) is taken to be zero. 
[The constant Pq(l+l) is, of course, the real root 
of Fl(z) = 0.] 

One can now write the expansions for BB, B~, 

E r , Ee, and E~ at arbitrary radius r in terms of the 
integrals (34) and (35). Substituting the expressions 
for the derivatives of alI from Eq. (33) into Eq. (11) 
and using I. and Ie to represent the integrals of Eqs. 
(34) and (35), one can write an, aEr, aB+, and aE_ 
[as expressed in Eqs. (14) through (17)] as follows: 

an = ~ [ !l(l + 1)(~ - 1 )f3E(l, m, t*) 

+ !:Q df3E(l, m, t*)] + ! ~ p. (, t*) 
c dt* r ~ IJ.z. z.m,r, , (36) 
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(XEr = ~ fJE(l, m, t*) + 1:. ± }J/iF1.i+1.mCr, t*), (37) 
r r i-O 

(XB+ = (l t 1) [u + 2); - Z}E(l, m, t*) 

+ ~ dfJE(l, m, t*) + 1:. ~ .F . ( t*) 
dt

* ~ }Jl+l,. 10m r, , 
rc r i-O 

(38) 

(XE- = -{;r [ (l - 1) ; - l - 1 }E(l, m, t*) 

+ ~ dfJE(l, m, t*) + 1:. ~ .F . ( t*)} 
dt* ~ }J1-1 •• lam r, , rc r i-O 

(39) 

where 
j-l,1 even 

(ro)i{i(l-~l odd (l-i+l) 

F1im(r, t*) = - ~ rli 
r i-1 

x {[dli COS (l - i + 1) 8li 

+ Cli sin (l - i + 1)81i ][c(l, m, j, t*) 

+ [Cli cos (l - i + 1)8li 

- d1i sin (l - i + 1)81i ][.(l, m, j, t*)} 

+ flPj~lit+1Mc(l, m, !(l + 1), t*)}. 

The field components are then given by Eqs. (18) 
and (19) with (Xu, (XEr, (XE+ and (XE- substituted for 
the quantities they represent. 
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APPENDIX 

A. Incoming Waves 

If Eqs. (1) and (2) are rewritten with hi2
) sub­

stituted for hil), they then represent incoming waves. 
The equations in Sec. II involving hil) can be re­
written with hi 2

) instead of hil); they then apply to 
incoming waves. Since hi 2

) (kr) can be written 

h;2)(kr) = eiW 'Zi2)(r)[exp [-i(wt~ -1I'/2)J/kl+1
], (40) 

where 
I .(-1) 1-; d1- i 

_
';;'1(2)(r) - ( ) I - '" }Jl, --= ,!::!.l r '.""'-ta. - ~ i+l l i dt*l-i, 

;-0 rCa 

t: = t + ric, 

the equations involving Zl(r) can be written for 
incoming waves by substituting t~ for t*, Zi 2

) (r) for 
Zl(r) [or equivalently }Jl;( _1)1-; for }Ju], 

and 

[
exp [-i(wt: -1I'/2)]J f [exp [-i(wt* + 1I'/2)]J. 

k1+1 or e+ 1 

In solving the boundary-value problem of Sec. III, 
the auxiliary Eq. (28) is the same except for a change 
in sign of the coefficients of the odd powers of z. The 
roots are the same as for outgoing waves except for a 
change of sign of the real parts. Thus the Green's 
function contains exponentials increasing in time 
instead of decreasing as in the outgoing-wave treat­
ment. This comes about because incoming waves are 
related to outgoing waves basically by a time rever­
sal. The Green's functions are not time reversals to 

TABLE 1. Roots of H/HCiz) = O. 

Order Real part Imaginary Order Real part Imaginary 
(l) of z part of z (l) of z part of z 

3 -2.322185 O. 12 -8.253457 0.867839 
3 -1.838907 1.754381 12 -7.997204 2.608989 

12 -7.465614 4.370186 
4 -2.896211 0.867234 12 -6.610991 6.171537 
4 -2.103789 2.657418 12 -5.329710 8.052905 

12 -3.343023 10.124297 
5 -3.646739 O. 
5 -3.351956 1.742661 13 -8.947802 O. 
5 -2.324674 3.571023 13 -8.830184 1.736704 

13 -8.470615 3.483830 
6 -4.248359 0.867510 13 -7.844380 5.254921 
6 -3.735708 2.626272 13 -6.900370 7.070641 
6 -2.515932 4.492673 13 -5.530681 8.972248 

13 -3.449867 11.073928 
7 -4.971787 O. 
7 -4.758290 1.739286 14 -9.583335 0.868314 
7 -4.070139 3.517174 14 -9.362826 2.607241 
7 -2.685677 5.420694 14 -8.911220 4.361654 

14 -8.198775 6.143068 
8 -5.587886 0.867614 14 -7.172405 7.973204 
8 -5.204841 2.616175 14 -5.720353 9.894709 
8 -4.368289 4.414442 14 -3.551087 12.025738 
8 -2.838984 6.353911 

15 -10.273503 O. 
9 -6.297019 O. 15 -10.170628 1.736566 
9 -6.129368 1.737848 15 -9.859659 3.480484 
9 -5.604422 3.498157 15 -9.323611 5.242350 
9 -4.638440 5.317272 15 -8.532440 7.034373 
9 -2.979261 7.291464 15 -7.429402 8.878983 

15 -5.900151 10.819999 
10 -6.922050 0.867690 15 -3.647357 12.979501 
10 -6.615282 2.611555 
10 -5.967534 4.384950 16 -10.914145 0.875305 
10 -4.886218 6.224985 16 -10.714492 2.602741 
10 -3.108916 8.232699 16 -10.328305 4.356535 

16 -9.711228 6.126361 
11 -7.622450 O. 16 -8.848105 7.928469 
11 -7.484148 1.737140 16 -7.673256 9.787751 
11 -7.057923 3.488977 16 -6.071237 11.747872 
11 -6.301334 5.276207 16 -3.739232 13.935028 
11 -5.115647 7.137018 
11 -3.229722 9.177112 
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each other because the boundary conditions forced on 
them are not related by a time reversal. For out­
going waves, G1(To, T~) was found to be zero for 
To :<e T~; for TO > T~ it is nonzero, but exponentially 
decaying. For incoming waves the Green's functions 
Gl2

) (To, T~) are again zero for To :<e T~; for To > T~, 
however, the functions Gl2

) exponentially rise. 

B. Solutions of Scalar Wave Equation 

Note that (rEr) satisfies the scalar wave equation. 
It follows that the formalism and solution of the 
spherical boundary-value problem for (rEr) can be 
applied to any quantity satisfying the scalar wave 

equation, i.e., the rectangular field components or 
vector potential components.7 

C. Roots of the Hankel Function 

Using double precision on an IBM 7044 computer, 
roots of Eq. (28) were obtained through the 16th 
order. Greater computer precision would be needed 
to obtain them beyond the 16th order. For l = 1, the 
root is -1, for l = 2, the roots are -} ± iV3. Table 
I contains the roots that were found numerically. 

7 D. D. Babb and K. D. Granzow, "Extrapolating Electro­
magnetic Fields From Values in a Spherical Region," Air 
Force Weapons Laboratory, WL TR-64-179, 1965 (unpub­
lished), Sec. II. 
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A Continuous Representation of an Indefinite Metric Space* 
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An overcomplete family of states (OFS) is constructed for a countably infinite linear vector space 
with an indefinite metric for the case that the metric is diagonal with eigenvalues ( -1 )", where n is an 
integer. A continuous representation is indicated and the properties of a semiclassical description of a 
quantum mechanical system (the pseudo oscillator whose creation and destruction operators ii and ii+ 
satisfy [ii, ii+] = -1) defined in this vector space are studied. It is found that a consistent OFS Iz> can 
be constructed if the operator G(z) which generates the state Iz> from the vacuum is unitary. Further­
more, with the statistical state of this system specified by a bounded pseudo-Hermitian density 
matrix p, the related semiclassical complex function PA(Z) for antinormal ordering of operators in the 
indefinite metric space is found to be bounded, with PA(Z) and [PA(Z)]2 integrable, continuous, and a 
boundary value of an entire analytic function of two complex variables. The semiclassical function 
PN(Z) for normal ordering is associated with a sequence of functions PN(,) (z) whose square is integ­
rable and related to a sequence of tempered distributions PN(.) such that the corresponding sequence of 
density matrices Pi,) converges to p in the norm. 

1. INTRODUCTION 

T HE general properties of continuous representa­
tions of Hilbert spaces have been studied i

•
2 and 

used to relate semiclassical and quantum phenomena 
in specific cases. In particular, the equivalence of 
the quantum and semiclassical descriptions of optical 
coherence has been shown by Sudarshan,3 by 
Klauder, McKenna, and Currie,4 and by Mehta 
and Sudarshan.5 In this case, a positive-definite 
density matrix ~ is used to specify the statistical 
state of the radiation field. 

It is of interest to know whether continuous rep­
resentations of linear vector spaces with an inde­
finite metric (1M) exist, and, if they do, how they 
are defined. Then, given such a continuous rep­
resentation, does a well-defined semiclassical de­
scription of a quantum mechanical system defined 
in the 1M space result? It is found, that, indeed, 
for the special case considered, such a continuous 
representation exists. Furthermore, the semiclassical 
description of the states of a simple pseudo oscillator 
defined in an 1M space is a generalization of the 
description of the states of a normal simple oscillator 
defined in a Hilbert space. 

* This work was supported in part by the U. S. Atomic 
Energy Commission. 

t National Aeronautics and Space Administration Pre­
Doctoral Fellow. 

i See the following: J. R. Klauder, Ann. Phys. (N.Y.) 11, 
123 (1960); J. Math. Phys. 4l 1055, 1058 (1963); ibid. 5,177 
(1964). Also see J. R. Klau<ter and J. McKenna, J. Math. 
Phys. 5, 878 (1964); ibid. 6, 68 (1965); S. S. Schweber, 
ibid. 3, 831 (1962). 

2 R. J. Glauber, Phys. Rev. 131, 2766 (1963). 
8 E. C. G. Sudarshan, Phys. Rev. Letters 10,277 (1963). 
4 J. R. Klauder, J. McKenna, and D. G. Currie, J. Math. 

Phys. 6, 734 (1965). 
6 C. L. Mehta and E. C. G. Sudarshan, Phys. Rev. 138, 

B274 (1965). 

In the following, Sec. II is devoted to the develop­
ment of the overcomplete family of states (OFS) 
for the 1M space defined by a simple pseudo oscil­
lator, i.e., where the creation and destruction op­
erators d+ and d, respectively,6 satisfy [d, d+] = -1. 
In Sec. III, a quantum mechanical description of 
the statistical state of a simple pseudo oscillator is 
used along with the OFS of Sec. II to determine 
the corresponding semiclassical description. Section 
IV contains some conclusions. 

II. AN OVERCOMPLETE FAMILY OF STATES FOR 
AN INDEFINITE METRIC SPACE 

Here we will develop an OFS and then give some 
important properties of a continuous representation 
formed from it. This approach is parallel to that 
taken by R. J. Glauber2 in his treatment of the 
continuous representation of the positive-definite 
metric (PDM) space, except for modifications in­
troduced by the 1M. A brief introduction to some 
of the important properties of 1M spaces is given 
in Part A. In B, we introduce the 1M space cor­
responding to the pseudo-harmonic oscillator. Then 
the OFS and a continuous representation of the 
1M space are considered in C and D, respectively. 

A. Some Properties of Indefinite Metric Spaces 

The properties of vector spaces with an 1M have 
been discussed by L. K. Pandit.1 In general, the 
norm squaredS is (ulu) > 0, <0, = 0. In particular, 

I Henceforth, A will denote an operator defined in an 1M 
space and A an operator defined in a positive-definite metric 
Hilbert space. 

7 L. K. Pandit, Nuovo Cimento, Suppl. 11, 157 (1959). 
8 In the following, we will denote vectors of a PDM space 

by Iv) and those of the 1M sPace by lu). Further, we will refer 
to the norm squared simply as the norm. 

641 
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if we choose an 1M space to be in one-to-one cor­
respondence with a PDM space, then9 

(u I v) = (ul n Iv), (1) 

where n is the usual Hermitian metric operator 
which is defined in the PDM space. Though it is 
customary to define a metric operator only in the 
PDM space, we will also define one, 7j, in the 1M 
space so that 

(ul 7j lu) = (u I u). 

This allows for added clarity in the following. 
An operator P in the 1M space is related to P by 

(ul P Iv) = (ul uP Iv). 

The adjoint P+ is defined by 

(vi P lu)* = (ul P+ Iv) = (ul nP+ Iv), 

where the form of p+ is given by P+ = n -tpHn, and 
pH is the usual Hermitian adjoint. An operator 
which is invariant under the adjoint operation is 
said to be pseudo-Hermitian. 

When a change of basis vectors is made in the 
1M space such that the operator 0 transforms the 
orthonormal base set lu) into the basis lu'), then 

(u' I v') = (ul 0+0 Iv) = (ul nU+U Iv). 

In order that the metric be preserved, it is necessary 
that 0+ 0 = 1. When the 1M is preserved under 
a transformation 0 above, 0 is said to be pseudo­
unitary. The corresponding pseudo-unitary operator 
in the PDM space satisfies U+U = 1. 

While Hermitian and unitary operators are diag­
onalizable and have real and unimodular eigen­
values, respectively, this is not always true for 
pseudo-Hermitian or pseudo-unitary operators. In 
fact, the difficulties arise because eigenvectors of 
zero norm may occur. In complete analogy with 
the Hermitian and unitary operators, however, one 
finds that the eigenvalues of the pseudo-Hermitian 
operators are real and those of the unitary operators 
unimodular for those eigenvectors with nonvanishing 
norm. 

B. A Linear Space with an Indefinite Metric 

We can construct a linear space with an 1M using 
the usual procedure for constructing the Fock space 
for a single harmonic oscillator beginning, instead, 
with a single pseudo oscillator. The operators a and 
a+ of the pseudo oscillator are defined in the 1M 
space by a 10) = 0, (01 a+ = 0, and [a, a+j = -1, 

9 We are defining two different metrics on the same set 
of points. There is a one-to-one mapping of expectation values 
from one metric space to the other. 

where 10) is the vacuum state. One finds an ortho­
normal set of states In) where n takes the values 
0, 1, 2, ... , which satisfy 

a+ a In) = -n In), (2a) 

a In) = -n' In - 1), (2b) 

a+ In) = (n + 1)' In + 1), (2c) 

with 

In) = [1/(n!)'](a+)" 10) (2d) 

and 

(m I n) = (-1)" am,,' (2e) 

The corresponding PDM Hilbert space contains In) 
where (min) = am", and the relation 

(m In) = (ml n In) = (-1)" am" (3) 

gives the form of the metric n. It satisfies nH = n 
and n2 = 1. 

The completeness relation in the 1M space is 

(4a) 

where N .. = (-It. The corresponding relation in 
the PDM space is 

1 = L: In)(nl· (4b) .. 
A useful representation of the completeness relation 
is found by using n In) = (-It In) and defining 
7j In) = (-It In) with 7j+ = ij and 7j2 = 1. This 
then leads to 

(ml 7j IP) = (ml nn IP) = (m I P). 

Now we can define an alternative form of (4a) and 
(4b), respectively, as 

ij = L: In)(nl (5a) .. 
and 

n = L: In)N .. (nl. (5b) .. 
The above formalism is sufficient to construct the 
OFS that is required. 

C. Construction of an Overcomplete Family of States 

In order to construct an OFS, we look for the 
complete set of states Iz) which are eigenstates of a 
and, thus, satisfy a Iz) = z IZ)j Iz) is generated 
from the vacuum In = z = 0) and z is a continuous 
parameter. Since a is not pseudo-Hermitian, the 
eigenvalues z = x + iy = re iO are, in general, 
complex. The state Iz) can be expressed as a linear 
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combination of the states In) using the resolution 
of unity given in (4a); thus, we have 

Iz) = L In)( -1)"(n I z). (6) 
" 

The recursion relation 

z(n - 1 I z) = ni(n I z) (7) 

is found from the properties of the states In) given 
above. This together with (6) yields 

Iz) = ~ In) ~~!)r (0 I z) (8a) 

and 

particular, this leads to the assignment of ei I-I' to 
(0 1 z) which makes the integral, f Iz)(zl d2z, singular. 
This type of problem may arise in any treatment 
of countably infinite 1M spaces if one attempts to 
define operations independently of any PDM space, 
since the concepts of continuity, convergence, and 
completeness may not be well defined. 

The completeness relation (lOa) restricts the form 
of G(z), where Iz) = G(z) 10) and jZl + Z2) = G(Zl) IZ2)' 
In fact, one can show that 

(zl G+(zo)fjG(zo) Iz') = (zl fj Iz') 

follows from (lOa) and the self-reproducing property 
which is discussed later and found in (32). 

(zl = ~ (n~)I (-z*),,(z 10)(nl· (Sb) This implies that 

Now the states Iz) are specified except for the 
factor (Olz). This factor is determined by requiring 
Iz) to satisfy a normalization condition which would, 
at the same time, permit us to define a completeness 
relation in terms of f~", Iz)(zl d2z (d2z = dx dy = 
r dr dO). The simplest normalization consistent with 
a well-defined completeness relation is 

(zl fj Iz) = (z I z) = 1. (9) 

Using this with (8a) and (Sb), we find that 1(0 I zW = 
e-'z,'. With the phase chosen such that (0 I z) 
e-i'z,', (Sa) becomes 

I) = ~ I ) (-z)" -i'z" z L..Jnptl) e . .. n. 
(Sc) 

The form of the completeness relation can now be 
checked using (Sc). 

i: Iz)(zl d
2
z 

1"'12" ( r)m+n = Lim) (-, I)I e-;C,,-m)8(nl e-r'r dr dO, 
o 0 m." m. n. 

= r L Im)(ml, 

= rfj. 
Thus, we have 

11'" fj =;: _'" Iz)(zl ~z, (lOa) 

which is seen to correspond to 

(lOb) 

in the PDM space by using (9). 
It is not possible to define a completeness relation 

if the normalization (z 1 z) = 1 is assumed. In 

G+(z)fjG(z) = ii, (11) 
and finally, 

GH(z)G(z) = 1. 

in the PDM space. Therefore, G(z) must be unitary 
with respect to the PDM. 

When we generate the state Idz) differing in­
finitesimally from the vacuum by the operator G(dz) 
with normalization G(O) = 1, then by the require­
ment 

a G(dz) 10) = dz G(dz) 10), 

the commutation relation [a, a+] = -1, and the 
unitarity of G(dz), we see that it is restricted to the 
form 

G(dz) = 1 - iidz* - a+dz. (12) 

Equation (12) satisfies (11) to first order using the 
fact that fj anticommutes with a and a+ in this 
representation. The finite form corresponding to (12) 
is found by letting z ~ AZ and dz ~ ZdA, where A is 
a real parameter. This leads to 

dG(Az) = lim G(ZA + Z~A) - G(ZA) 
dA A >._0 ~A 

= (-az* - a+z)G(zA). 

With a proper choice for A, we find that 

G(z) = e<-a_'-4+z) . 

Using the well known identity 

valid for all cases when the commutator [A, B] is 
a number, we see that 

G-( ) -4+' -4.- -1 ,." z = e e e (13) 

leads to Iz) in the form 

Iz) = e-4 +'e-i ,." 10). (14) 
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This is just the form into which Iz) given by (8c) 
reduces when (2d) is used. 

D. A Continuous Representation of an Indefinite 
Metric Space 

In the PDM case2 there is a one-to-one mapping 
of the states of a harmonic oscillator onto the 
Hilbert space 5'" of entire analytic functions in 
which the scalar product is defined as (f I g) = 
(l/1r) f f(z)*g(z)e- Iol ' dz. Furthermore, it is known1o 

that a unitary isomorphism exists between 5'" and 
the conventional Hilbert space of square-integrable 
functions. An analogous situation occurs for the con­
tinuous representation of an 1M space. To see its 
exact form, let us make the transition from the 
states If) of the pseudo oscillator to a space of 
entire analytic functions. 

Let If) represent some linear combination of the 
states In) such that (fl 7i If) = (f I f) < 00. The 
projection of If) onto the OFS Iz) is 

(z I f) = (zl f(a+) 10) = f(z*)(z I 0), (15a) 
(z I f) = f(z*)e-11 • 1·; 

and 
(f I z) = [f(z*)]*e-11 ' I'. (15b) 

We can see that f(z*) is an entire analytic function 
in the following way. Let If) be 

If) = ~ b" In) = ~ b .. (n\; (a+)" 10). 

Since boundedness requires that .L: .. Ib .. 12 < 00, then 
Ib,,1 -+ 0 as n -+ 00. Therefore, 

f(z*) = .L: b" ( ~)l (z*)" 
" n. 

converges for finite Izl. 
In order to calculate the form of the scalar product 

of two such states (gl and If), we make the transition 
to the corresponding PDM space and use the resolu­
tion of unity in terms of Iz) given by (lOb). Then 
(g I f) has the form 

(g I f) = (gl n If) = ; J (g I z)f(z*)e-; 1.1' d2z. (16) 

We return to the 1M space to calculate (g I z); 
it becomes 

(g I z) = (gl 7i Iz) = ; J (g I z')(z' I z) d
2
z', (17) 

where we have used the completeness relation in 
the form (lOa). From (8c), we find that 

10 V. Bargmann, Commun. Pure Appl. Math. 14, 187 
(1961). 

< 
' I) -.". -; 1.'1' -11.1' z z=e e e • (18) 

Using (15b) and (18), (17) becomes 

(g I z) = ; J [g(z'*)]*e-""e-I'I'e-I"I' d2z'. 

When we express g(z'*) and e-"" in terms of their 
expansions, integrate, and substitute into (16), we 
find that 

(g I f) = ; J g( -z)*f(z)e- I
'

I
' ~z. (19) 

Therefore, in the 1M case, there is a one-to-one 
mapping of the states of the pseudo oscillator with 
normalization (f I f) < 00 into the generalized vector 
space 5'~ of entire analytic functions in which the 
scalar product is defined by (19). A similar form 
is encountered again in III where we consider the 
representation in 5'~ of the density matrix p for the 
pseudo oscillator. 

m. STATISTICAL STATE OF A PSEUDO 
OSCILLATOR DEFINED IN AN INDEFINITE 

METRIC SPACE 

Now we consider the properties of the semiclassical 
description of the statistical state of the quantum 
mechanical pseudo oscillator defined in an 1M space 
using the OFS developed in II. A single state of 
the system is characterized by the destruction and 
creation operators a and a+, respectively, of the 
pseudo oscillator. We specify the statistical state 
of this system by a bounded pseudo-Hermitian 
density matrix p with certain trace properties such 
that the expectation value of an operator 0 in the 
1M space is given by Tr (pO). Pseudo-Hermiticity 
is imposed to preserve linearity and in order that 
the projection of p to any nonzero norm state be 
real. The correspondence between the PDM and 
1M spaces used in II has the form 

(ml p Iq) = (ml ng Iq), 

where 9 is the PDM counterpart of p. 
In order to determine the semiclassical description 

of the given quantum mechanical system, we express 
the expectation value of some operator G(a, a+) in 
a state described by p, i.e., Tr [pG(a, a+)], in terms 
of an integral over an appropriate distribution of 
states corresponding to the density matrix. This 
distribution will depend upon the ordering of the 
operato!s contained in G(a, a+). Consider the case 
where G(a, a+) is chosen to be 

where a and {3 are complex numbers. 
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The correspondence between Tr (pO) and an 
integral over a distribution is readily found for the 
case of antinormal ordering of the operators d and 
d+ by using the resolution of unity of the OFS Iz) 
given by (lOa); this leads to 

Tr (pe-aVa+) = Tr (pe- a4TjTilci +), 

= Tr (pe-a:4;: J d2z Iz)(zl e-1l4+Ti), 

= ;: J (zl TiP Iz)e- aoe-Il
•• d2z. 

Now the correspondence is seen to be 

J PA(z)e-Il"e- ao d2z = Tr (pe- a4l a+), (20a) 

where PA(Z) = (1/71') (zl TiP Iz) = (lhr) (zl 0 Iz). The 
correspondence is p -+ PA(Z), d -+ z and d+ -+ -z* 
for antinormal ordering. The sign change that occurs 
here, i.e., d+ -+ -z*, is due to the fact that the 
metric Ti anticommutes with d+. 

In complete analogy with (20a) , we specify the 
correspondence for the normal ordered product to be 

J PN(z)e-Il•• e-a:· dl = Tr (pl4+ e- a4). (20b) 

If we denote the integrals (20a) and (20b) by FA (a, (3) 
and FN(a, (3), respectively, then for F(a, (3) given by 

F(a, (3) = Tr (pe- a a+1l4 +), 

we have 

(20 c) 

and 
(2Od) 

The properties of p are considered in Part A. 
In B, the properties of PA(Z) and its relation to 
physical systems are discussed. It is found that PA(Z) 
is complex and that it is bounded, continuous, 
integrable, and its square is integrable. Further­
more, PA(Z) is a boundary value of an entire analytic 
function of two complex variables which satisfies 
certain reproducing properties. The properties of 
PN(Z) and its relation to PA (z) are discussed in C. 
While PN(Z) is not bounded in the sense of PA(Z), 
it is found that a sequence of tempered distributions 
PN(.) exists to which one can identify a sequence 
of functions PN(.)(X, y) whose square is integrable 
where the corresponding sequence of density ma­
trices p(.) converges to p in the norm. 

The above properties are generalizations of the 
properties of the PA(Z) and PN(Z) that Mehta and 

Sudarshan defined~ from the positive-definite Herm­
itian density matrix 0 describing the statistical state 
of a normal oscillator in a Hilbert space. 

A. Properties of 0 

The density matrix p defined in the 1M space is 
assumed to be a bounded pseudo-Hermitian operator 
which is a member of some trace class. In this case, 
the expectation value of finding the system in some 
particular state is positive or negative. In order that 
all of these expectation values be defined, we require 
that 

Tr p = 1, 

Tr Tjp = T, 

(21a) 

(21b) 

where I TI < co and real. Further, we require that 
the PDM counterpart of TiP, i.e., no, which is 
Hermitian, be positive-definite; this implies that 
T ;::: 0 since Tr TiP = Tr no. This restriction is 
imposed so that, first of all, p reduces to the special 
case of the positive-definite Hermitian density ma­
trix when n = 1. Second, in the less restrictive case 
when n is nondegenerate and Hermitian with n ¢ 1 
and [n, oj = 0, it requires that the corresponding 
p which is now also Hermitian, and thus, diagonal­
izable and which one can separate into positive and 
negative norm parts be such that its positive and 
negative norm eigenstates correspond to positive and 
negative eigenvalues, respectively. 

The representation of p in the 1M space defined 
by the pseudo oscillator is given by 

p = :E Tj In)Pnm(ml Ti, 
"'." 

where P ..... is given by 

P ..... = (nl p 1m) = (nl no 1m). 

The trace conditions (21a) and (21b) require that 

:E (-I)"p .... = 1 .. 
and that 

(21c) .. 
These together imply that lim ....... Ip ..... 1 = O. Further­
more, since 

Ip ..... 12 ::; I p .... 1 I pm ... \, 

then, Ip .... I-+ 0 as n -+ co and m -+ co, independently. 

B. Properties of OA(Z) 

The explicit form which defines PA(Z), i.e., 

PA(Z) = ! (zl TiP Iz) = ! (zi 0 Iz) (22a) 
11' 11' 
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and the properties of p allow us to determine the 
properties of PA(Z). It is immediately evident from 
(22a) that PA (z) is, in general, complex unless [7], p] = 
[7], p] = O. The real and imaginary parts of PA(Z) 
are given by 

where 

and 

Re PA(Z) = (l/1r)(zl PR Iz), 
1m PA(Z) = (1/1I)(zl PI Iz), 

PI = !(p - (l) 

(22b) 

(22 c) 

are the Hermitian and skew-Hermitian parts of p, 
respectively. 

We show that PA(Z) has the following properties. 

(1) PA(Z) is bounded, IPA(Z) I ~ ITr (7]p) 1/11'" = T/1I'". 
(2) The integral II PA(z)e-fl·*e-fl*. dz21 ~ ellfll ' is 

bounded. Also, PA(Z) is integrable since I PA(Z) d2 Z= 1. 
(3) The square of PA(Z) == PA(X, y) is integrable. 

That is, 0 ~ I [PA(X, yW dx dy ~ 1/11'". Also, we 
find that 

(4) PA(Z) = PA(X, y) is the boundary value of an 
entire analytic function of two complex variables. 

We begin by showing the bound of PA(Z), From 
our definition of PA(Z) given in (22a), and the fact 
that 7] Iz) = I-z) (see Sec. II.), we have 

pAz) =! (-zi np Iz). 
11'" 

Since np is Hermitian, it may be diagonalized in 
the PDM space and expressed in terms of its eigen­
values w" and eigenvectors I~,,) in the diagonal form 

np = I: w" I~ .. )(~ .. I. .. 
Under the unitary transformation S which diag­
onalizes np, the vectors Iz) --7 S Iz) = Iz'). Thus, 
PA (z) is given by 

Since np is defined to be positive-definite, then the 
w" are positive and w" ~ T; this leads to 

T 
IPA(Z) I :::; -II: (-z' I ~")(~,, Iz')I, 

11'" " 

= '£ 1(-z'l (I: I ~")(~,,D Iz')I; 
11'" " 

T 
IPA(Z) I :::; - I(zl n Iz)l, 

11'" 

T I -21"'1 = - e . 
11'" 

Our final result is 

(23) 

The bound on the real part of PA(Z) can also be 
found using (22b) directly. For the special case that 
PR = tep + pH) is positive-definite and Tr PR 
1 = T, we find 

o :::; Re PA(Z) :::; 1/11'". 

This is the result which is obtained for PA (z) when 
p is defined as the PDM density operator for a 
state described in terms of a normal oscillator 
defined on a Hilbert space.s 

In order to consider the second point, we set 
a = fJ* in (20a) and rewrite it as 

J () -fl.*-{l*. d°.2 - i Ifll' T (- -fl.d +fl4+) PA z e ~ - e r P e . (24) 

Since the eigenvalues of a pseudo-unitary operator 
for nonzero norm eigenvectors have unit modulus, 
then the expectation value of e-fl*iH{lii+ for a given 
state satisfies 

l(e-fl*4+{l4+) I :::; 1. 

The normalization Tr (p) = 1, leads to 

ITr (p e-fl*iH{la+) I = l(e-{l*4+{l4+)I ~ 1. (25) 

Using (25), (24) can be written with the bound 

if PA(Z) e-{l·*-{l*· d2Z1 :::; ei 1{lI' . (26) 

By letting fJ = tes + it) and z = x + iy, the left 
side of Eq. (26) with PA(Z) == PA(X, y) is written as 

L(s, t) = J PA(X, y) e-(u+I.> dx dy, (27) 

and 

(26a) 

The function L(s, t) can be identified with the 
bilateral Laplace transformll of PA(X, y), where the 
strip of convergence of (27) in the sand t complex 

11 An entire operational calculus based on the bilateral 
Laplace transform has been developed by B. Van der Pol 
and H. Bremmer. See B. Van der Pol and H. Bremmer, 
Operational Calculus based on the Two Sided Laplace Transform 
(Syndics of the Cambridge University Press, London, 1955). 
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planes must be specified. Certainly, (27) converges 
for s = t = 0 since (24) and (27) imply that 

L(O, 0) = J PA(Z) £fz = 1. 

The bilateral Laplace transform converges for finite 
values of real 8 and t by (26). The inverse of (27) 
is given by 

where C1 = Re s = s of (27) and C2 = Re t = t 
of (27) and the integration is performed in the com­
plex 8- and t-planes within the respective strips of 
convergence defined by (26) and (27). The bound 
of (26) in addition to the boundedness of p is suffi­
cient to ensure that (28) exists. Furthermore, since 
L(s, t) is found ll to be analytic and free of sing­
ularities in sand t, then we can shift the contour 
defined in (28) to any region, i.e., any value of Cl 

for the s plane and any C2 for the t plane contained 
in the region of convergence. 

In the case of the bilateral Laplace transform, 
one can showll that the product rule 

L: pl( -x, -Y)PA(X, y) dx dy 

1 jC.+i'" jC.+i'" 2 

= (21ril c.-i'" c.-i'" \L(s, t) \ ds dt (29a) 

]
'" 1 

_'" [PA(X, y)]2 dx dy :::; ;. 

The lower bound on the above integral is seen to 
be zero by applying the above change of variables 
directly to (29a). The final form is then 

o :::; I [PA(X, y)r dx dy :::; ~ , (29b) 

where the integral is real. 
We can also show that PA(X, y) is integrable over 

each of its arguments separately. First, we integrate 
(28) over x, 

i: PA(X, y) dx 

]
'" 1 JCH'" = dx (2 .)2 . L(s, t) e(U+lu) ds dt, 

-00 'JI1, C-1.CO 

= i: dx (2~)2 i: ds i: dt L(is, it) e-H.Z+l
U

) , 

= 21 ]'" dt L(O, it) eitu
• 

7r _'" 

But, this gives 

II PA(X, y) dxl :::; 2~ i: dt \L(O, it)\, 

= 1.. I dt e-t'/S 

27r ' 

and the final form is 

holds. However, from (22a) we note that pl( -z) = I '" I (2)! 
PA(Z). This condition implies that Re PA(Z) is even i", PA(X, y) dx :::; ; . 
and 1m PA(Z) is odd under the change from Z to -z; 

(30a) 

i.e., we have Re PA(Z) = Re PAC -z), and 1m PA(Z) = Similarly, we find that 
-1m PAC -z). This together with (29a) and (26a) I I ()' 
leads us to an integrability condition on the square i: PA(X, y) dy :::; ; . 
of the form 

(30b) 

i: [PA(X, y)]2 dx dy 

= i: ([Re PA(Z)]2 - [1m PA(zWI dx dy 

1 jC.H'" jC.+i'" 
:::; --.-2 e1(,'+t') ds dt. 

(2n) cl-ico ctI-ico 

The right side of the inequality can be evaluated 
for Cl = C2 = 0; making the change of variables, 
we have 

1'" 2 1 1'" ]'" -i(o'+t') _'" [PA(X, y)] dx dy :::; (27r)2 _'" d8 _'" e dt. 

The upper bound is seen to be 

In the case that 1m PA(X, y) = 0, (29b), (30a) , 
and (30b) yield results similar to those obtained 
for the positive-definite density matrix P correspond­
ing to the normal oscillator. The contribution of 
the negative norm states is contained in 1m PA(X, y). 

Now we show that PA(Z) corresponding to the 
1M p is a boundary value of an entire analytic 
function of two complex variables. The derivation 
follows Mehta and Sudarshan. 5 We let 

p(o 'Y) = 1:. (0*\ 7jp h) e! 101' e,I"rI', (31a) , 7r 

where 0 and 'Yare complex numbers. We introduce 
the vectors of the 1M space defined by the pseudo 
oscillator. 
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p(o, 'Y) = ! L: (0* I n)(nl 75 Im)(ml ii 1'Y)et III' et I'll', 
rm.ft. 

= ! " (0)"( -'Y)'" (nl - 1m) 
1r ~ (n! m!)! P , 

I (Il),,(-'Y)"' 
p(ll, 'Y) = :; ~ Pnm (n! m!)l • (3Ib) 

Since IPnml ~ 0 as m ~ <Xl and n ~ co, independently, 
we see that p(ll, 'Y) is finite and convergent for all 
finite values of Il and 'Y. Thus, p(o, 'Y) is an entire 
analytic function of 0 and 'Y. Using the definition 
(31a), we see that PA(Z) is given by 

( ) ( * ) -1,1' PA Z = P z ,z e • (31 c) 

If we now express Il and 'Y in terms of two in­
dependent complex variables, i.e., a = !Co + 'Y) 
and (3 = 1(0 - 'Y), then the corresponding pea, (3) 
is an entire analytic function of a and (3. By letting 
o ~ z and 'Y ~ z*, we approach the boundary of 
pea, (3) corresponding to a ~ X and (3 ~ iy(z=x+iy). 
Thus, for a = X and (3 = iy, PA(Z) = PA(X, y) is 
the boundary value of an entire analytic function 
of two complex variables. 

Now one can prove the following theorem which 
has its counterpart for the positive-definite metric 
case. If for any bounded operator A, defined in the 
1M space 

A(z) = (zl iiA Iz) = 0 

in any finite area over the complex z-plane, then 
A(z) = 0 over the whole complex z plane and, 
further, the operator A itself is identically zero. 
The proof goes through in the same way as for 
the positive-definite metric case. Ii 

One has the same self-reproducing property for 
our p( Il, 'Y) as in the positive-definite metric case. 
Here we use the resolution of the identity for the 
1M, OFS Iz) given by (lOa). This leads to 

p(o, 'Y) = ;2 f (0*1 iip Jz)(zJ ii J'Y) et loyl' ei 141' d2z. 

Using (Bc), we find that 

(zJ ii I'Y) = e-t 1.1' e-t I'll' e··'l. 

This gives 

p(ll, 'Y) = ~ J p(ll, z)K(z, 'Y) d2z, (32) 

where 

C. Properties of 9N(Z) and the Relation between 
9~Z) and 9A(Z), 

We have already seen that PA(Z) is well defined 
in the 1M case. The properties of PN(Z), however, 
are not so easily determined. In the following, we 
find that if PN(Z) is given, then PA(Z) is determined. 
The relation between PN(Z) and PA(Z) is the same 
as found in the PDM case.1i We also show that 
there exists a sequence of tempered distributions 
PNC,) identified with functions whose square is in­
tegrable where the corresponding sequence of density 
matrices Pc» converge to p in the norm. 

The relation of PN(Z) to PA(Z) is found at once. 
If PN(Z) is given, then we can construct a diagonal 
form for the density matrix p in terms of PN(Z). 
This is found to be 

'P = J PN(Z) lz)(zl ii ~z. (33a) 

Then, we get back (20a), i.e., 

Tr (p la+ e- a4
) = J PN(Z) e- fJ'· e- a

• d2z. 

Now, using the fact that 

PA(Z) = (1/1r)(zl ii75 Jz), 

we arrive at 

This is independent of the operator G(a, a+) and 
thus, completely general. 

In order to study the properties of PN(Z), we con­
sider the form FN(a, (3) given above; 

FN(a, (3) = J PN(Z) e-/J··-a. d2z. 

This is rewritten in terms of z = X + iy, with 

Then, 

a = t(P + iq) + l(v - iu), 

f3 = t(P + iq) - l(v - iu). 

FN(a, f3) = FN(a', fJ') = J PN(X, y) e-a'~-fJ'~ dx dy, 
(34) 

where a' = p + iq and fJ' = u + iv. If one could 
show that FN(a', (3') is at worse bounded by a 
polynomial as Ja'J and /fJ'/ ~ co, then it is possible 
to identify PN with a distribution that maps 
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or one could identify PN(X, y)e-(P%+UU) with a tempered 
distribution that maps 

for p and u in a finite domain r. However, as in the 
PMD case, FN(a', f3') is not generally bounded in 
the manner required. Nevertheless, one can con­
struct a sequence of distributions PN(.) where the 
corresponding FN(a', f3') is bounded for each member 
and such that the p(.) converge to p as p -+ <Xl. Such 
a sequence is not unique. 

First we will show that there exists a sequence 
of functions PN(.)(X, y) whose square is integrable 
such that the corresponding operators p(.) converge 
to p in the norm. For this purpose we introduce the 
sequence of functions PN(.) (x, y) defined by12.13 

for A ~ p, u ~ B, 

and -p ~ q, v ~ p, 

otherwise, 
(35) 

where A and B are real and finite. Since FA-(a, (3) = 
e-afiFN(a, (3), from (20c) and (20d) , FN(a, (3) is 
bounded for bounded values a and f3. This allows 
US to identify (35) with a bilateral Laplace transform 
and ensures that the inverse transform 

(2
1 ~21"+.;'" ds 1<'+;'" dt FN(.)(s, t) el%+IU 
n, C1-tcD c.-,eo 

= PN(.)(X, y) (36) 

exists for p = CI, U = C2 and F N(.) (s, t) equal to 

12 A sequence of square-integrable functions defined in 
terms of Fourier transforms was introduced for the positive­
definite metric case by Klauder, McKenna, and Currie (see 
Ref. 4). 

11 It is also possible to define a sequence of distributions 
PN<ol which corresponds to the sequence of density matrices 
similar to that used by Mehta and Sudarshan. That is, a 
sequence defined by 

(nl p(p) 1m) 

1 
P ... "" o~ m, n~p, not m=n=O; 

= Po.o + t PI'.I" n = m = 0; 
,,-10'+1 

o otherwise; 
where 1m) is an eigenvector of the operator a+a, i.e., a state 
in the 1M space of the pseudo oscillator. One can show that 
this sequence P(p) converges to p in the norm and is associated 
with a sequence of distributions PN(p) defined on the set of 
infinitely differentiable functions of compact support such 
that the mapping is 

e-(pz+t'.)-(G%+ •• ) ~!{Jph F (' f3') 
~ N(.)a, . 

the right side of (35). Recalling the product rule 
(29a) for the bilateral Laplace transform, we are 
led to the condition 

o ~ J p~(.)( -x, -Y)PN(.)(X, y) dx dy < <Xl (36a) 

for finite p. However, from (33a) we see that the 
pseudo-Hermiticity of p implies 

p = p+ = J pt(z)ij Iz)(zl ~z. 

Using the fact that ij Iz) = I-z) and making a 
change of variables we find 

p = J pte -z) Iz)(zl ij ~z. (36b) 

Since FN(a', f3') is bounded for bounded values of 
a' and f3', we see that p = CI = 0 and U = C2 = 0 
are in the region of convergence of (35). Thus we 
rewrite (36) as 

1 1'" 1'" . . O(u+l.) PN(p)(X, y) = (2 )2 ds dt FN(p)(u, ~t) e • 
'II' -'" -'" (36 c) 

Furthermore, from (35) we see that 

F ( . .) 1'" () -'<1:1:+"") d d 
N(.) u, ~t = _'" PN(.) x, Y e x y. 

Taking the complex conjugate of both sides and 
making a change of variables we have 

The representation of p in the terms of PN has been 
given by (33a) and (36b). Similarly, for each PN(.) 
there is a p(.) given by 

p(.) = J PN(p)(Z) Iz)(zl ij ~z 
(37a) 

= J pt(p)( -z) Iz)(zl ij d2z, 

which leads to 

F ( . ·t) 1'" * ( ) -0(1%+1.) -1_ d 
N(.) ~s, ~ = _'" PN(p) -x, -y e u;L- y. 

Comparing this with (36d) we see that 

Ft(,)(is, it) = FN(.)(is, it). (37b) 

However, from (36c) we find that 

pt(p)( -x, -y) 

1 1'" 1'" *.. 0(.%+1.) = (2'11')2 _'" ds _'" dt F N(.)(U, tt) e • 
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This together with (36c) and (37b) shows that 
PN{p) (x, y) = p~{.)( -x, -y). Now the "pseudo" 
square-integrability condition (36a) leads to an 
integrability condition on the square, i.e., 

o ::; f [PN{p)(X, y)]2 dx dy < 00. (37c) 

As in the case of PA(Z), since Re PN{v)(Z) is an even 
function and 1m PN{v)(Z) is odd, the above integral 
in (37c) is real. 

It should be noted that the pseudo-Hermiticity 
of p enabled us to restrict the large class of functions 
which includes a subclass of nonlinear functions l4 

which satisfy condition (36a) to the more restrictive 
class of linear functions satisfying (37c). The same 
result was also found in the case of PA(Z), Thus we 
see that the assumption of pseudo-Hermiticity for 
p in an 1M space, in addition to imposing reality 
on the eigenvalues of nonzero norm states, is also 
necessary for linearity. 

Now we show that p{p) converges to p in the norm. 
The norm squared of p is given by 

IlpW = Tr (p+p) = TrCi). 

Using (33a) and (33b) this becomes 

IlpW = 7r f d2z PN(Z) PA(Z). 

However, PA(Z) is well defined and given in (28) 
by the inverse bilateral Laplace transform of FA (s, t), 
where sand t are complex. Thus we have 

X FA(s, t) e{8Z+'.) PN(Z). 

But it was established above that C1 = C2 = 0 is 
in the region of convergence of PA(Z), Making a 
change from s ~ +is and t ~ it, the above becomes 

14 Without the restriction of pseudo-Hermiticity on i5 the 
class of functions defined by (36a) admits functions of the 
following type. 

Mx, y) = {ez
,+." 

0, 

Mx, y) = ' 

x, y 2': 0; 

otherwise; 

x,y::;o; 
{

ez ,+., 

0, otherwise; 
The functionsfl(X, y) andf2(X, y) are in the class of functions 
but their sum is not. I am indebted to the referee for pointing 
out this example. 

After the integration over Z and using the fact that 

FA(a, (3) = e-a(JFN(a, (3), (38a) 

1 1~ 1~ IlpW = 47r _~ ds _~ dt IF N(is, it) 12 eO' • 

In a completely similar manner the norm squared 
of p{.) is 

IIp{v) 112 = :7r Lp ds Lv dt IF N(is, it) 12 eO' • (38b) 

In order that p{v) converge to p in the norm it is 
necessary and sufficient that IIp{v) - p{.,)11 ~ 0 
as v, v' ~ 00. To show this we note that 

IIp{v) - p{v') W 
= I\P{v)W + IIp{p')W - 2 Tr (p{v·)p{p». (38c) 

From (37a) and (33b) we reduce the trace to the form 

Tr (p{v,)p(p» = 7r f d2z PN{p')(Z) PA{p)(Z), 

In the same way we arrived at (38a) we find that 

1 1~ 1~ Tr (p{p')p(p» = 47r _~ ds _~ dt FN{v·)(is, it) 

X F N{.)(is, it) ed
• 

Thus, 

Tr(p{v')p(p» = IIp{p)W or IIp(p')W 
depending upon whether v or v'is the smaller. 
Equation (38c) then becomes 

I\P(p) - p{v') W = IIp{p) W - IIp{v') W· 
In the limit as v, v' ~ ro, the right side approaches 
zero since both terms approach l/pW. Thus p{.) con­
verges to p in the norm. 

The relation of the sequence of functions PN{v) (x, y) 
above to a sequence of distributions is seen from (35). 
For each function of the sequence there is an asso­
ciated distribution PN{p) which maps e-{pz+ulI)e-i{Qz+olI) 

to FN{v)(p, q, U, v). However, we can restrict PN{.) 
more than this immediately implies. Let the double, 
bilateral Laplace transform and double Fourier 
transform of a distribution T be defined by 

.c[T](p + iq, U + iv) = f T e-{P+iQ)z e-{u+"). dx dy 

and 

5'[T](q, v) = f T e- iQz e- i 
•• dx dy, 

respectively . We further define the space L of 
test functions f(q, v) which are infinitely different-
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iable and of rapid decrease, i.e., 

1· I j k iJ~(q, v) iJ~(q, V)I 0 1m qv --- = 
,.,_'" iJqm iJvn 

tal-a) 

for all j, k, m, n. It can be shown15 that if 

lim J £[PN(.)](P + iq, u + iv) t(q, v) dq dv ,,-0 

= f 5lpN(p)](q, v) t(q, v) dq dv, (39) 

i.e., £[PN(.)] converges in the space of functionals 
defined on L to g."[PN(p)] as p, U --+ 0 in any domain r, 
then PN(.) is a tempered distribution. The condition 
of convergence (39) is easily satisfied by the PN(.) for 
any tEL and all operations indicated are well defined. 

Thus, we have shown that there exists a sequence 
of tempered distributions PN(.) to which is asso­
ciated a sequence of functions PN(p) (x, y) whose 
square is integrable where the corresponding se­
quence of density matrices p(p) converges to p in 
the norm. 

IV. CONCLUSIONS 

We have used an OFS corresponding to a simple 
quantum mechanical system, the pseudo oscillator, 

16 R. F. Streater and A. S. Wightman, peT, Spin and 
Statistics (W. A. Benjamin, Inc., New York, 1964), p. 61, 
Theorem 2-9. 

defined in a linear space with an 1M to derive a 
semiclassical form for describing the statistical state 
of such a system. The properties of this form, 
determined in Sec. III, were found to be a general­
ization of the semiclassical description of the cor­
responding quantum mechanical system defined in 
a Hilbert space; i.e., the normal harmonic oscillator. 
The semiclassical function PA (z) which corresponds 
to antinormal ordering of operators has the same 
properties in both cases when 1m PA(Z) = o. Thus, 
for antinormal ordering, there is a well-defined gen­
eralization from the semiclassical form of the simple 
oscillator of a Hilbert space to that of the pseudo 
oscillator of an 1M space. On the other hand, for 
the semiclassical quantity PN(Z) corresponding to 
normal ordering, all we can say is that in both 
cases there exists a sequence of tempered distribu­
tions for which the corresponding sequence of density 
operators p(p) converge to P in the norm. 
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Leading Landau Curves of a Class of Feynman Diagrams* 
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In a previous paper it was shown that the leading Landau curves of some Feynman diagrams do not 
give singularities on the physical sheet if some of the internal and external masses satisfy certain 
simple inequalities. In the present paper it is shown that a similar property is satisfied by a class of 
Feynman diagrams. The inequalities involve a fixed number of masses for the whole class. 

I. INTRODUCTION 

T HE singularities corresponding to a given Feyn­
man diagram lie on certain real algebraic curves 

whose implicit equations were given by Landau, 1 

as follows 

2: ajqj = 0, 

aj(q~ - m~) = 0, 

where qi, aj, and mj refer, respectively, to the 
momentum, the Feynman parameter, and the mass 
associated with the jth internal line, and the sum 
is around each of a set of independent loops. The 
solution in which none of the aj equals zero is known 
as the leading curve for the diagram. The solution 
obtained by setting some of the aj equal to zero 
corresponds to the leading curve of the diagram 
obtained by contracting the appropriate lines. It is 
believed that as a consequence of unitarity the 
Landau singularities also appear in the complete 
amplitude, independent of perturbation theory.2 

In a previous paper3 (hereafter referred to as I) 
we studied the leading Landau curves of some Feyn­
man diagrams. In the present paper we propose 
to extend this work to a class of diagrams and some 
other diagrams. We first recall some of the motiva­
tion for this work. For various reasons it is important 
to determine what singularities corresponding to a 
given diagram lie on the physical sheet as the latter 
is usually defined. In this connection the leading 
curves of only a few of the simplest diagrams have 
been analyzed in detail. These cases include the 
square,4 the square with one diagonal,6 the square 

• Work supported in part by the U. S. Air Force and the 
National Science Foundation. 

1 L. D. Landau, Nuc!. Phys. 13, 181 (1959). 
2 J. C. Polkinghorne, Nuovo Cimento 23,360 (1962); ibid., 

25, 901 (1962); H. P. Stapp, Phys. Rev. 125,2139 (1962). 
8 J. N. Islam, Nuovo Cimento 30, 259 (1963). 
4 J. Tarski1 J. Math. Phys. 1, 149 (1960). 
& R. J. Eaen, P. V. Landshoff, J. C. Polkinghorne, and 

J. C. Taylor, J. Math. Phys. 2, 656 (1961). 

with two nonintersecting diagonals, G-S and some 
other diagrams considered in 1. In the first three 
cases, provided the external masses are not too 
large, the real section of the leading curve has parts 
singular on the physical sheet (with the attached 
complex surface nonsingular) and confined to the 
spectral regions. This implies that the Mandelstam 
representation is satisfied. The spectral regions for 
a given diagram are defined as the regions in the 
plane of the real invariants where the normal thresh­
old cuts (given by the appropriate normal threshold 
contractions) in any two of the variables overlap. 
Now it is known9 that as the external masses are 
increased, anomalous thresholds appear on the phys­
ical sheet for the square diagram before any higher­
order diagram. It is pertinent to ask if a similar 
property holds for leading curves. In this connec­
tion, and also as a matter of intrinsic interest, it 
is important to discover if there exist any diagrams 
whose leading curves do not yield any parts singular 
on the physical sheet. In I it was shown that there 
are indeed some diagrams which yield no singularities 
on the physical sheet, if some of the external and 
internal masses satisfy certain simple inequalities, 
which are satisfied in the equal-mass case. For this 
it is necessary to assume the absence of singular 
acnodes.6 ,s In the present paper we study the leading 
curves of a class of diagrams and show that a 
similar property holds for the leading curves of this 
class. There is one difference in that one of the 
inequalities, which requires the square of a certain 
internal mass to be greater than the sum of the 
squares of two other internal masses, is not satisfied 

B V. Kolkunov, L. Okum, and A. Rudik, Zh. Eksperim. i 
Teor. Fiz. 38, 877 (1960) [English trans!': Soviet Phys.­
JETP 11, 634 (1964)]; V. Kolkunov, ibid., 40, 678 (1961) 
[English trans!': ibid., 13,474 (1961)]. 

7 D. 1. Olive and J. C. Taylor, Nuovo Cimento 24, 814 
(1962). 

8 J. N. Islam, J. Math. Phys. 4, 872 (1963). 
• R. J. Eden, P. V. Landshoff, J. C. Polkinghorne, and 

J. C. Taylor, Phys. Rev. 122,307 (1961). 
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in the equal-mass case. Nevertheless it is remarkable 
that there is only one such inequality, and the 
number of masses involved in the inequalities is 
fixed, no matter how complicated a member of the 
class one considers. Also, it is not as if we consider 
a finite part of the diagrams, in fact, in the proof 
for the nth member of the class, the Feynman 
parameters associated with all the internal lines are 
involved. Further, we deal with completely general 
masses. It is interesting that something definite 
can be said about (a certain type of) diagrams of 
arbitrarily high order with quite general masses. 
In some special cases, such as the diagram of Fig. 2, 
the relevant inequalities are satisfied also in the 
equal-mass case, like the cases considered in 1. 

To explain the basic ideas, in Sec. 2 we consider 
two diagrams, the first of which is a member of 
the class of diagrams considered in Sec. 3. From 
the Landau equations we derive an equation in­
volving the Feynman parameters and some of the 
masses, from which it is at once evident that if 
the masses satisfy certain simple inequalities, the 
Landau equations possess no solutions with all the 
Feynman parameters positive. This implies, as was 
shown in I, that in the assumed absence of singular 
acnodes the corresponding leading curve is non­
singular on the physical sheet. In Sec. 3 we apply 
these ideas to a class of diagrams and in Sec. 4 
we consider some additional diagrams. In Sec. 5 we 
note that any diagram which has one of the diagrams 
under consideration embedded in it also satisfies a 
similar property. In Sec. 6 we discuss nonsingularity 
on the physical sheet. 

n. TWO EXAMPLES 

We first consider the diagram of Fig. 1. The 
momenta are as shown in the figure. The Feynman 
parameter and the mass associated with the mo­
menta q, q;, q~, q? are, respectively, a and m, aj 
and mi' a~ and m:, aV and m? We denote the 
external masses by ma , mb, m., and md, respectively. 
The labeling of the lines anticipates that of Sec. 3. 
The diagram of Fig. 1 has three independent loops, 
the loop equations for which are 

alql + a~q~ - a~'q~' - a~'q~' = 0, 

a2q2 + a~q~ - a~' q~' - a~' q~' = 0, (1) 

aq - aoqo + a2q2 - alql + a~'q~' - a~q~ = 0. 

We note that the diagram has vertices at which 
only three lines meet and that the arrows, which 
denote the direction of internal momenta, are drawn 
so that they are either coming into the vertex or 

FIG. 1. One of the Feynman diagrams under consideration. 

going away from it. This implies that the conserva­
tion law at the vertices is given by the vanishing 
of the sum of the three relevant momenta. From 
one of the vertices we get the conservation equation 

q~ + q~ + q~' = 0, (2) 

Multiplying it by ql, we get 

(3) 

We note that if k, and k; are any two internal 
momenta meeting at a vertex, then the scalar pro­
duct k,k; is a constant determined by the three 
relevant masses. For example, it is easily seen from 
the conservation equation (2) that 

Thus in Eq. (3) qlq~' is a constant. Our aim in this 
section is to determine qlq~ and qlq: in terms of the 
a's and the masses, and to substitute in Eq. (3) 
to get a certain relation involving only the a's and 
the masses. qlq: can be obtained at once from the 
first of Eq. (1) by multiplying it by q~. We get 

qlqf = (l/al)(a~'q~q~' + a~'q~q~' - a~m(). (5) 

The scalar products qfqf' and qfq~' depend only on 
the masses. We obtain qlq~ as follows. Apart from 
Eq. (2) there are three conservation equations in­
volving only the internal momenta coming from 
three other internal vertices. We multiply these by 
q~ to obtain 

qq~ + q2q~ + q~'q~ = 0, 

qlq~ + q2q~ + q"q~ = 0, 

q:q~ + q~q~ + q~'q~ = 0. 

(6) 

Further, we obtain three other equations by mul­
tiplying the Eqs. (1), respectively, by q~. Together 
with Eq. (6), this gives six equations for the six 
unknowns qq~, qlq~, q2q~, q~q~, q~'q~, and q~'q~. We 
solve for qlq~ and substitute in Eq. (3) for qlq~ and 
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~~ 
FIG. 2. A diagram obtained from that of Fig. 1 by contracting 

one of its lines. 

qlq{ to obtain, after some manipulation, the equation 

(7) 

where 

We note that the expressions A, B, and C are positive 
when the a's are. From Eq. (7) it is then clear 
that there can be no solution with all positive 
Feynman parameters if 

i.e., if 

m{,2 > m{2 + m~\ m~ < m~ + m~'2, 
m~2 < m{2 + m~'2, m~ < m~2 + m2. 

(9) 

We note that q{q~' and q{'q~ automatically satisfy 
(8) when q{q~ satisfies it. The first inequality in (9) 
is not satisfied in the equal-mass case, but all the 
others are. 

We now consider the diagram (Fig. 2) obtained 
from that of Fig. 1 by contracting the line associated 
with the momentum qo. Following similar steps as 
before, we derive the relation corresponding to Eq. 
(7). This relation is obtained by setting ao = 0 
in Eq. (7). We then combine the qiq~ and m{2 terms 
using the relation 

q{q{' (10) 

which is obtained by multiplying Eq. (2) by qi. 
We then get the relation 

(11) 

From Eq. (11) it is clear that there is no solution 
corresponding to positive Feynman parameters if 

i.e., if 

We note that all the inequalities (12) are satisfied 
trivially in the equal-mass case. Further, the two 
sets of inequalities (9) and (12) involve only two 
of the external masses and not all the internal 
masses, so that if these inequalities are satisfied, 
the Landau equations possess no solution with posi­
tive a's independent of all the other external and 
internal masses. Equations containing the other 
masses can be obtained by considering a relation 
such as Eq. (3) at some different vertex. 

m. A CLASS OF DIAGRAMS 

In this section we consider a class of diagrams, 
the nth member of which is shown in Fig. 3. It is 
obtained by taking a ladder diagram with (n + 1) 
straight rungs, twisting round one side of the ladder, 
and joining two of its ends to the two ends (the lines 
associated with the momenta qo and q~) of a one­
particle exchange diagram. In Fig. 3 the arrows are 
drawn assuming n to be even. To avoid considering 
a lot of (-It factors, we deal only with the cases 
where n is even. The other cases can be dealt with 

c 

FIG. 3. A member of a class of diagrams considered in Sec. 3. 
The arrows are drawn assuming n to be even. 
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analogously. We note that in Fig. 3, too, the arrows 
are drawn so that they are all going away from a 
vertex, or coming into one. It is possible to draw 
the arrows this way when n is even. In the case 
where n is odd, the arrows can be drawn so that only 
at the vertex b are they not all going into or coming 
out of the vertex. 

The momenta are as shown in Fig. 3. We denote 
the Feynman parameter and the mass associated 
with each momentum as in Sec. 2. Thus for example 
ai and mi are the Feynman parameter and the mass 
associated with the momentum qi. The diagram of 
Fig. 3 has n + 1 independent loops, the loop equa­
tions for which are (throughout the following we 
assume n to be even) 

alql + afqf - af'qf' - a~'q~' = 0, 

a2q2 + a~q~ - a~' q~' - a~' q~' = 0, 

(13) 

Exactly as in Sec. 2 we derive the Eqs. (2), (3), 

2 .::; r .::; n; (15) 

2 .::; r .::; n. 

We now multiply Eqs. (13) and (15) by q~ to get 
3n equations involving the 3n unknowns qoq~, qlq~, 
... , qnq~; q~q~, ... , q~q~; q~'q~, ... , q~~lq~. We can 
eliminate q~q~, ... q~q~; q~'q~, ... , q~~lq~ using 
Eqs. (15). We are then left with n + 1 equations 
in the n + 1 unknowns qoq~, ... , qnq~. These are 
the following: 

(16) 

and (5), The difference in this case is in the solution -alqlq~ + a2q2q~ - ... - an-lq"-lq~ + a .. q .. q~ 
of qlq~. To solve for qlq~, we proceed as follows. 
Apart from Eq. (2) there are the following 2n - 1 - aoqoq~ = -af' qf' q~ - aqq~ + a~m~2, 
conservation equations at vertices. 

where N r = ar + a~ + a~' + a~~l. We note that 
the scalar products appearing on the right-hand side 
of Eq. (16) are all constants determined by the 

2 .::; r .::; n; (14) masses. From Eq. (16) we get 

2 .::; r .::; n. (17) 

Solving for q~', ... , q~~l and q~, ... , q~, we get where 

al + a~' a~' 0············· ·0 

a~ + a~' N2 a~' 

-a~ a~' Na a~' 

An 
a~ 0 a~' N4 = - (18) 

:x~, 0 

:x~ 6······6 a~"· N .. a~~l 
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and 

B. = -

a~' 0.-..................•...... 0 · · · N2 ar · . . · . · a~' N3 a~: 
. · · . . . · . 

0 a;' N,4 . · 0 
0 · . .. 0 . · . 0 · . 0 . 

· 0 . . . · . · . 
0 . · 0 0 0 . · · 0 0 · · 0 0 . . 0 . 0 . 

0 . 0 0 0 · . . . . . 0 · . 0 · 0 · 0 0 · · . . 
0 

. . · · · . . . 
0 · . ~~, 

. · 0 
0 . 0 · 0 
. . . 

0 . · · . . · · . d" N,. 0············· -0 .. a~~l 

-afq{q~ + a{'q{'q~ 
a~qfq~ 

-a~qfq~ 

a~qfq~ 

a~qfq~ 

-a,,-l a" -aD -a~' q{' q~ - aqq~ + a~m~2 

We have a minus sign in front of the determinants 
for convenience. Substituting in Eq. (3) for qlq{ 
from Eq. (5), and for qlq~ from Eq. (17) and Eq. (19), 
we get 

A .. (alqlq{' + a{'q{q{' + a~'q{q~' - a{m{') 

- alC .. q{q~ + alD .. q{'q~ 

+ alaE .. qq~ - a~alE .. m~2 = o. (20) 

It is shown in the Appendix that the expressions 
Aft, C .. , D", and En are positive when the a's are. 
It then follows at once from Eq. (20) that there 
is no solution with positive a's if 

q{q~ > 0; qlqf', qfq{', qf'q~, q{q~', qq{ < o. 
These are exactly the same inequalities as (8) and 
(9). One gets the same inequalities in the case where 
n is odd. Thus we have the remarkable result that 
if the inequalities (9) are satisfied, the diagram in 
Fig. 3 for all n have leading curves which are non­
singular on the physical sheet, provided we assume 
the absence of singular acnodes (see Sec. 6). Equa­
tions similar to Eq. (20) containing the other masses 
can be obtained by considering an equation such 
as Eq. (3) at some different vertex. 

IV. SOME OTHER DIAGRAMS 

We now consider the diagram of Fig. 4. It is 
obtained by twisting the "square" diagram and the 
"double square" diagram and joining the two ends 
of one to the two ends of the other (the lines 5 
and 6). We label the lines as in Fig. 4 and denote 
the momentum, the Feynman parameter, and the 
mass of the jth line by qj, aj, and mj, respectively. 
The diagram of Fig. 4 has four independent loops, 
the loop equations for which can be taken as 

alql - a2q2 - aaqa + a,q, = 0, 

a7q7 - asqs - a11qll + a13q13 = 0, 

agq9 - aloqlO - allqll + a12q12 = 0, 

a3qa - a,q4 + asqs - aeqe + a7q7 

- aloqlO - allqll = O. 

(19) 

(21) 

From the (5, 9, 10) vertex we get a conservation 
equation which we multiply by q12 to obtain 

qsq12 + q9q12 + qlOq12 = O. (22) 

We note that q9q12 is a constant. We evaluate ql0qit 
and qSq12 by methods similar to those of the previous 
sections. That is, we multiply the first of Eq. (21) 
by qlO to obtain qlOq12, and multiply the Eqs. (21) 
and the rest of the conservation equations by qs to 
solve for qsq12. We then substitute in Eq. (22) for 
qSq12 and qlOq12 to obtain, after some reduction, the 
equation 

A'(-agqgqlo + a12q9q12 + allqloq11 + alOm~O) 

FIG. 4. Another of the Feynman diagrams under consideration. 
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where 

A.' = (alaa + alae + a,ae)[al1(a7 + as) 

+ aU(a7 + as + au + au)] 

+ as(al + (8)(a~U + a~12 + al1( 12) , 

B' = (alaa + ala6 + aaae)[aIO(a7 + as 

+ al1 + ala) + al1a18] + a~SaIO(al + aa), 

and 

C' = aSa9(al + aa)(a7 + al1) 

+ (alaa + alae + aaae)(a7 + as + au + au). 

C" = B" + aaa12(al1 + au) 

+ aa(a7 + as)(au + au), 

D = a~loau + aU(a~IO + a7al1 + a~12 + auau) 

+ alOaU(a7 + as + al1 + a1l), 

E = aa(aea7 + a6aS + a7aS)(aU + au) 

+ aaa6a u(aU + au) + asal1altIXU. 

Since the coefficient of q5q9 in Eq. (28) can be either 
positive or negative, nothing can be said about the 
solution for positive a's. However, if q,qg = 0, i.e., if 

(29) 

We note that the expressions A', B', and C' are then there is no solution for positive a if 
positive when the a's are. It then follows that there 
is no solution corresponding to positive a's if qlqa, qaq" qaq" qaq" q6qlO < 0, 

(24) i.e., if 

We note that at the vertices (10, 11, 13) and (9,12, d) 
the momenta are not all going in or all coming out. 
This implies that q9q12 is given by 

qgqu = -i(m~ - m: - m~2)' (25) 

with a change of sign from Eq. (4), qlOqU also has 
this change of sign. The inequalities (24) then imply 
the following [noting that q,qg automatically satisfies 
(24) when qSqlO satisfies it]: 

m! > m: + m~o, m: < m: + m~2' 
m~a < m~o + m~l' m: < m! + m:, (26) 

m! < m: + m:. 
All the inequalities in (26) except the first one are 
satisfied in the equal-mass case. 

We now consider an equation such as Eq. (22) 
at the vertex (2, 4, 5), namely, the equation 

m! < m~ + m:, m: < m: + m!, 
m: < m: + m:, m! < m: + m:, (30) 

m: < m: + m~o. 
We note that the last inequality in (30) follows from 
Eq. (29). 

In Eq. (28) if au is put equal to zero, then the 
coefficient of q,qg becomes an expression which is 
positive when the a's are, like the coefficients of 
the other scalar products in (28). This leads us to 
consider the diagram of Fig. 5, which is obtained 
from that of Fig. 4 by contracting the line 13. 
The equation corresponding to Eq. (28) for this 
diagram is obtained by setting ala equal to zero 
in Eq. (28). From the resulting equation it follows 
that there is no solution with positive a's for the 
diagram of Fig. 5 if 

(27) i.e., 

We evaluate qlq. and qlq, using similar methods as 
before and substitute in (27) to obtain the equation 

A'(alqlqa + a2q2q, + aaqaq4) 

+ ala.B" q2q. + alOt.2C" qaq, 

+ ala, Dq,qlO - alaaa9(a~la - aSal1)q,q9 

- a.Em! - alaaa,{a12(au + alB) 

+ (a7 + as)(au + au)}m: = 0, 

where A.' is given as above and 

B" = (aea7 + a6aS + a~s)(al1 + (12) 

(28) 

+ aeau(al1 + ala) + asauau, 

m: < m~ + m:, m: < m: + m!, 
m: < m: + m!, m! < m: + m:, (31) 

FIG. 5. A diagram obtained from that of Fig. 4 by contracting 
one of its lines. 
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4. 

Ca.) (1)) 

FIG. 6. An example of embedding. The leadin~ curves. of 
both diagrams (a) and (b) have no parts assoc~ated With 
positive Feynman parameters when the masses satISfy (32). 

All the ineqUalities in (31) are satisfied in the equal­
mass case. However, since the diagram of Fig. 5 
contains a triangle diagram with two of the vertices 
of the triangle containing three lines each (the 
triangle with lines 7, 8, and 11), it is possible to 
get another condition for no solution with positive 
a's quite trivially. We obtain this condition by 
multiplying the loop equation for the loop (7, 8, 11) 
by q7 to obtain 

a7m~ - agq7qg - all q7qn = O. 

There is thus no solution with positive a's if 

Q7qS, q1Qll < 0, 

i.e., if 

m! < m~ + m~, m~2 < m; + m~l' 
However, it is interesting that for this diagram there 
also exists the condition (31) involving the other 
masses. 

It is clear that analyses similar to those of this 
section can be carried out for the following class 
of diagrams. Consider a ladder diagram with m 
straight rungs and another with n straight rungs. 
Now twist one side of each of these around and 
join the two ends of one to the two ends of the 
other, exactly in the manner that the diagram of 
Fig. 4 is obtained by joining a square diagram and 
a double square diagram. The class of diagrams 
considered in Sec. 3 is a subclass of this class. 
It is our belief that conditions similar to those in 
Eq. (26) can be obtained for no solutions with 
positive a's, for this larger class. However, we have 
not attempted to prove this. 

V. EMBEDDING A DIAGRAM 

Consider any of the diagrams studied in this paper 
or in I, some of whose masses satisfy inequalities 
which imply that there is no solution for the leading 
curve with positive a's. If such a diagram is em­
bedded in a higher-order scattering or production 
diagram, then the leading curve of this higher-order 

diagram also possesses no solutions with positive 
a's. As was mentioned in I, this follows from the 
fact that the Feynman parameters of the original 
diagram satisfy an equation such as Eq. (7) in­
dependent of the rest of the diagram, so that if 
its masses satisfy the relevant inequalities, there 
will be no solution with the Feynman parameters 
of the subdiagram positive and hence none with 
all the Feynman parameters positive. An example 
of embedding is shown in Fig. 6. It can be easily 
shown, using the above methods, that the diagram 
of Fig. 6(a) (this diagram was considered in I) 
possesses no solution for the leading curve with 
positive a'S if 

m! < m~ + m;, m~ < m; + m;, 
m~ < m; + m!, m; < m~ + m;, (32) 

m; < m~ + mi. 
It then follows by the above argument that the 
leading curve of Fig. 6(b) also possesses no solutions 
with positive a's if (32) is satisfied. We note that 
the vertex d of Fig. 6(a) can be connected to any 
number of other lines in the higher-order diagram. 

VI. NONSINGULARITY ON THE PHYSICAL SHEET 

In I we considered in detail to what extent the 
leading Landau curve possessing no parts corre­
sponding to positive Feynman parameters implies 
nonsingularity of those parts on the physical sheet. 
It was shown that for scattering diagrams, i.e., for 
diagrams involving four external lines, to get non­
singularity on the physical sheet it is sufficient to 
assume the absence of singular acnodes. II

•
8 We be­

lieve that for production diagrams, such as that of 
Fig. 6(b), the condition for no solution with positive 
a's also in some sense implies nonsingularity on some 
suitably defined physical sheet; but this is not clear. 
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APPENDIX 

In this Appendix we prove that the expressions 
An, en, D", and En of Sec. 3 are positive when the 
a's are. 

Consider the determinant An. Expanding in terms 
of the last row, we have, after a slight simplification, 

" 
An = L arA:-la:~l ..• a!~1 + aoA~, (AI) 

r-l 
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where 

A~ = 1, A~ = al + a~', 
A'- la1 + a~' a~'1 ' 2 -

a~ + a~' N2 

and 

al + a~' a~' 0·············· ·0 

a~ + a~' N2 a~' 

-a~ a~' Na a~' 

A: a~ 0 a~' N4 

·0 

We now prove that determinants A: are positive 
when the a's are, for all r. To prove this we first 
expand A; in terms of the last row to get the follow­
ing recurrence relation 

We now use a process of induction. For this we 
assume that the expression A;_l is positive when 
the a's are, and that this expression has in it a 
term of the form a;' A;_2 (which is also positive 
when the a's are). We further assume that the term 
a;' A:_2 has in it a product of the form a~' ar ... a;'. 
We now show that these assumptions about A;-l 
imply similar properties of A;, i.e., that A: is positive 
when the a's are, and that A; has in it a term of 
the form a;~lA;_lJ which in turn has in it a product 
of the form a~'a~' '" a:~I' It is clear that the 
assumptions about A;-l imply that it can be written 
as 

I' = r 

0., : .. 
" 

" 

where KI and K2 are positive when the a's are. 
Remembering the definition of N r , we see that (A2) 
can be written as 

= (ar + a:~I)A;_l + a;K2 + a;'Kl . (A3) 

Thus A; is positive when the a's are. Further, it is 
clear from the last form that A; has in it a term 
of the form a:~lAr_1 which in turn has in it a product 
of the form a~' a~' ... a:~1 (since A:- 1 has the pro­
duct ar a~' ... a;' through the term a;' A;-2)' It is 
easy to verify that for the first few values of r, A: 
does indeed possess the properties assumed for the 
purpose of the induction. This completes the induc­
tion and proves that A: is positive when the a's are, 
for all values of r. It is then clear from (AI) that 
An is also positive when the a's are. 

We now prove that the expressions Cn, Dn, and 
En are positive when the a's are. It can be seen 
easily that 

(A4) 

To get Cn and Dn, we expand the determinant Bn 
in terms of its last column. We then get 

.. +1 

B .. = ~ I r , (A5) 
r-I 

where 

2 :::; r :::; n - 1, 

I .. = -aoa~a~'a~' ... a~'q:q~, 

1"+1 = (aqq~ + a~'q~'q~ - a~m~2)a~'a~' .,. ~~1' 

and 

0·····················0 " . 

, , , 

, 
, 

, 
, , 

• • II 

, , , 

" • an : ..... ". . ... 
0·········· ............ ····:0 "a~' 'Nn 

"0 
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Expanding in terms of the last row, we see after 
some simplification, that I: can be written as follows: 

(A6) 

where 

1, 

and 

N r a~~l 0······· ·0 

a:~l N,+1 a~~2 

A, .• 
0 a;~2 N,+2 

o 

6······ :0 
We now show that A, .• is positive when the a's 
are. We first expand A,.. in terms of the last row 
or column to get the following recurrence relation: 

(A7) 

As before we apply a process of induction. For this 
we assume that A, .• -l is positive when the a's are 
and has in it an expression of the form a~' A, .• -2, 
which is also positive when the a's are. Thus we 
can write 

where K is positive when the a's are. Substituting 
in Eq. (A7) for A, .• -l and remembering the form 
of N., we have 

+ a~'(a~' A, .• -2 + K) - a~,2 Ar •• - I 

= (a. + a~ + a~~1)A,.o-l + a~'K. (AS) 

Thus Ar •• is also positive when the a's are and 
has in it an expression of the form a~~1A"'-1' It is 
easy to verify that the properties assumed for A •.• - 1 

holds for the first few values of 8 > r + 1. This 
completes our induction and proves that Ar •• is 
positive when the a's are for all r, 8. It then follows 
from Eq. (A6) that I: is negative when the a's are 
positive, for all r, 1 5 r 5 n - 1. Comparing the 
coefficients of qrq~, q:'q~, qq~, and rnfJ2 in Bn we see that 

,,-1 

C" = -a:I: - L: a:a~'a;' '" a:'I: 
.-2 

Since I: are negative when the a's are positive, for 
all r, 1 5 r 5 n - 1, it is clear that the expressions 
Cn , D,., and E" are positive when the a's are. This 
is what we set out to prove. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 7. N"UMBER 4 APRIL 1966 

Effective Dielectric CO':1stant, Permeabil!ty, and Conductivity of a Random Medium 
and the Velocity and Attenuabon Coefficient of Coherent Waves* 

JOSEPH B. KELLER AND FRANK C. IU.RAL, JR. 

Courant Institute of Mathematical Sci~nces, New York University, New York, New York 
(Received 23 July 1965) 

Random m~dia are co~idered in which the dielectric constant, permeability, and conductivity are 
random funct~ons of posItIon. For.t~em, t~e average electric field, electric current, dielectric displace­
ment~ magnetIC fi~ld, and magnetIc mductlOn a~e de~rmined, assuming that these average quantities 
are tI~e-harmomc plane waves. The proportIOnality factors between appropriate pairs of these 
quantities are foun~ and defined to b.e the effective dielectric constant, permeability, and conductivity 
of the random me~lUm. ~~ese effective para~eters depend upon the frequency and propagation con­
s~ant o~ the field m additIOn to the two-pomt auto- and cross-correlation functions of the random 
diel~~trlc co~tant,. permeab!lity, and conductivity. For transverse fields thay are all scalars. In 
addi~lon the. dispersIOn equatIOn for the propagation constant of the average or coherent field, derived 
previously, IS a~alyzed and solved for high- and low-frequency fields. From the propagation constant, 
the phase velOCity and attenuation coefficient can be found. 

1. INTRODUCTION 

IN the experimental investigation of electromag­
netic fields one always measures some sort of 

average field, such as the average over a small volume 
or over a short time interval, or both. For a slowly 
varying field in a uniform medium, this average 
field is practically equal to the instantaneous field 
at a point. However, in a very heterogeneous medium 
such as a turbulent gas or liquid, or a mixture of 
sands or powders, the average field may differ con­
siderably from the instantaneous field at a point. 
Consequently the ratio of the average current to 
the average electric field, which ratio we may call 
the effective conductivity O'off, may differ appreci­
ably from the actual conductivity 0' at a given point. 
It may also differ from the average conductivity 
(0'). Therefore we consider the problem of calculating 
O'.ff as well as the effective dielectric constant E~ff 
and the effective magnetic permeability p..u. This 
problem is similar to that of determining the macro­
scopic parameters of matter from molecular prop­
erties. 

To formulate the problem we introduce an en­
semble of media, each with definite values of 0' (x) , 
E/(X), and p.(x), and a probability distribution over 
the ensemble. This ensemble with the associated 
probability distribution is what we call a random 
medium. By the average (I (x, t» of a function 
I(x, t) we shall mean the ensemble average, i.e., 
the average of I(x, t) with respect to the probability 
distribution over the ensemble for fixed x, t. Then 
we define the effective parameters of the random 
medium by the equations 

* The research reported in this paper was sponsored by 
the U. S. Air Force Cambridge Research Laboratories Office 
of Aerospace Research, under Contract No. AF 19(628)3868. 

(D) = E! ff(E) , (B) = P.eff(H), (J) = O'eff(E). (1.1) 

Here D is the dielectric displacement, B the magnetic 
induction, J the electric current, E the electric field 
and H the magnetic field. 

To compute the averages in (1.1) we must first 
determine the appropriate field in each medium of 
the ensemble. For this purpose we assume that E/(X), 
p.(x) , and O'(X) are nearly constant so that we can 
determine the field by a perturbation method. To 
find the average field we assume that l, p., and 0' 
are statistically homogeneous and isotropic. We also 
assume the field to be time-harmonic with angular 
frequency w. Then we find that E!u(W), O'eff(W), and 
P.off(W), which depend upon w, are operators rather 
than scalar or tensor multipliers. When applied to 
a plane wave of wave-vector k, these operators 
reduce to tensors which depend upon wand k. 
Therefore we denote them by E!u(W, k), O'off(W, k), 
and P.off(W, k). When applied to a transversely po­
larized plane wave they become scalars depending 
upon wand k = Ikl, which we write as E!u(W, k) 
O'off(W, k), and p.ou(w, k). 

We obtain explicit expressions for these scalars 
in terms of the two-point auto- and cross-correlation 
functions of lex), p.(x), and O'(X). Although these 
expressions are somewhat complicated, we obtain 
expansions of them for both low and high frequencies. 
We also obtain similar expansions for k, the complex 
wavenumber or propagation constant of the coherent 
or average field for both low and high frequencies. 
They are obtained from the dispersion equation for 
k derived in our previous paper,l which was solved 
there only in a special case. Our method of analysis 

1 F. C. Karal and J. B. Keller, J. Math. Phys. 5, 537 (1964). 
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is similar to that of Ref. 1, from which we shall 
also use some results. 

Many authors have considered the problem of 
calculating the effective parameters of a random 
medium, but they have apparently treated only the 
static case w = O. In addition, most treatments 
concern a mixture or suspension of particles of one 
homogeneous substance in another homogeneous sub­
stance. In this case it is possible to employ the 
methods usually used to derive the dielectric con­
stant from molecular properties, since matter may 
be thought of as a suspension of particles in vacuum. 
Thus Brown2 determined f~ff for a suspension at 
w = 0 by using the method of Yvon 3 and Kirkwood, 4 

which had been devised for the calculation of static 
dielectric constants. This method is very similar to 
ours, which we have also applied to the dielectric 
constant problem for w ~ 0. 5 References to earlier 
work are given in Ref. 2. 

For a continuous medium rather than a piecewise 
uniform one, Landau and Lifschitz6 obtained a result 
for f~ff when w = 0 and 0' = O. Our result agrees 
with theirs when we specialize it to this case. 
Molyneux7 has also treated this case and has ob­
tained one term in f~ff beyond the result of Landau 
and Lifschitz. It is of third order in the magnitude 
of the random part of f/(X) and involves the three­
point correlation function of lex). We have cal­
culated only up to second-order terms, so we do 
not obtain this term. Hashin and Shtrikman8 and 
Beran9 have attempted to obtain bounds on f~ff 
for w = 0 by using variational principles. 

2. FORMULATION 

Let us consider a medium in which l, 1-1, and (J 

differ from the constants f~, 1-10, and 0'0 by small 
random amounts. To make this hypothesis explicit 
we introduce a small parameter Tf and assume that 

2 W. F. Brown, J. Chern. Phys. 23, 1514 (1955). 

(2.1) 

(2.2) 

3 J. Yvon, Compo Rend. Acad. Sci. (Paris) 202,35 (1936). 
4 J. Kirkwood, J. Chern. Phys. 4, 592 (1936). 
5 D. J. Vezzetti and J. B. Keller, "Refractive Index, Atten­

uation, Dielectric Constant and Permeability for Waves in a 
Polarizable Medium" (to be published). 

6 L. Landau and E. Lifschitz, Electrodynamics oj Con­
tinuous Media (Pergamon Press, London, 1960), p. 46. 

7 J. Molyneux, "Application of Perturbation Techniques 
to Problems in Statistical Continuum Theory" (Ph.D. dis­
sertation, University of Pennsylvania, 1964). 

8 Z. Hashin and S. Shtrikm8ll, J. Appl. Phys. 33, 3125 
(1962). 

9 M. Beran, "Use of the Variational Approach to Deter­
mine Bounds for the Effective Permittivity in Random 
Media" (unpublished). 

(2.3) 

Since we shall consider time-harmonic fields of 
angular frequency w, it will be convenient to introd­
duce the complex dielectric constant f = t' + iw -10' 

which may be written as 

E == Eo[l + 7]f1(X)] (2.4) 

This equation defines fO and f1(X), 
From Maxwell's equations, by elimination, we can 

obtain an equation for E. When the field is time­
harmonic and the above expressions (2.1)-(2.4) are 
used in that equation, it can be written as [Ref. 1, 
Eq. (87)J 

[L - 1)L1 - Tf2L2 + 0(7]3)]E = O. (2.5) 

Here the operators L, L 1, and L2 are defined by 

L = V x V x - k~, (2.6) 

L1 = k~(1-11 + f1) + Vl-l1 x V x, (2.7) 

L2 = k~1-I1E1 - 1-11 V 1-11 X V x . (2.8) 

The constant ko is defined by k~ = W21-10EO' 
To solve (5) for E we begin with Eo(x), a non­

random solution of (2.5) with Tf = O. Then it follows 
from (2.5) that E is given by [Ref. 1, Eq. (5)J 

E = Eo + TfL-1L 1Eo 

+ Tf2[L-1L1L-1L1 + L-1L2]Eo + 0(Tf3). (2.9) 

To obtain D we multiply (2.9) by l which is given 
by (2.1). Then we take the expectation value of 
each side of the resulting equation to obtain 

(D) = f~Eo + 7]EHL-1(L1) + (EOJEo 

+ Tf2E~[L-1(L1L-1L1) + L-1(L2) + (e{L-1L 1)]Eo 

+ 0(Tf3). (2.10) 

In (2.10), (D) is expressed in terms of Eo, whereas 
in (1.1) (D) is given in terms of (E). Therefore we 
shall try to eliminate Eo from (2.10). 

To this end we first average (2.9) to obtain (E) 
in terms of Eo. Then we solve the resulting equation 
for Eo by iteration or successive substitution. In 
this way we obtain [Ref. 1, Eq. (8)] 

Eo = (E) - TfL -1(L1)(E) 

- Tf2L -1[(L1L -ILl) - (L1)L -\L1) + (L2)](E) 

+ 0(Tf3). (2.11) 

Now we use (2.11) to eliminate Eo from (2.10) and 
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obtain the following equation for (D) in terms 
of (E): 

(D) = f~(E) + 7Jf~<fO<E) 
+ 7J2f~[(f{L-1L1) - (fDL-1(L1)](E) + 0(7J3). (2.12) 

Finally from (2.12) and the definition of f~ff(W) in 
(1.1) we obtain 

f~ff(W) = f~ + 1]f~(fD 
+ 1]2E~[(E{L-1L1) - (E{)C1(L1)] + 0(7J3). (2.13) 

This is our first result for e~ff' It simplifies some­
what when f{, J.l.1, and 0"1 satisfy 

(2.14) 

In this case (2.7) shows that (L 1 ) = 0 and (2.13) 
becomes 

f~fI(W) = f~ + 7J2E~(E{L-1Ll) + 0(7J3). (2.15) 

Practically the same analysis leads to an expres­
sion for O"eff(W), We first multiply (2.9) by 0", given 
by (2.3), to obtain the current density J. Then we 
average the resulting equation to obtain an expres­
sion for (J). It is identical with the right side of 
(2.10) in which E~ and E{ are replaced by 0"0 and 0"1' 
Finally we eliminate Eo by means of (2.11) and find 
that 

O"eff(W) = 0"0 + 7J0"0(0"1) 

+ 7J20"0[(0"1L-1L1) - (0"1)L-1(L1)] + 0(7J3). (2.16) 

When (2.14) is satisfied, (2.16) becomes 

O"efl(W) = 0"0 + 7J20"0(0"1L-1L1) + 0(7J3). (2.17) 

To determine J.l.eff(W) we may repeat the above 
analysis using Hand Ho instead of E and Eo. Al­
ternatively, we can utilize the fact that Maxwell's 
equations are invariant under the interchange of E 
with Hand E with - J.I.. To apply this latter procedure 
to the result (2.13) we must also replace each E' 
by the corresponding J.I.. In either way we obtain 
the following result for J.l.efl: 

J.l.eff(W) = J.l.o + 7JJ.l.0(J.l.1) 

+ 1]2J.1.0[(J.l.1L-1L1) - (J.l.1)L-1(L1)] + 0(7J3). (2.18) 

In (2.18) L1 is the operator obtained from L1 by 
interchanging E with J.I., 

L1 = k~(El + J.l.l) + Vf1 xV x. (2.19) 

When (2.14) applies, (2.18) becomes 

J.l.eff(W) = J.l.o + 7J2J.1.0(J.l.1L-1L1) + 0(1]3). (2.20) 

In the next section we shall evaluate the average 

in the expressions (2.15), (2.17), and (2.20) for E~fI(W), 
O"eff(W), and J.l.eff(W), We choose these simplified ex­
pressions to evaluate because in applying the results 
we can pick E~, 0"0, and J.l.o to be the average values 
of E/, J.I., and 0", and then (2.14) will hold. It is to be 
noted that our expressions for the effective param­
eters are operators. We shall see that they simplify 
to scalars when they are applied to a transversely 
polarized plane wave, provided the medium is sta­
tistically homogeneous and isotropic. 

3. EVALUATION OF £'eff, deff' AND !leff 

To evaluate the average operator (f{L-1L1) in 
(2.15) we first apply this operator to the plane wave 
A exp (~k·x). Upon writing L- 1 as an integral op­
erator we obtain 

(E{L-1L1)A e,k'x 

= <E{(X) f G(x, x/)L1(X/)A e,k.x' ax). (3.1) 

In (3.1) the Green's tensor G(x, x') is given by 

G(x, x') = G1(r)I + G2(r)rr. (3.2) 

Here r = x - x', r = )r), f = r-1r, I is the unit 
dyadic and G1 and G2 are defined by 

G1(r) = (-1 + ikor + k~r2) e'k,r(411"k~r3)-1 
- o(r)/1211"k~r2, (3.3) 

G2(r) = (3 - 3ikor - k~r2) e'k,r /411"k~r3. (3.4) 

We now insert (3.2) and the expression (2.7) for 
Ll into (3.1). Then the integrand in (3.1) becomes, 
after multiplication by E:(X), 

E{(X)G(x, x')L1(x')A e,k'x' 

= [k~{E{(X)J.l.1(X') + E{(X)E1(X') JG1(r)A 

- i(V'(E{(X)J.l.1(X'» ·k)G1(r)A 

+ iG1(r)(V'(E{(X)J.l.l(X'» ·A)k 

+ k~{E{(X)J.l.l(X') + E{(X)El(X') JG2(r)(A·f)f 

- i(V'(E{(X)J.l.l(X'» ·k)(A.f)fG2(r) 

+ i(V'(E:(X)J.l.l(X'» ·A)(k·f)fG2(r)] e,k'x' . (3.5) 

Next we take the expectation of each side of (3.5). 
Before writing the result we shall introduce the two­
point auto- and cross-correlation functions R.,.(r), 
R.,~(r) and R~~(r) defined by 

R.,.(r) = (E{(X)El(X'», 

R.,~(r) = (Ei(x)J.l.l(X/», 
Rpir) = (J.l.1(X)J.l.l(X'». 

(3.6) 
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We have written the correlation functions as func­
tions of r because we assume the medium to be 
statistically homogeneous and isotropic. Now the 
expectation of (5) becomes, after noting that V = 

ta/ar, V' = -tiJ/ar, 

{E~(X)G(x, x')L1(r»A eik
'
x

' 

= [k:G1{R •• ,. + R.·.IA + iG1R:,,.(t·k)A 

- iGIR~'I'(t.A)k + k~GlI{R.,,. + R •.• }(t.A)tl eik
''''. 

(3.7) 

Upon integrating (3.7) with respect to x' and using 
(3.1) we obtain 

{EiL-1L1)A eik
'" = k~ J GtfR •• ,. + R.,.} eik

'
x

' dx' 

+ iA J G1R:,it·k) e,k'''' dx' 

- ~'k J GIR~,,.(t·A) elk
'
x

' dx' 

+ k: J GldR •• ,. + R ••• }(t·A)t e'k'''' dX/. (3.8) 

The integrals in (3.8) can be simplified by setting 
x' = :x: - r and writing dr = dr dB where dB is 
the area element on a sphere of radius r centered 
at x. It is also convenient to introduce k = Ikl 
and it = k-1k. Then all the integrations over dB 
can be performed explicitly with the aid of the 
formulas in Appendix I of Ref. 1. As a result (3.8) 
can be written in the form 

{E{L-1L1)A e,k'" = [M,.p. + N.'p.kklA eik
'
x

• (3.9) 

The scalars M e• lI • and N •. p • in (3.9) are defined 
by setting a = e', {:J = iJ., and 'Y = E in (3.10) and 
(3.11), 

21'" { 1 21} M aP'Y = ko 0 {Ra'Y + Rafl } Gd - Gil r2k ak dr 

k21"R1 G 1 ~d 
- 0 afl 1 rk ak r • 

k21"'RI G 1 af d N ,.fl'Y = 0 afJ 1 rk ak r 

1'" 1 (allf 1 af) 
- k~ 0 {Ra'Y + Rafl1G2 ? ak2 - k ak dr. 

The function f(k, r) in (3.10) and (3.11) is 

f(k, r) = (41rr/k) sin kr. 

(3.10) 

(3.11) 

(3.12) 

We now use (3.9) in (2.15) to obtain the following 
result for E!U(W, k): 

E!U(W, k) = EH1 + 'l7
2 {M.'pf + N •• ,..kk}] + 0('17

3
). 

(3.13) 

Completely similar evaluations of the expectations 
of the operators in (2.17) and (2.20) lead to the 
following quite similar results for ITeu(w, k) and 
iJ.eff(W, k): 

I •• 8) 
ITeff(W, k) = ITo[l + '17 {M .. ,.. + N"".kk}] + 0(11 , 

(3.14) 

iJ..u(W, k) = /J.o[1 + 'l7
2
{M"f" + N".,.kk}] + 0('17

3
). 

(3.15) 

Equations (3.13), (3.14), and (3.15) are our basic 
results for the effective parameters of a random 
medium. 

We see from (3.13)-(3.15) that the effective 
parameters are tensors. They multiply transverse 
field components (i.e., those perpendicular to it) 
by one factor (e.g., E6[1 + 112M"II.D and longitu­
dinal field components by another factor (e.g., 
Eo[l + 'l7

2
{M •• ". + N •• II .}]). Thus the NafJ'Y terms 

may be omitted when applying the effective pa­
rameters to transverse waves. Since plane electro­
magnetic waves are strictly transverse in homoge­
neous media, it is to be expected that they will be 
practically transverse in a slightly inhomogeneous 
random medium. Therefore in such media, the N afJy 

terms may be unimportant and the effective pa­
rameters may practically be taken to be scalars. 
We investigate longitudinal waves further in Sec. 6. 

To obtain numerical results for the effective pa­
rameters we must evaluate the Fourier-like integrals 
of the correlation functions in the expressions (3.10) 
and (3.11) which define M afJ-y and N aP'Y' This evalua­
tion is described in the next section. 

4. EVALUATION OF"Ma~L AND Na(J'Y FOR HIGH 
AND LOW FREQUENCIES 

The integrals in (3.10) and (3.11) for M afj'Y and 
N "P'Y depend upon wand k or equivalently upon 
ko = W(EotLO), and k. In addition they involve 
various correlation functions which depend upon 
the particular random medium. Therefore we cannot 
evaluate these integrals until the correlation func­
tions are specified. However we can evaluate them 
in general when the frequency W is very high or 
very low. When W is small then ko is small and we 
assume that k is also small and of the same order 
as ko. Similarly when W is large then ko is large 
and we assume that k is also large and of the same 
order as ko. In dimensionless terms these hypotheses 
mean that koa and ka are both small or both large, 
where a is a typical correlation length of the medium. 

The asymptotic evaluation of the integrals in 
(3.10) and (3.11) for ko and k large involves repeated 
integrations by parts, together with the explicit 
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evaluation of certain integrals and some other special procedures. The calculation is very lengthy, 
but the method is indicated in Appendix I. The first few terms in the final results are 

[ 
k2 + 3k~ ] 

Na~., = -[R"oy(O) + R"iO)] 4W _ k~) 

R~oy(O) [ ik~(3k' - 2k2k~ + 3k~) + 3ko (1 + k~) t-1 koJ _ R~'7(0) [k~k\3k2 - 7k~J 
- 2ko k2W - k~)2 k e co ik k~ (e - k~)a 

_ R~~(O) [iW + k~)W - 3k~) + ko (4 + 3 k~ _ k
2
) t-1 koJ 

2ko ew - k~)2 k e k~ co ik 

(4.1) 

_ R~~(O) [-k2(10k~ + k' - 7k~k2)J + o(-.!) (4.2) 
k~ (k2 

- k~)a k3 
• 

The evaluation of the integrals in (3.10) and (3.11) for ko and k small is quite straightforward. It merely 
involves the expansion of the integrand in powers of ko and k and term-by-term integration of the 
resulting series. The result of the calculation is 

1 1 (k2) k
2 

( k
2
) r M a~oy = -3 R"oy(O) - 3 1 - k~ R,,~(O) + 15 1 + 10 k~ 10 rRaoy(r) dr 

~[ ~ ~J r 3 + 15 -4 - k~ + 10 k2 10 rR,,~(r) dr + O(k), (4.3) 

N"h 

The expansions (4.1)-(4.4) can be used in (3.13)­
(3.15) to obtain results for the effective parameters 
at high and low frequencies. In using them it is 
necessary to consider correlation functions involving 
E. They can be expressed in terms of correlation 
functions involving e' and IT by recalling the defini­
tion of El in (2.4). By using this definition in the 
definition (3.6) of the correlation functions we find 

R.a = (1 + ilTo/WE6)-1{R"a + (ilTo/WE6)R"a}. (4.5) 

For a = E this yields 

R .. = (1 + ilTo/WE6)-2{R •.•• + (2iIT0/WEri)R •• " 

+ (ilTo/WEri)2R",,}. (4.6) 

(4.4) 

5. RESULTS FOR £'eff, deff, AND "eff 

Our results for the effective parameters are given 
by (3.13)-(3.15) in which M a~oy and N ah are given 
by the integrals (3.11) and (3.12). In Ref. 1, we 
have shown that plane waves in a random electro­
magnetic medium are either transverse or longitu­
dinal, and we now consider only transverse waves. 
Then the N a/loy terms in (3.13)-(3.15) drop out and 
we have for transverse waves 

lTefl(W, k)/lTo = 1 + 112M"". + 0(113
), 

lLeff(W, k)/lLo = 1 + 112M"." + 0(113
). 

(5.2) 

(5.3) 

We shall now use the results of this section to discuss The quantity M a~oy is given explicitly by an integral 
the effective parameters. in (3.11) as a function of ko and k. To use that 
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expression it is necessary to determine k as a function 
of ko. The dispersion equation for k for both trans­
verse and longitudinal waves was derived in Ref. 1 
and is solved in the next section for high and low 
frequencies for any correlation functions. For inter­
mediate frequencies the dispersion equation can be 
solved numerically for specific correlation functions. 
The solution for k can then be used in M alJ-r to 
yield the effective parameters as functions of fre­
quency. 

For low frequencies, M a/l'Y is given by (4.3) in 
terms of ko and k, and for low-frequency transverse 
waves, k is given by (6.12). Upon using (6.12) in 
(4.3) we obtain M a/l'Y as a function of ko. The leading 
terms in M a/l'Y' which may be obtained by setting 
k = ko + 0(1]2) in (4.3), are 

k
2 1"" M afJ'Y = -lRa'Y(O) + 15 0 (llRa'Y + 5Rap)r dr 

+ O(k~) + 0(7]2). (5.4) 

By using (5.4) in (5.1)-(5.3) we obtain for low­
frequency transverse waves 

2 

Ueff(W)/Uo = 1 - ~ R .. (O) 

+ 7];~~ 1"" (llR~. + 5R.#)r dr + O(k~) + O(,n, (5.6) 

Correlation functions Ra. are given by (4.5) in terms 
of Ra., and Ra~. When Uo = 0 and ko = 0, (5.5) 
reduces to the result given by Landau and Lifschitz.6 

For high frequencies, M aP# is given by (4.1) in 
terms of ko and k, and for high-frequency transverse 
waves, k is given by (6.11). In the derivation of 
(4.1) it has been assumed that k - ko is large. 
From (6.11) we see that this is the case when (ko1])! 
is large. Upon using (6.11) in (4.1) we obtain M aP'Y 
as a function of ko for ko large. The leading terms 
in M afl'Y are, when R~'Y(O) = R~p(O) = 0, 

M aP'Y = [Ra'Y(O) + Rap(0)][(ko/27])!b - 1
5
6] 

- (2ko1]3)-!b3[R~'Y(0) + R~P(O)] + .... (5.8) 

Here b is given by 

b = {-R~~(O) - 2R~~(0) - R:~(O) ri. (5.9) 

By using (8) in (5.1)-(5.3) we obtain the effective 
parameters for high-frequency transverse waves, 
when R~'Y(O) = R~p(O) = O. They are 

E~ff(W)/E~ = 1 + 7]2[R.,.(0) +R.,iO)][(ko/21])ib - -h] 
- (1]/2ko)!b3[R~~.(0) + R:~iO)] + ... , (5.10) 

Ueff(W)/ Uo = 1 + 7]2[R~.(0) + R~iO)][(ko/21])tb - /6] 

- (1]/2ko)!b3[R~:(0) + R~~(O)] + ... , (5.11) 

JJ.eff(W)/ JJ.o = 1 + 7]2[R#iO) + R#.(O)] [(ko/21])ib - l6] 

- (1]/2ko)!b3[R~;(0) + R~:(O)] + ... . (5.12) 

6. SOLUTION OF THE DISPERSION EQUATION 
FOR THE PROPAGATION CONSTANT AT HIGH 

AND LOW FREQUENCIES 

In our earlier paper l we obtained the dispersion 
equation for the propagation constant k of a plane 
wave traveling in a random medium. For a trans­
verse wave, the dispersion equation is [Ref. 1, 
Eq. (112)] 

(6.1) 

For a longitudinal wave, it is instead [Ref. 1, 
Eq. (111)] 

k~ + 1]2[k~R#.(0) + D(k) + M(k)] = O. (6.2) 

The expressions for D and M in (6.1) and (6.2) 
can be written as 

- 41"" [1 af ] D(k) - ko 0 [R## + 2R#. + R .. J Gd - G2 r2k ak dr 

- k~e 1"" [R~# + R~.JGl r~ :~ dr 

- k~ 1"" [R~# + R~.{f + )k :kJ[ Gr - ~ G2] dr 

+ k2 1"" R" 1- af [GI - 1: G ] d o ## rk ak 1 r 2 r, (6.3) 

M(k) = -k~ 1"" [R## + 2R#. + R .. J 

1 [a2f 1 af ] X"1 ak2 - k ak G2 dr 

+ k~k2 1"" [R~# + R~.JGl r~ :~ dr 

- k~ 1"" [R~# +R~.J ~ [:~2 - ~ :kJ[ G~ - ~ G2] dr 

k2 1"" R" 1 af [GI 1 G ] d 
- 0 ## rk ak 1 - -;: 2 r. (6.4) 
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In writing (6.3) and (6.4), we have substituted 
(99)-(101) into (103) and (104) of Ref. 1. 

The integrals in (6.3) and (6.4) are of the same 
type as those we encountered in Sec. 4 for l!.1 aP-r 

and N a{J'Y' To evaluate them it is convenient to 
write (6.3) and (6.4) in the forms 

D(k) = k~[I~!) + 2I~!) + I~!)] 

M(k) = -k~[I~!) + 2I~!) + 1;;)] + k~[I~!) + I~!)] 
+ [I~!) + I~:)] - I~!). (6.6) 

The integrals IUl are defined in Appendix I and 
evaluated there asymptotically for k and ko large, 
under the assumption that R' (0) = O. 

When the first few terms in the asymptotic ex­
pansions of the IU) for k and ko large are used in 
(6.5) and (6.6), asymptotic expressions for D and 
M are obtained. By using the expression for D in 
(6.1), the dispersion equation for transverse waves 
becomes for k and ko large 

k2/k~ = 1 + '1)2 

[ 
5k; - k2 

X R~.(O) + {R~~(O) + 2R~.(0) + R .. (O») 4(k2 _ k~) 

+ {R~~(O) + 2R;~(0) + R~~(O») k4 (k~k':~~ 2k~ 

_ {R"(O) + R"(O)} 5k
4 

- 13k2k~ + 8k~ 
~~ ~. 3k~(k2 _ k~)2 

+ R~~(O) ;~~~~~ == ~;n + O(k-
4
). (6.7) 

Similarly by using the expressions for D and M in 
(6.2), the dispersion equation for longitudinal waves 
becomes for k and ko large, 

1 = 7J2H{R~iO) +R .. (O)} + (2/3k~){R~~(0) +R~~(O») 
+ [2/W - k~)] {R~:(O) + R~:(O»)] + O(k-

4
). (6.8) 

Before solving these equations, we shall derive 
the corresponding equations for k and ko small. To 
this end we must evaluate the integrals I(f) for k 
and ko small. This can be done in a straightforward 
manner by first expanding the integrands in powers 
of k and ko. Then term-by-term integration yields 
the expansion of the integrals. When these expan­
sions are used in (6.5) and (6.6) they lead to expan­
sions of D and M in powers of k and ko. Upon in­
serting the expansion for D into (6.1) we obtain 
the following dispersion equation for transverse 
waves for k and ko small: 

k2/k~ = 1 + '1)2 

X [ R)<.(O) - ~ {3R",,(0) + 4RI"(0) + R .. (O) } 

k2 2 
+ 3k~ {2R"iO) R".(O) I - 3k~ {R~;(O) + R~:(O) I 

_ ! e R"(O) + k 2

( -4k
2 + 15k~) 1'" R () d 

3 k~ "" 15k~ 0 r 1'1' r r 

+ (_k4 + k2k~ + lOk~) 1'" R () d 
15k~ 0 r I" r r 

+ (k
2 

~510k~) 10'" rR .. (r) drJ + O(k4). (6.9) 

Next, by using the expansions of D and M in (6.2), 
we obtain the dispersion equation for longitudinal 
waves when k and ko are small, in the form 

k~ = - 'l)2k~[ R".(O) - 113R"iO) + 4Rp .(0) + R .. (O) } 

- (2/3k~) {R~~(O) + R~:(O») - -hW - 5k~ 

X {EO rR".(r) dr + 10'" rR,,(r) dr} ] + O(k4). (6.10) 

N ow we shall solve each of the equations (6.7)­
(6.10) for k as a series in appropriate powers of 1]. 

To solve (6.7) we write k = ko + kl'l)t + k 2 '1) + '" , 
insert this expansion into (6.7) and equate coeffi­
cients of powers of 7J to determine kl and k 2 • In this 
way we find for high-frequency transverse waves 

k = ko[l + 'l)t(2ko) -t { - R~~(O) - 2R~~(0) - R::(O) J t 

- (3'1)/16ko) { -R~:(O) - 2R~:(0) - R::(O»)i] + .. , . 
(6.11) 

There are four solutions represented by (6.11) cor­
responding to the four fourth roots in the second 
term on the right. The square root in the third 
term is the square of the fourth root in the second 
term. We see that the difference between k and ko 
is proportional to 7Ji which is of larger order of 
magnitude than the random inhomogeneities in l . , 
p., and fT. The difference to the order shown in (6.11) 
depends only on the second derivatives of the cor­
relation functions at zero separation, which is not 
unreasonable for short waves. We note that R~~(O)::;O 
and the real parts of the other R"(O) are also non­
positive. If the positive fourth root is chosen in 
(6.11), then the real part of k exceeds that of ko 
and the propagation speed is reduced. But then 
when fT = 0, k is real and there is no attenuation 
to the order shown. If the pure imaginary fourth 
root is taken, then there is attenuation of order 'l)t 
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when tT = 0 and a reduction in propagation speed 
of order 71. The attenuation and change in speed are 
both due to scattering. The solutions corresponding 
to increased propagation speed or to growing waves 
must be discarded as being spurious. 

To solve (6.9) we write k = ko + k1 7J2 + k27J4 + "', 
insert into (6.9), equate coefficients of powers of 71 
and determine kl and k 2 • Thus we find for low­
frequency transverse waves 

k = ko - k~7J2 [:~R;;(O) + ;~ R;~(O) + Rp/O) + R.,(O) 

k~ 1'" ] - 5" 0 (l1Rpp + lORp• + 1IR,,)r dr 

+ k07J{ - ;~~ + :ko {2Rpi O) + 2Rp.(0) - :~ R;;(O)} 

+ k;;l ED (7Rpp - Rp. + R .. )r drJ + .... (6.12) 

In (6.12) kl denotes the coefficient of 712
• From (6.12) 

we see that k - ko is of order 71 2 which is of smaller 
order of magnitude than the random inhomoge­
neities in the medium. We also see that when tT = 0, 
k is real to the order shown in (6.12) so the attenua­
tion due to scattering does not appear to this order. 
The phase speed is reduced by the scattering since 
Re k > Re ko• 

For longitudinal high-frequency waves, we solve 
(6.S) by the method used for (6.9) and obtain 

k = ko[l + 7J2k;2 (R;~(O) + R~~(O)} 
+ (h4k;~ (RpiO) + R .. (O) + (1/3k~) 
X [4R;;(0) + R;~(O) - 3R~~(0)]} 

X (R;~(O) + R~~(O)}] + ... . (6.13) 

From (6.13) we see that k is real when tT = 0 so 
there is no attenuation due to scattering to the 
order shown. However Re k < Re ko so the phase 
speed is greater for this solution than for the case 
71 = O. Therefore this solution is spurious. For 
longitudinal low-frequency waves, the solution of 
(6.10) for k is of order 71-2 which is large rather than 
small. Therefore it is spurious, since (6.10) was 
derived on the assumption that k was small. Thus 
we have found no satisfactory solution of the disper­
sion equation for longitudinal waves. 

APPENDIX I: ASYMPTOTIC EVALUATION OF 
Ma(J., AND Nai7 FOR LARGE koAND k. 

The asymptotic evaluation of M a(J., and N a(J., for 
large ko and k can be carried out by first defining 
the integrals 

1(1) = k21'" R'G .1 af dr 
o 1 rk ak ' 

(AI) 

1 (2) k21" RG 1 (a2f 1 af) d = 0 0 2?" ae - k ak r, (A2) 

1(8) = k~ 1'" R( Gd - G2)k :D dr. (A3) 

The double subscripts, which are to be attached to 
Rand 1 UJ

, have been omitted for convenience. In 
terms of these integrals, the expressions (3.10) and 
(3.11) for M and N are 

M a(J., = 1~3~ + 1~~ - 1~~, (A4) 

N a(Jy = 1~~ - 1~2~ - 1~~. (A5) 

Thus the evaluation of M and N is reduced to the 
calculation of the three integrals 1w. 

Substitution for Gll G2 , and f into (Al)-(A3) yields 

1 1" e
ik 

•• 
1(1) = +kk~ 0 R' 7 (sin kr - kr cos kr) dr 

i 1'" e
ik 

•• 
- kko 0 R' 7 (sin kr - kr cos kr) dr 

11" ik •• - k 0 R' ~ (sin kr - kr cos kr) dr, (A6) 

31'" ik •• 
1(2) = k3 0 R e r4 (3(sin kr - kr cos kr) 

- k2r2 sin kr} dr 

3ik 1'" ik •• 
- k30 0 R er3 (3(sin kr - kr cos kr) 

- k2r2 sin kr} dr 

k' 1'" il ••• 
- k~ 0 R e r2 {3(sin kr - kr cos kr) 

- k2r2 sin kr} dr, (A7) 

1 1'" e
ik 

•• 1(3) = e 0 R 7 {3(sin kr - kr cos kr) 

- er2 sin kr} dr 

'k 1'" ik •• 
- ~30 0 R e r3 {3(sin kr - kr cos kr) 

- k'r2 sin kr} dr 

k
2 1'" + --2 R eil 

... sin kr dr 
k 0 

e 1'" ik.. R(O) 
- k~ 0 Rei (sinkr-krcoskr)dr--

3
-· 

(AS) 
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In (A6)-(A8) six basic integrals occur. They are 

J 1 - 10'" R e
uor cos kr dr, (A9) 

J, - 10" R e'kor sin kr dr, (AlO) 

J. :11K 1'" R e ikor sin kr dr 
or' 

(All) 

J. ,.. 1" R 'kor 1 (Sin kr k ) d e ----cosr r 
o r kr ' 

(A12) 

J 1'" R ,k.r 1 (Sin kr kr) d ,'"" e"2 ---cos r 
o r kr ' 

(A13) 

1'" Ok 1 { (sin kr ) .} J e '"" 0 R e' .r;:a 3 ~ -cos kr -kr Sill kr dr. 

(A14) 

These integrals can be evaluated asymptotically for 
large k and ko provided R(r) has a power series 
expansion about the origin. 

To illustrate the procedure, let us consider J, and 
assume that 

From (A9) and (A1S) we have 

J. = i" {R(r) - R(O) - rR'(O) I e'kor 

x ! (sin kr - COB kr) dr 
r \ kr 

+ R(O) 1'" eik
•
r ! (sin kr - cos kr) dr 

o r \ kr 

+ R'(O) 1'" eik.r(S~rkr - cos kr) dr. (A16) 

By replacing the trigonometrical terms in (16) by 
their exponential representations and evaluating 
some of the resulting integrals, we obtain 

1 1'" J. = - 2k 0 {R(r) - R(O) - rR'(O) I 

X ~ {(i + kr) em.H)r - (i - kr) eHk.-k)rl dr 

+ R(O){l + i~o cot-1 
:;} 

+ R'(O){l t-l ko + iko } k Co ik k2-k~' (Al7) 

Now successive integration by parts yields the fol­
lowing asymptotic expansion of J. for large k and ko: 

(A1S) 

By applying the same method to the remaining 
integrals we obtain the following asymptotic expres­
sions for them for large k and ko: 

ikoR(O) (k~ + k2)R'(O) 
J 1 ~ (k2 _ k~) - W _ k~)2 

. ko(k~ + 3k2)R"(O) + ~ (k2 _ k~)3 , (A19) 

J '" kR(O) _ i2kkoR'(O) _ k(kl 
- 3k~)R"(O) 

2 '" (k2 
_ k~) (k2 

- k~)2 (e - k~t ' 
(A20) 

(A21) 

+ R"(O) [3 _ k
2 + 3iko t- 1 koJ (A23) 

2 e-k~ k co ik' 

We now use the above results for the J. in (A6)­
(A8) to obtain the following asymptotic expressions 
for 1w valid for k and ko large: 

1(1) '" R'(O) [ iW + k~) + ~ (1 _ k~) t-1 koJ 
,...., 2ko W-k~) ko k2 co ik I 

+ R"(O) [kl(k' - 3k~J (A24) 
k~ (e - k~)2 , 

1(2) ,..., R(O)[ k
2 + 3k~ ] 

'" 4(k2 
- k~) 

R'(O) [ ik~(3k' - 2k2k~ + 3k~) 
+ 2ko k2(k2 

- k~? 

+ 3 ~ (1 + :~) cot-
1 ~kJ 

R"(O) [k~k2(3k2 - 7k~)J 
+ k~ (e - k~)3 , (A25) 
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(3) R()[ 5k~ - k
2 

] 
1 ~ 0 4(e _ k~) 

+ R'(O) [_ ik~W + k~)2 + ko (1 + k~) t-1 ko] 
2ko k2(e - k~) k e co ik 

R"(O) [k~(k4 - 3ek~ - 2k~)] + kg (k2 _ k~)3 . (A26) 

When the results (A24)-(A26) are used in (A4) and 
(A5), the asymptotic expressions (4.1) and (4.2) for 
M a.p-y and N atJ-r are obtained. 

Integrals similar to I(i) occur in the dispersion 
equation for the propagation constant derived in 
our previous paper. 1 They are 

1(4) = k~ 1'" R'(f + )k :1)( G~ - ~ G2) dr, (A27) 

= k2 1'" R" 1.. af (G' - ! G ) dr (A28) o rk ak 1 r 2 , 

k2 1'" R' 1 (a
2

f 1 af)(G' 1 G) d = 0 0 ~ ae - k ak 1 - r 2 r. 

(A29) 

If R(r) has a power series expansion about the origin 
and if, in addition R' (0) = 0, these integrals can 
also be evaluated asymptotically by the procedure 
just described. The results are 

1(4) r-.J [2(k
4 

- 2k2k~ + 4k~)]R"(O) 
,....., 3W - k~)2 

+ 'k3[ 1 (k2 t- 1 ko) 
7, 0 2k4 k2 _ k~ co ik 

_ W + 3k~) l",,(O) (A30) 
W - k~)3r ' 

1 (6) r-.J [k2(4k~ - e)]R"(O) _ iko [k2(e + k~) 
,....., 3k~(k2 - k~) e (e - k~)2 

(A31) 

1(6) '"'"' _ [ 2k2k~ ]R"(O) 
rv W _ k~)2 

3ik~ [k2(k2 + 3k~)(3k2 - k~ 
+ 2k4 3(k2 _ k~)3 

+ ~~ cot-1 :k]R'II(O). (A32) 

These results are used in Sec. 6, where the solutions 
of the dispersion equations are considered. 

APPENDIX IT 

The following corrections should be made in Ref. 1: 

Eq. (37) oCr) should be o(r)/47r'r2
• 

In the sentence after Eq. (75), (4.32) should be (63). 

Eqs. (76)-(79) - i<p~)/ p~ should be added to the 
right side of each of these equations. 

Eq. (91) -H(x - x')/3k~ should be added to the 
right side. 

Eq. (93) - o(r)/127rk~r2 should be added to the 
right side. 

Eq. (103) 

Eq. (117) 

Eq. (118) 

aF/ak should be af/ak. 
w' should be w -I. 

Eqs. (121) and (122) The i should be omitted 
from the right side of each of these equations. 

Eq. (123) h«~D2)i should be 
h«~02)i[1 + i<To/w~~rl. 

Eq. (124) The i should be 1. 

In the first sentence of Appendix I, the word "is" 
should follow "use". In the next to last equation 
of Appendix II, the term - (alk) cot-I (!3/k) should 
be - (alk) cot-I (a/k). 
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Talmi Transformation for Unequal-Mass Particles and Related Formulas 

KAILASH KUMAR 

Research School of Physical Sciences, The Australian National University, Canberra, Australia 
(Received 11 October 1965) 

Three-dimensional polynomials which occur as coefficients of the exponential in the wavefunctions 
of the harmonic oscillator are used in nuclear physics and kinetic theory of gases. A generating function 
for these polynomials is used to simplify the calculation of several integrals. These include the inte­
grals involving products of two and three polynomials and the coefficients of the Talmi transfor­
mation. Explicit formula in terms of recoupling coefficients of angular momentum theory are obtained. 

I N the course of an investigation into the method 
of solving the Boltzmann equation by means of 

polynomial expansion of the distribution function 
we had occasion to derive the formulas referred to 
in the title. Our derivations are simpler than the 
ones published so far and do not involve the use 
of group theory. The results also have a simple 
structure and would perhaps be more suited for 
the formal study of the quantities involved. Because 
of its applications in nuclear theory and in kinetic 
theory of gases, the following may be of interest 
to mathematical physicists in general and is offered 
with little reference to any particular physical 
situation. 

I. PRELIMINARIES 

Weare concerned with the orthogonal poly­
nomials constructed from the components of three­
dimensional vectors denoted by the usual bold-face 
symbols, a, b, r, r 1, ••• , etc. The polynomials are 
fully specified by a set of three indices n, l, m. The 
last two indices indicate the irreducible tensor char­
acter of the polynomial. For the algebra of irre­
ducible tensors we follow the notation and phase 
conventions given in the book by Fano and Racah. 1 

According to this book an irreducible tensor can 
be standard or contrastandard depending upon the 
way it transforms under rotations of the coordinate 
system. The standard tensors are characterized by 
a superscript in round brackets and the contra­
standard ones by a superscript in square brackets. 
The prototypes of these tensors are the spherical 
harmonics which are defined in terms of the rota­
tion matrix 1) as follows 

ID~I](IJ, cp) = i\2l + 1/41l")t:D~~(IJ, cp) (1.1) 

This differs from the more common definition ac-

1 U. Fano and G. Racah, Irreducible Tensorial Sets (Ac­
ademic Press Inc., New York, 1959). 

cording to the convention of Condon and Shortley.2 
In the usual notation3 the relationship is 

ID!:J(IJ, cp) = i'Y,m(lJ, cp). (1.2) 

We have 

ID~I]* = ID;,;) = (- )'-mID~'~. (1.3) 

The coupling rule for spherical harmonics con­
sequently becomes (e.g., Ref. 3) 

ID!::\IJ, cp)ID~':J(IJ, cp) 

L: U(lll2l)(llmll2m2 Il m l + m2)ID~I.J+m.(IJ, cp) 
I (1.4) 

where 

U(lll2l) = i " + " -{ (2l14+(;i(~21i 1) T(l10l20 IlO). 
1l" (1.5) 

The Clebsch-Gordan or Wigner coefficients de­
noted here by (llmJ2m2 Ilm) or (lm Il 1mll2m2) are 
the same as those of Condon and Shortley2 and 
usually employed in angular momentum theory.3 

The addition theorem of spherical harmonics for 

cos IJ = cos 1J1 cos 82 + sin 1J1 sin 1J2 cos (CPI - CP2) 

has the form 

PI(cos 8) = 2l~ 1 ~I ID!:J(1J1 , CPI)ID;';)(1J2 , '(2)' (1.6) 

The following forms of the usual plane-wave 
expansion will be needed: 

e2a
'
b = L: 47ri1jl( -2iab)ID!:J(a)ID;,;\b) 

I,m 

_ " 21l"! ( b)2n+lffilIJ(A)ffi(l)(b) 
- £..oJ r(n + l)r(n + l + ll.) a tim a tim • 

2 (1.7) 

2 E. U. Condon and G. H. Shortley, The Theory of Atomic 
Spectra (Cambridge University Press, Cambridge, England, 
1953). 

3 M. E. Rose, Elementary Theory of Angular Momentum 
(John Wiley & Sons, Inc., New York, 1957). 
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By a we denote the angular variables associated 
with the vector a. Differentiation with respect to 
a vector variable a will be written as a / aa or V c' 

The polynomials constructed from the vector r will 
be denoted, e.g., by 1/;!:/1(r) or 1/;!:I)(r) depending 
upon their tensor character. For the sake of brevity, 
we sometimes write n for the set of indices n, l, m 
in which case, e.g., 

1/;!:11 EO 1/;[D1. (1.8) 

No confusion can arise since the positions in which 
the indices n occur are quite different from those 
in which the vectors a, r, ... , etc., occur. 

We shall sometimes use the abbreviation 
(2l ~ 1)' == l. (1.9) 

The Talmi transformation4
-

16 arises when one ex­
presses the functions of the position vectors r 1 and 
r2 of two particles in terms of their center of mass 
and relative coordinates Rand r. For unequal 
masses the relations between the vectors are 

(1.10a) 

r 1 == R ~ (a2/r)2r, r~ == R - (al/r)2r; (1.lOb) 

r~ == a~ ~ a:, 'Y -2 == a;2 ~ a;2. (1.10c) 

The quantities a~ and a~ are proportional to the 
masses of the particles, r2 is proportional to the 
total mass, and'l to the reduced mass. These rela­
tions hold also in kinetic theory work but the trans­
formation is taken to apply to the velocities rather 
than to the positions. 

II. GENERATING FUNCTION FOR 
THREE-DIMENSIONAL POLYNOMIALS 

Consider the polynomials ~!:I] (r) defined through 
the generating function 

G( ) - -a'+2.·r a,r = e (2.1) 

4 I. Talmi, Helv. Phys. Acta 25, 185 (1952). 
6 R. Thieberger, Nucl. Phys. 2, 533 (1956-1957). 
e K. W. Ford and E. J. Konopinski, Nucl. Phys. 9, 218 

(1957-1958). 
7 M. Moshinsky, Nucl. Phys. 13, 104 (1959). 
8 T. A. Brody, Rev. Mex. Fis. 8, 139 (1959). 
GR. D. Lawson and M. Goeppert-Mayer, Phys. Rev. 117, 

174 (1960). 
10 V. V. Balashov and V. A. Eltekov, Nucl. Phys. 16,423 

(1960). 
11 A. Arima and T. Terasawa, Progr. Theoret. Phys. 

(Kyoto) 23, 115 (1960). 
12 T. A. Brody and M. Moshinsky, Tables of Transforma­

tion Brackets (Universidad de Mexico, Mexico City, 1960). 
18 M. Moshinsky and T. A. Brody, Rev. Mex. Fis. 9, 181 

(1960). 
14 T. A. Brody, G. Jacob, and M. Moshinsky, Nucl. Phys. 

17, 16 (1960). 
16 B. Kaufman and C. Noak, J. Math. Phys. 6, 142 (1965). 
16 Yu. F. Smirnov, Nucl. Phys. 27, 177 (1961). 

Since the generating function is a scalar, ~!:11 
must transform like a spherical harmonic. The parity 
property, ~!:I] (-r) == (-) I~~"I] (r), is appropriately 
reflected in the relation 

G(a, -r) == G( -a, r). (2.2) 

Using the identity 

a(a/aa)G(a, r) EO a·(a/aa)G(a, r) 
(2.3) 

== -2a·(a - r)G(a, r), 

one can show that 

\l~ {G(a, r)e-ir '} == (r2 - 2a: - 3 )G(a, r)e-tr' , 
a (2.4) 

from which, on using (2.1), it follows that 

(- \l~ ~ r2)(e-lr'~!:/1) == [2(2n ~ l) ~ 3]e-tr'~!:11 • 

(2.5) 

This shows that, apart from the normalization, 
exp (_!r2)~!:11 are the wavefunctions of the 3-
dimensional harmonic oscillator. We shall write 

1/;~"/1(ar) == N-..!(;2re-,a.r'~~n/1(ar) 
(2.6) 

EO CR../(ar)ID!.:l(O, cp). 

The function (R,,/(ar) then agrees with the usual 
definition of the radial function if the constant NfI' 
is chosen such that 

The explicit form of ~ is obtained by using on the 
left-hand side of (2.1), Eq. (1.7) and the relation 
(Ref. 17, p. 189) 

e-a'jl+i( -2iar) 

== (- )/+l(iar)'+l i:, (_a
2

)n;! L!+l(r~. (2.8) 
,,-0 r(n ~ l ~ 2) 

Accordingly, 

/:[n/1(r) == 211'
i
r(n ~ 1) L1+l( 2) 1\Y\1Il(J1) 

~m r(n ~ l ~!) " r r"l:./m L. 
(2.9) 

The Laguerre polynomials L~ occurring here have 
been defined in Ref. 17, p. 188. This definition is 
the same as that of the Sonine polynomials S~,,) 

.17 A .. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. 
Tncoml, Higher Transcendental Functions (McGraw-Hill 
Book Company, Inc., New York, 1953), Vol. II. 
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used in kinetic theory work, e.g., in the book of 
Chapman and Cowling. IS The use of this function 
provides the link between the two subjects. 

If A(r) is any function of r, possibly containing 
differential operators, then the integral 

(2.10) 

G(a, alrl) = G(~l a, rR )G(~2 a, ')'1"), 

G(a, a2r2) = G(~2 a, rR)G(~l a, -')'1"), 

f e-,oG(a, r) dr = f e-<a-rp dr = 1/"'. 

(2.19) 

(2.20) 

(2.21) 

It is convenient to introduce the weight function 
can be obtained by evaluating the coefficient of w(a, r) = (a2 /1/")1 exp (_a2r2) " w(r) == w(l, r) (2.22) 
x!:,'l(a)x~~"')(b) in the integral 

f e-,oG(a, r)A(r)G(b, r) dr, 
with the aid of which an arbitrary function of r 

(2.11) may be expanded as 

where 

(2.12) 

The integral (2.10) is related to the matrix element 
of the operator A(r) with respect to harmonic 
oscillator wavefunctions. It is often more convenient 
to evaluate the integral (2.11). 

When A == 1, (2.11) becomes 

1/"1 exp (2a·b), (2.13) 

from which, on using (1.7), it follows that 

f e-'°I;~"I)(r)I;!::"l(r) dr 

21/"3r (n + 1) 
r(n + l + !) 8 .. ". 8

"
, 8",,,. •• (2.14) 

Hence in (2.6) 

N 2 _ 21/"lr(n + 1) 
.. I - r(n + l + !) (2.15) 

The main advantage of the generating function 
arises from the separability of its arguments, be­
cause of which many integrals can be evaluated 
in the form (2.11). We list these properties 

G(a, r)G(b, r) = G(a + b, r)e2a 'b, (2.16a) 

G(a, r)G(b, r)G(c, r) 

= G(a + b + c, r)e2<a'b+b,c+c'a). (2.16b) 

From (1.10), 

G(a, rR) = G(~l a, alrl)G(~2 a, a2r2), (2.17) 

G(a, ')'1") = G(~2 a, alrl)G(~l a, -a~2)' (2.18) 

18 S. Chapman and T. G. Cowling, The Mathematical 
Theory of Non-uniform Gases (Cambridge University Press, 
Cambridge, England, 1939), also 2nd ed. (1952). 

fer) = w(a, r) L: tn)(a)I;[n1(ar), (2.23a) 
n 

(2.23b) 

The quantities t n) (a) are linear combinations of a 
finite number of moments of the function fer) and 
occur in kinetic theory of gases when functions of 
velocity are expanded near the local equilibrium. 
This expansion is quite different from the expansion 
in terms of harmonic oscillator wavefunctions which 
may be used in shell model theory, 

fer) = L: f~:)(a)1/t[nl(ar), (2.24a) 

(2.24b) 

There is a third possibility, also utilized in shell 
theory4: 

fer) = L: f~n)I;[nl(r), (2.25a) 
n 

(2.25b) 

For the special case fer) == f(r)[)!!:l (t), we have 

f~n) = 811' ~"."., f w(r)f(r)r'L!+i(r~? dr (2.26) 

which may be further expressed in terms of the 
Talmi integrals4 1,,(f) by using the power series 
for L!+i(r2), 

2"+il 
f!n) = 811 , ~m".' L: A(nl, p)I,,(f) , 

,,-tl 
(2.27) 

(2.28) 

. _ (_),,-112 (n + l + t) rep + !) 
A(nl, p) - 21/"1 n - p + tl rep + 1 - to' 

(2.29) 

(n + a) r(n + a + 1) 
n = r(n + l)r(a + 1)' (2.30) 
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m. INTEGRALS INVOLVING TRIPLE 
PRODUCTS OF rs 

In view of (2.25), the evaluation of (2.10) often 
involves an integration of products of three es. From 
the Wigner-Eckart theorem or Eq. (1.4) we can write 

J w(r)~~:I')(r)~~n:I'](r)~!::I,)(r) dr 

== K(n3;n:zll l ) = (lIm, l2m2 Il3m3)K(nala;n2l2nlll)' 
(3.1) 

This may be considered a definition of the symbols 
K, to evaluate which we have to pick out the co­
efficient of x[n.] (ch(n.) (b h(nd (a) in the integral 
[Eqs. (2.16b) and (2.21)] 

J w(r)G(c, r)G(b, r)G(a, r) dr 

= exp [2(a·b + b·c + c·a)]. (3.2) 

In expanding the right-hand side according to (1.7), 
the angular parts can be reexpressed by means of 
the following formula: 

. ~ . (- )/"-m"ID~I::](c)ID~I::](c)ID~/"::~(b) 
tn1 ,m. ,ma 

x ID~/::) (b )ID!.:::) (a)ID!.:::) (a) 

L L (llml 12m2 11ama)lvG: 
l1.Z •• Zs m1.mll,ma 1 

x l1l2UCZr 1~ 1a)u(1~ 1~ 11)u(l~ 1r 12) 

X ID~/:\c)ID!.::)(b)ID!.::)(a). (3.3) 

Both sides are evidently scalar and the formula 
represents the effect of a recoupling as evidenced 
by the appearance of the coefficient TV which is 
the same as Wigner's 6-j symbol [Fano and Racah,l 
Eq. (11.7)]. 

Finally, 

K (na1a; n2 12nl 11) = (-)'" +n, +n'n1 ! n2! n3! lJ2 

X L uczr l~ 1a)u(lf 1~ 11)u(l~ 1; l2) 

X W(ll 12 la)[N""I"Nn"I.,N""I.,]2 (3.4) 
1; 1f l~ n~! n~! n~! . 

The summation variables are l;, If, and l~ whose 
values are restricted by the functions occurring in 
the sum. The values of n~ are given by the three 
relations obtained by equating the powers of a, b, 
and c, 

2nl + 11 = 2n~ + 1~ + 2n~ + lL 
2n2 + 12 = 2n~ + l~ + 2n; + 1i, 

2na + 1a = 2ni + 1i + 2n~ + 1~. 

It follows that for given ni, l" the sum 2n: + 1: = p~ 
has a fixed value which depends only on the former 
numbers, 

Pi = 2ni + 1" (3.5) 

(i, j, k) cyclic permutation of 1, 2, and 3. 

Thus, the quantities in the square brackets in (3.4) 
actually are 

[N .. ,',,'(niO- I]2 = 21l"!{r[!(pi - lr + 2)] 

X r[!Cp; + lr + 3)]1-1. (3.6) 

The restrictions above establish also a relation be­
tween the Pi (hence n,) values. Since PI + P2 = 
Pa + 2p~ and p~ ;::: 0, it follows that the integral 
vanishes unless 

Pi + Pi ;::: Pk, (i, j, k) cyclic permutation 

of 1, 2, and 3. (3.7) 

This is a symmetric relation between the free indices 
of independent polynomials on the left-hand side 
of (3.1). This may be called a scalar triangular 
relation corresponding to the fact that the sum of 
two sides of a triangle is always greater than the 
third. This is to be contrasted with the vector tri­
angular relations which hold between the numbers 
li in virtue of the Wigner coefficient. 

IV. RELATIONS INVOLVING MOSHINSKY'S 
COEFFICIENT B(nl,n'l',p) 

This coefficient is defined by means of the 
formula7.12.14 

t' <R,.z(r) V(r)<R,.'I.(r)? dr = L B(nZ, n' l', p)I,,(V). 
o "(4.1) 

The explicit form of B has been obtained using 
the explicit power series for CR functions. This co­
efficient occurs in calculations of nuclear shell theory 
and has been well tabulated. 12- 14 It is related to 
the triple product integral of the last section-a 
relation which also shows the role of the W-coeffi­
cient in this coefficient. 

Let the Talmi integral of the function N n1rIL!+i(r2) 
be denoted by I.,(nl). By (2.28) 

I.,(n1) = 2[r(p + !)rINnl 1'" r2p e-r 'rIL!+i(r2)? dr. 
o (4.2) 

Performing the angular integrals in (3.1) and con­
verting the radial parts to the form (4.1) by using 
(2.6) we obtain the relations 

K(nala; n212 nlll) = N".I.N",I,N".I.U(ll 12 la) 

X L B(n2Z2' na1a, p)I.,(nlll)' (4.3) 
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Also 

.E B(n2l2' nala, p)Iin1l1) 
" 

" 
.E B(n1l1, n2l2' p)Ip(na la). (4.4) 

" 
These relations may be used to calculate the co­

efficients K, since B's have already been tabu­
lated12- 14 and Ip(nl) can be calculated easily. 

On the other hand, the coefficient B may also 
be expressed in terms of K's. The integral 

may be evaluated in two ways for the special case 
when fer) == f(r)ID~I:J. Using (2.25), (2.27), and (3.1) 
one gets 

(llm l l2m2 llama) .E K(nala; n212 n1l l )A(n212, p)Jp(f). 

Performing the angular integrals first and then 
using (4.1) on the radial part, one gets for the same 
quantity 

(11m1 12m2 Ilama)CT(ll l2 la)N .. ,z,N ... 1• 

X .E B(nlll nala, p)J,,(f); 

hence the relation 

Talmi coefficients4
-

l6 are defined by the following 
relation: 

.1) .. ,ld( r ).I)n.I,J( r) 
'Ym1 al 1 'I'm. lr2 2 

(5.1) 

Various notations have been used for this quantity. 
We use the one which is most descriptive. We shall 
also use the abbreviated form T(rN, I'll J a1ll ll a2ll2)' 
Sometimes the scale parameters on one or both sides 
will also be dropped, 

T(rN, ')'ll I aln1 , a2ll2) 

= J t/I(l"!I(rR) t/I(Dl('Yr) t/I[D ,I (alrl) t/I[D·J(a2r2) dR dr. 

(5.2) 

Using (2.6) and (1.10) we may write 

T(rN, I'll I allll, a2n2) = T(rN, ')'ll I ajlll' a~2) , 
N NLN"IN .. ,z,Nn • l • 

(5.3) 

T(rN, ')'ll I aln1, a2n2) 

= f w(r, R)w('Y, r)~(l"!I(rR)~(Dl(')'f) 

X ~[Dd(alrl)l;[n·J(a2r2) dR dr. (5.4) 

B(nlll' nala, p) = [N .. ,I,N'hI.CT(ll l2 la)r 1 

X .E K(nala;n212nlll)A(n212;p), 

It follows that 

(4.5) ~[D,j(alrl)~[D'\a2r2) 
n. 

With (3.4) it shows the role of the lV-coefficient 
in the formation of B. Of course, 12 must satisfy 
the triangular restrictions, 11 + la < 12 < III - lal, 
if this relation is to hold. The sum over n2 is re­
stricted among other things by 12 and p. It serves 
eventually to eliminate 12 on the right-hand side. 
A symmetric expression in 11 and la is obtained by 
setting l2 = 11 + la. 

V. TALMI COEFFICIENTS FOR UNEQUAL MASSES 

In nuclear physics where the harmonic oscillator 
functions can be applied, the particles in general 
have the same mass. Hence that is the case most 
often studied. However, Smirnov16 has drawn atten­
tion to the problem of separating the center-of-mass 
motion of several nucleons in which harmonic oscil­
lator functions of different masses may be used. 
In kinetic theory the case of unequal masses arises 
in the study of transport properties of gas mixtures. 

.E T(rN,')'lllajnl,a2n2)~[l"!J(rR)~[DJ(')'f). (5.5) 
NLM ... I .. 

The dependence on the numbers m can be sep­
arated in two Wigner coefficients and the T-co­
efficient can then be expressed in terms of the 
transformation brackets of Moshinsky, 7.8.11-14 which 
has been often investigated for the equal-mass case 
and for which tables have been prepared. 

T(N n I llln2) = .E (1m LM I Xp.)(Xp. Illml 12m2) 
~ 

X il.+I.-1-L(nl, NL, X I nlll , n212' X). (5.6) 

To obtain explicit formulas for T note that from 
(2.19) and (2.20) 
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Then from (2.16b), (2.22), and (3.2) 

J w(r, R)w('Y, r)G(alJ (Ql)G(a2, a2r2) 

X G(A, :CR)G(a, -yr) dR dr 

== exp [~ (a1a1"A + a2a2"A + a2al"a - a1a2"a) J. 
(5.8) 

In virtue of (5.4), then, T is obtained by picking 
the coefficient of X<D'> (a1)x<D.> (a2)x IN1 (A)X ID ) (a) in 
the right-hand side. This procedure is similar to 
the one described for the case of triple product 
integrals. The right-hand sides of (5.8) and (3.8) 
are thus the generating functions for T and K co­
efficients. Multiplying by appropriate spherical 
harmonics and integrating over all angles, one ob­
tains, because of (1.4), a product over four Wigner 
coefficients which is to be summed over the m 
numbers of four l's. This gives rise to an X-coefficient 

I: (l'm'L'M' Il1m1)(l"m" L"M" Il2m2) 
m',.'I,M'M" 

X (l'm' l"m" Ilm)(L'M' L"M" I LM) = 11~lt 

[ 

I' I" 11 
X ~ (lm LM I AIJ.)(AIJ. Il1m1 l2m2)X L' L" L . 

II l2 A 
(5.9) 

From (1.7) and (2.15) the non angular factors are 

[
NN'L' NN"L" Nn", Nn",,,]2 
N'! Nil! n'! n"! 

X (a1a1A)p' (a2a2A/" (a2a1a)'" (-a1a2a)"" 

where P = 2N + L, etc. 
Comparing the powers of a1, a2, A, and a, re­

spectively we have 

P' + p' = P1, 

P' + P" = P, 

P" + P" = P2; 

P' + P" = p, 

so that P + P = P1 + P2 or 

(5.10) 

2n1 + II + 2n2 + l2 = 2N + L + 2n + l. (5.11) 

This is referred to as the equation for conservation 
of energy in nuclear theory literature and also 
follows from (5.1) by using the differential equation 
(2.5). 

Collecting all the terms we get finally 

'l'[(r)NLM I (a1)n111m1] 

(-y)nlm (a2)nz12 m2 

X u(l'L'll) u(I"L"12) u(l'l"l) u(L'L"L) 

[ 

l' l" l1 
X X L' L" L (ImLM I AIJ.)(AIJ.111ml 12mz). 

II l2 A_ 

(5.12) 

The sum is over all the primed variables and A. 
The restrictions on the sum are those arising from 
the functions occurring in the expression l!.nd the 
conditions (5.10) and (5.11). Because of the latter, 
(5.10) fixes only three out of the four vl!.riables 
N', Nil, n', nil for a given set of 1-values. A sum 
over all allowable values of the one independent 
one must be performed. This expression is fully 
symmetric under the indices of T-coefficient and 
involves only standard functions. The derivation 
given here and the formula (5.12) may be compared 
with those given previously in the literature, (-16 even 
those for the equal-mass case. Many of the results 
of previous workers have been expressed in terms 
of the transformation bracket defined in (5.6). An 
expression for it is obtained by comparing (5.6) and 
(5.12). 

Other less symmetric formulas can be derived 
for the T-coefficient. In one form T is expressed 
as a sum over to K-functions and one X-function. 

The following special case is useful when it is 
required to transform the functions of one vector 
variable: 

This is most easily derived by considering the 
generating function integral (5.8) without the term 
depending on r2, i.e., put a2 = O. Of course, it 
follows also from (5.12). For the case a1 = az = 1, 
Moshinsky has given a formula [Ref. 7, Eq. (60)) 
for the quantity (n1, NL, X I 011, Ol2, X) which may 
also be derived from (5.6) and (5.12). Since all the 
numbers n and 1 are either positive or zero; the 
requirement IL' - l'l ::; 11 ::; L' + l' together with 
Eq. (5.10) and n1 = 0 gives N' = n' = 0 and 
11 = L' + I'. Similarly for n2 = 0, Nil = nil = 0, 
and 12 = L" + l". The rest is straightforward. 
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VI. SYMMETRY RELATIONS, SUM RULES, 
AND RECURSION FORMULAS 

By putting a l = 0 in (5.8) instead of a2 and using 
(5.13) one finds 

T(rN, ')'ll I alnl, a20) 

= (-)'(at/a2)2N+L-2"-'T(rN, ')'ll I alO, a2n2) 

= (al/a2)2N+L-2,,-IT(rn,.,..N I alnl, a20). (6.1) 

Similarly, 

T(rN,.,..O I alnl, a~2) 

= (-)I'(al/a2)2",+I.-2 ... -I'T(rO, .,..N I alnl, a2n2)' 
(6.2) 

There does not seem to be any such simple relation 
when all indices are nonvanishing. 

From the integral (5.4) it is seen that the change 
of scale (al' a2) ~ (/3all /3a2) can be compensated 
by a corresponding change (rl, r2) ~ (/3-lrll /3-lr2); 
since the integral remains unaltered by the latter 
we have 

T(rN ')'ll I alnl a~2) 

= T«(f3r)N, (f3.,..)n I (f3al)nl, (/3a2)n2). (6.3) 

In particular for the equal-mass transformation, 
al = a2 = a, 

T«2Ia)N, (2-la)n I QD.ll QD.2) 

= T«21)N, (2-I)n IInl' In2). (6.4) 

The right-hand side is the standard form in which 
equal-mass transformation is calculated. To establish 
a relation between the equal-mass and unequal­
mass case we note that from the identity 

G(a, ar) = exp [(a2 
- l)a2]G(aa, r) (6.5) 

it follows that 

" ~!."IJ(ar) = :E E(a, n'nl)~!:'IJ(r), (6.6) 
.'-0 

( 'l) = (n )(1 _ 2),,-'" 2,,'+1 
E a, nn n' a a . (6.7) 

Then from (5.5) .. .. 
:E :E t(2- t r, N'NL) E(2i .,.., n'nl) 

N-N' _-.' 

x T(rN, ')'ll I alnl, a~2) 

= t t E(al, n~ nlll) E(a2, n~n2l2) 
"1'-0 •• '-0 

X T(2IN'LM, 2- in'lm 11n~llml' In2 l2m2)' 
(6.8) 

The simplest form of sum rules are, of course, 
the orthogonality relations in which a product of 

two T-coefficients is summed over common indices 
(N, n) or (nln 2). These follow from the completeness 
of the ",en) functions. A variety of other relations 
may be obtained by the use of the generating func­
tions. For example, in Eq. (5.8) one may set A = 
a = al = a 2 ; then the right-hand side becomes 
a scalar. By comparing the coefficients of a power 
of A on the two sides one has the result that product 
of a T-coefficient with lV-coefficient and two Wigner 
coefficients and summed over an appropriate num­
ber of indices is equal to a constant. It is now clear 
that other sum rules result by setting a different 
set of vectors equal in expression (5.8). Similar 
sum rules for the K-coefficients can be obtained. 

In numerical evaluation of these complicated ex­
pressions, especially for constructing tables of values, 
it is often more convenient to work with recursion 
relations. For Talmi coefficients such recursion rela­
tions have been derived using the corresponding 
ones for Laguerre polynomials and spherical harmon­
iCS.ll.13.l4 Since we now have generating function 
for composite polynomials the recursion relations for 
~ or'" may be obtained more directly. The normal­
ization of ~-function is especially useful for this 
purpose as it avoids many square rooted coefficients 
in such formulas. We give some brief examples. 
Let the contrastandard components of a vector a 
be denoted by 

(6.9) 

Then taking account of the phase conventions and 
using (1.4) we have 

a!llx!."l)(a) = -en + 1) 

X ~l ~ 1)\l - 1 m - " 111 Ilm)x~·~.l.l-l)(a) 

+ (2~ ! D\l + 1 m - " 111 I lm)x!.".:!+l) (a) , (6.10) 

and using the gradient formula (e.g., Ref. 3, p. 124 
with appropriate phase changes), 

V!l!x!."l)(a) = (2n + 2l + 1) 

X (2l ~ 1)\l - 1 m + " 111 I lm)x~"..:!-ll(a) 

- 2~~ ~ D'cl + 1 m - " 111 I Zm)x!.":.l.l+ll(a). 

(6.11) 

The generating function yields 

V!l!G(a, r) = (2r~1l - 2a~1l)G(a, r), 

V~l!G(a, r) = 2a!llG(a, r). 

(6.12) 

(6.13) 
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Hence comparing the coefficients with the help of 
(6.10) and (6.11) we immediately get 

V~lIt!:1] = 2(2l ~ 1)\lm Iv I l - 1 m + v)t!:.;~-ll 

- 2n(2~ ! !)\lm Iv Il + 1 m + v)t~"+-.1.I+l1, (6.14) 

r~llt!:ll = (2l ~ It (lm Iv Il - 1 m + v) 

+ (2~ ! !)\lm Iv Il + 1 m + v) 

X [_nt~";.l.l+ll + (n + l + !)t!:.;~+1l]. (6.15) 

Of course, these expressions can be calculated by 
using the definition (2.9) and corresponding formulas 
for L~, etc., but the calculations would be rather 
long. The calculation of relations involving scalar 
operators such as ra / ar or r2 are even shorter as 
will be seen from the following: 

4r
2
G(a, r) = (2a + :a)' (2a + :a)G(a, r) 

(6.16) 

= (4a
2 + 4a :a + 6 + V!)G(a, r); 

ri.G == r.i.G = a.(2a + ~)G 
ar ar aa (6.17) 

= (2a2 + a :JG; 
a2x~nl) = -en + I)X~"+l,I); (6.18) 

a :a X~"I) = (2n + l)X!:I); (6.19) 

~2 (nl) 
VaX ... = -! [(2n + l)(2n + l + 1) - l(l + 1)] 

n 

X X~"-l,I). (6.20) 

The generating function (2.1) may also be ex­
panded in Cartesian coordinates in which case it 
generates products of three Hermite polynomials 
in x, y, and z (e.g., Ref. 17, p. 194). Such a prod­
uct can be expressed as a linear combination of 
t!:ll(r, (J, cp). The coefficients of this expansion are 
related to the transformation brackets (nznun. I nlm) 
which have been discussed in connection with the 
nuclear shell modeI. 19

,2o The use of generating func­
tion may be expected to simplify these calculations 
also. 

19 Z. Pluhaf and J. Tolar, Czech. J, Phys. B14, 287 (1964). 
20 E. Chac6n and M. de Llano, Rev. Mex. Fis. 12, 57 

(1963). 
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Analyticity Properties of the Scattering Amplitude 

A. MINGUZZI 

Istituto di Fisica della Unillersita' di Bologna, Istituto Nazionale di Fisica Nucleare - Sezione di Bologna, BOUJgna, Italy 
(Received 1 June 1965) 

Analyticity properties in three variables, energy, momentum transfer, and "squared mass" are 
deduced from single-variable dispersion relations. 

ANALYTICITY properties of the scattering am­
plitude in more than one variable are proved 

as a consequence of the PT invariance, the micro­
causality condition, and the stability of the ele­
mentary particles. The scattering of equal-mass, 
uncharged particles is discussed; the extension to 
arbitrary stable particles presents no difficulty. The 
tools of the proof are: 

(1) For every physical value of the momentum 
transfer t, there exists a function TI(s), holo­
morphic in the center-of-mass energy s in a strip 
1m 8 > 0 near the physical axis, so that 

lim T,(s + if) 
f-O+ 

is the scattering amplitude. I 
(2) For every physical value of s, there exists a 

function T.(t), holomorphic in t in an ellipse 
("small Lehmann ellipse"), so that 

lim T,(t + iTJ) 

is the scattering amplitude.2 

Mandelstam has postulated a representation of 
the scattering amplitude, the double dispersion rela­
tions, and has proved analyticity properties in two 
variables in the set 

Ist(s + t - 4i) I < 288J.16. 

From (1) and (2), by straightforward application 
of a theorem, conjectured by Wightman3 and 
proved by Zerner, 4 we prove the existence and 
uniqueness of a function T(s, t) holomorphic in s, t 
in an open set of C2 of which T.(t) and T,(s) are 
restrictions. 

I A. Minguzzi, Nuovo Cimento 32, 198 (1964). 
2 H. Lehmann, Nuovo Cimento Suppl. 13,57 (1959). 
3 A. S. Wightman, "Axiomatic Field Theory" in Theoretical 

Physics (International Atomic Energy Agency, Vienna, 1963), 
note on p. 38. 

Proof: The proof of Zerner has been carried out 
when the analyticity domains in (1) and (2) are 
replaced by the half planes Re s > 0, Re t > 0, 
respectively. We now do his proof with the modifica­
tion necessary to cope with (1) and (2). Let us take 
the compact in R2, 

F = [s, t : 4J.12 ::; s ::; S; 0 ::; - t ::; s - 4l], 

where J.I is the mass of the particles and S an arbi­
trary real constant. Every (s, t) E F belongs to 
the physical range of the elastic scattering process 
of which sand t are the center-of-mass energy and 
the momentum transfer. Let us also consider the 
sets in CI X RI: 

A. = [s: IRes - sol < fl; 0::; Ims < f2] 

X [t : 1m t = 0; IRe t - tol < f3], 

A I = [t : IRe t - to I < f3; 0 ::; 1m t < f4] 

X [s : 1m s = 0; IRe s - sol < fl], 

(so, to) E Int (F), 

and the sets A~, A~ in which strict inequalities only 
occur. By a proper choice of the fl' (Re s, Re t) E 
Int (F) and [s: IRe s - sol < fl; 0 < 1m s < E21 is 
contained in the strip of holomorphy of T,(s), for each 
IRe t - tol < f3; [t: IRe t - tol < fa; 0 < 1m t < E41 
is contained in the smallest Lehmann ellipse when 
IRe s - sol < fl' (The reason we restrict ourselves 
to a compact set is due to the shrinking to zero 
of the Lehmann ellipse when s -7 (Xl.) Let us call 
f(s, t) the function defined in A = A.UAI by 

f(s, t) = T,(s) , 

f(s, t) = T.(t) , 

(s, t) EA •• 

(s. t) E A,. 

and suppose that it is continuous in A. Let us do 
the change of variables, 

s = So + i[w2 + 2w + T], W = Wr + iWi' (1) 4 M. Zerner, "Quelques resultats sur Ie prolongement 
analytique des fonctions de variables complexes" (Seminar 
in Mathematical Physics, Universite d'Aix-Marseille). t = to + i[w2 - 2w + T], 

679 
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The points (wr, w;), images of 1m t = 0 (1m s = 0), 
are lying on the two branches of the hyperbola 
Wr = 1 ± (1 +w~ - Tr)i;[wr = -1 ± (1 +w~ - Tr)l]. 
For every value of (Tr, TI), when 0 :$ Tr < I, the 
points of the w-plane 

[W"Wi :Wr = 1- (1 + w~ - Tr)l; -(Tr)':$ Wi:$ (Tr)'] 

U [W., Wi : Wr = -1 + (1 + W~ - T r)'; 

- (Tr)' :$ WI :$ (Tr)'] 

are lying on a Jordan curve rr. rr shrinks to zero 
when Ta. = O. T will be allowed to move only in 
the set A for which rr C A. Let us call grew) the 
restriction of f(s, t) to r r' For each value of T, 

Gr(W) = f ~dc 
rr C - W 

(2) 

is an analytic function of W in R r , r r being the bound­
ary of Rr • We now prove also that G.(w) on r. is 
equal to grew). This is true if and only if, for every 
hew) holomorphic in an open set containing R., we 
have 

L(T) = 1 h(w)gr(W) dw = 0, for TEA. 
r. 

Now: (a) L(T) = 0 when Ta. = 0; (b) L(T) is con­
tinuous in A; (c) L(T) is holomorphic in the Int (A). 
The last statement will be proved later and it will 
be seen to follow from the holomorphy in A~ and 
A~. From (a), (b), and (c) it follows that L(T) 
vanishes in A. We conclude that G.(w) for each 
TEA is an analytic function of w E R. and 
G.(w) I .. er r = grew). Gr(w) is uniquely determined 
from grew). Let us prove also that Gr(w) for each 
value of w is holomorphic in T. If w = W, Tr(W) 
is the real part of that T value, so that W E r.(G)' 

When Tr > Tr(W) the denominator in (2) can never 
vanish; Gr(w) is also continuous in T. Gr(w) will be 
holomorphic in T when Tr > Tr(W) if it is true that 

f Gr(w) dT = 0 

for each Jordan curve. The proof of the last step 
is the same as the proof of the point (c), with the 
choice 

hew) = (~- Wfl. 

By means of the Hartog theorem, Gr(w) is an analytic 
function in an open set of C2 in (w, T). Since from 
(1) wand T are polynomials in s, t, it follows that 

T(s, t) = Gr( •. I)[w(s, t)], 

is analytic in the image u(so, to) of the open set 
in C2 in which Gr(w) is holomorphic. T.(t), T,(s) 
are its restrictions. Provided that 0 < E~ < EI, it 
is easy to see that 

[s : IRe s - sol < Ef; 0 < 1m s < E~] 
X [t : IRe t - tol < E;; 0 < 1m t < E~] 

is contained in u(so, to). By repeated application of 
this procedure to each of the open sets covering F, 
the proof is concluded. 

We can also establish a more general result: in 
Ref. 1 it was proved also that the scattering am­
plitude is an analytic function of the "squared ex­
ternal mass" p in a strip 0 < 1m p < 1151, Re p < 41012 

(stability condition) for each physical pair " t. 
Since the theorem of Zerner holds for an arbitrary 
number of variables, it follows that there exists a 
function 

T(s, t, p), 

holomorphic in some open sets of Ca
, whose v&lue 

on the boundary 

lim T(Re s + iE, Re t + i7J, Re p + if') 
""-0+ 

"....0 

is the scattering amplitude. 

Proof of (c): From the continuity of L(T), the 
holomorphy of L(T) follows if 

f L(T) dT = 0 

holds for any rectangle in the T-plane with its sides 
parallel to the axis. Let us choose an infinitesimal 
rectangle whose center is T!O), T:O). We have 

f L(T) dT 

= -2 dTr[f(T!O) , T:O) + dTi) - f(T!O) , T?) - dTI)1 

+ 2i dTi(f(T!OJ + dT., T~OJ) - f(T~O) - dT" T~OJ)] , 

(3) 

where f(T r , Ti) is conveniently written 

(4) 
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where 

g[Xl(X~, T), Yl(X2, T); X2, Y2 = OJ == T,.(s'), 

g[Xl, Yl = 0; X2(Xl, T); Y2(Xl, T)J == T •. (t'). 

An elementary proof of the vanishing of (3) is the 
following. The limits of integrations in (4) and the 
arguments of dw/dxl.2, h, g depend on T., TI. (3) 
vanishes due to the continuity of the integral func­
tion when the limits of integrations are varied. The 
contribution to (3) coming from (iJ/ilT ••• )(iJW/iJXl.2) 
can be proved to vanish on account of 

Finally, the contributions to (3) coming from the 
variation of the arguments of h and g are propor­
tional, respectively, to 

The first vanishes on r. and the second vanishes 
almost everywhere on r., on account of the analy­
ticity properties of hand g. 
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Continuity of Bound and Unbound States in a Fermi Gas: A Soluble Example* 

CHANCHAL K. MAJUMDAR 
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(Received 20 August 1965) 

Considering a gas of independent fennions in the presence of an attractive localized potential, one 
can show that the properties of the system as a whole are smooth (analytic) functions of the strength 
parameter of the potential, even at those values where new single-particle bound states appear. Thus 
for the system as a whole, the transition from "unbound" to "bound" states is continuous and the 
concept of a bound state cannot be made precise. This is illustrated here for a simple mathematically 
soluble model-noninteracting spinless fennions moving in the presence of a delta-function potential in 
one dimension. Some related physical ideas are also presented. 

IN an article on electrons in transition metals, 
Mott discussed the question of the existence of 

bound states in a potential embedded inside a Fermi 
gas and reached the conclusion I: "In terms of a 
many electron wave function, the question whether 
a bound state exists does not admit of a precise 
answer." A mathematical discussion of this problem 
does indeed lead to the concept of the continuity 
of bound and unbound states in a Fermi gas as 
demonstrated recently.2 The proof given for short­
range potentials (in three dimensions) is necessarily 
abstract. The purpose of this article is to present 
a simple example--one-dimensional spinless fermions 
moving in the presence of a single delta-function 
potential. It is well-known that the attractive delta­
function potential in one dimension has always a 
bound state, and the lowest single-particle level will 
show a nonanalytic behavior as the strength param­
eter of the potential X becomes attractive. One has 
here a particularly fortunate opportunity to study 
the detailed analytic behavior of the properties of 
the Fermi gas while the potential is present, since 
the delta function is mathematically so simple. 

We shall first formulate the problem in fairly 
general terms for a general class of potentials. We 
shall then restrict ourselves to the delta-function 
case, and show the following: Although the lowest 
single-particle level shows a nonanalytic behavior 
at X = 0 as the size of the system goes to infinity, 
the ground-state energy and the single-particle den­
sity matrix of the Fermi gas remain analytic func­
tions of X in a finite strip containing the entire 
real axis. 

* This work was supported in part by the National Science 
Foundation. 

IN. F. Mott, Advan. Phys. 13,325 (1964), p. 360. 
2 w. Kohn and C. Majumdar, Phys. Rev. 138, A1617 

(1965). 

1. FORMULATION OF THE PROBLEM 

The formulation of the problem for one dimension 
is slightly different from that for three dimensions.2 

We consider a system of N noninteracting fermions 
in the presence of an external potential X V(x), X 
being the strength parameter of the potential. The 
complete description of the system is given by the 
quantum mechanical density matrix of N particles; 

= 'li*(x~, x~, ... x~)iI(xI' x2, ... XN). (1.1) 

'li(XI, X2, ... XN) is the wavefunction of the N­
particle system. For noninteracting fermions in an 
external potential, this is just the ordinary Slater 
determinant made up of single-particle eigenfunc­
tions of the potential. The density matrix PN can 
then be completely written out in terms of the 
one-particle density matrix PI: 

(XII PI Ix{) (XII PI IxD ... (XII PI Ix~) 

1 (x21 PI IxO (x21 PI Ix~) . .. (x21 PI Ix~) 
N! 

where, in our case of real boundary conditions, 
N 

(1.2) 

(xl PI Ix') = L, cp,(x')cp,(x). (1.3) 
i=l 

The sum over i goes over the N single-particle 
orthonormal real eigenfunctions cp; occupied and 
therefore occurring in the Slater determinant. The 
eigenfunctions in the absence of the potential are 
solutions of the equation (h = 1, m = !) 

(d2 if;jdx2
) + Eif;(x) = 0, (1.4) 

682 
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with the boundary conditions that the wavefunc­
tions be zero at the walls of the one-dimensional 
box, x = ±tL. In the presence of the potential, 
the eigenfunctions satisfy 

(a:.p/dX2) + E.p(x) - AV(X).p(x) = 0, (1.5) 

while the boundary conditions remain unchanged. 
We assume Vex) to be short-ranged and sufficiently 
well-behaved (for instance, Lebesgue-integrable). 
Now we construct functions which are solutions of 
(1.5), .p(x; E, A), satisfying the boundary conditions 

ImE 

E - Pion. 

+ 
+ + 

,. 
E, E. EN ENo, 

RoE 

+ + + 

E i - EIGENVALUES 

+ - ZEROS OF N(E.~)OR BRANCH POINTS 

OF THE EIGENVALUES AS FUNCTION OF ~ 

.paL; E, A) = 0, .p'(tL; E, A) = 1. (1.6) FIG. 1. Contour C for (xl PI Ix') in Eq. (1.9). p. is the fixed 
chemical potential of the electron system. 

Since the boundary conditions are independent of 
A, it follows from a theorem of Poincare3 that for 
fixed E and x, .p(x; E, A) is an integral function 
of A. We can now obtain eigenfunctions .pi(X; E, A) 
of our problem from this family of functions .p by 
satisfying the other boundary condition 

.p(-tL;E, A) = o. (1.7) 

Equation (1.7) is actually an eigenvalue equation, 
and will give a set of eigenvalues E;(A) with a set 
of eigenfunctions .pi[X; E;(A), A] which, however, 
are not normalized. Since this is a Sturm-Liouville 
problem, the eigenvalues will be in general non­
degenerate.4 .p;[x; E;(A), A] need not be integral 
functions of A, for E;(A) is not fixed, but is a function 
of A. We define also the normalization 

1
1L 

N[E;(A), A] = .p~[x; E;(A), A] dx. (1.8) 
-1L 

By normalization we obtain the real orthonormal 
eigenfunctions cf>; used in (1.3). 

To determine the analytic behavior of PI as a 
function of A, we now write (xl PI Ix') as a contour 
integral: 

(xl PI Ix') 
N 

:E cf>;(x')cf>;(x) 
i""'l 

£. .p;[x; E;(A) , A].p;[X'; E;(A) , A] 
i-I N[E;(A), A] 

= ~ 1 :E .p(x;E, A).p(x';E, A) dE. 
21r'/, c ; N(E, A)[E - E;(A)] 

(1.9) 

The contour C encloses only the first N eigenvalues 

a H. Poincare, Acta Math. 4, 215 (1884); R. Jost, and 
A. Pais, Phys. Rev. 82, 840 (1951). 

4 R. Courant and D. Hilbert, Methods of Mathematical 
Physic8 (Interscience Publishers, Inc., New York, 1953), 
Vol. I, p. 293. 

on the real E-axis for a certain real A; the singularities 
coming from the zeros of the normalization N(E, A), 
as shown below, lie off the real axis and are not 
included inside C. The contour C crosses the real 
E-axis at the chemical potential /J., which is fixed, 
and is closed on the left (Fig. 1). Of course we will 
ultimately take the limit N ~ co, L ~ co, keeping 
N / L constant. It may be noted that we have used 
two "unstarred" functions, .p(x; E, A). The ad­
vantage is as follows. When we make A or E complex, 
the functions .p(x; E, A) are integral functions by 
Poincare's theorem, but the complex conjugated or 
"starred" functions are not. For real A, the expres­
sion (1.9) reduces to the correct expression for the 
density matrix, because we have taken real boundary 
conditions and the eigenfunctions are real. 

We now go back to the normalization 

1L 
N(E, A) = 1 .p\x; E, A) dx. 

-!L 
(1.10) 

For fixed A, this is an integral function of E. The 
singularities of (1.9) in the E-plane, besides the 
poles E;(A), are the zeros of N(E, A). It is easy to 
find these zeros. Consider two eigenfunctions .pI and 
.p2, fulfilling the boundary conditions as above, 
which satisfy 

(d2.pl/dx2) + E.pl(X) - A V.pI(X) = 0, 

(d2.p2/dx2) + (E + 0E).p2(X) 

- (A + OA) V.p2(X) = o. 

Then we have 

(1.11) 

(1.12) 
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Since by the boundary conditions, the right-hand 
side vanishes, we have 

d).. ilL 2 jilL 2 

dE = Vt1 dx V Vtl dx, 
-iL -iL (1.13) 

= N(E, A)jiiL 

V(x)Vt~(x) dx. 
-iL 

Thus the zeros of N(E, A) correspond to dA/dE = 0 
(cf. Ref. 2). In orther words they occur at the 
branch points of the eigenvalues E,()..) regarded as 
a function of A. For real ).. and real E, the normal­
ization is never zero; this ties in with the fact that 
the eigenvalues of the Sturm-Liouville problem are 
simple. This fact was used in writing (1.9) as a 
contour integral by keeping A real. 

Now we make A complex. By Poincare's theorem, 
the eigenfunctions Vt(x; E, A) are integral functions 
of E for any definite (x, A). But the eigenvalues 
E,(A) wander off into the complex plane. It is known 
from some considerations of Hadamard6 that 
(xl PleA) Ix') will have a singularity in the A-plane 
when two poles of the integrand in (1.9) in the 
E-plane, one from inside the contour C and another 
from outside it, tend to coalesce at some value of A 
and the contour becomes "pinched" between these 
singularities. We have to consider two possibilities: 
(1) Two poles E,()..) may coalesce or (2) a pole 
E,(A) from inside may approach a zero of N(E, A) 
which was outside. Since the zeros of N(E, A) are 
coincident with the branch points of E,(A) we do 
not get any additional singularities from the second 
case, and will simply investigate the coalescence 
of two poles E,(A) from two sides of the contour. 
This, therefore, requires the knowledge of the move­
ment of the eigenvalues E, as a function of A. For 
almost any potential this would be difficult; only 
in the case of the delta function have we carried 
out the investigation completely. 

So far as the ground-state energy is concerned, 
we have a formula similar to (1.9): 

1 j 1 Eo()..) = 21ri c E Tr E _ H dE 
(1.14) 

=_ljEL dE 
21ri c ,E - E,(A) , 

where the contour C is the same as before. By using 
the eigenfunctions themselves in evaluating the 
trace, one can avoid explicit appearance of the func­
tions Vt in the numerator. The problem of determining 
E,(A) remains the same as before. 

6 J. Hadamard, Acta Math. 22, 191 (1898); J. Tarski, 
J. Math. Phys. 1, 154 (1960). 

2. ONE-DIMENSIONAL FERMION SYSTEM WITH 
A 5-FUNCTION POTENTIAL 

Consider now a system of sPinless fermions of 
mass !, enclosed in a one-dimensional box of length 
L, -!L :$ x :$!L. The eigenfunctions with rigid 
wall boundary conditions are sine waves: 

q,,, = (2/L)1 sin (21T1lX/L); 

p = (2rrn/L), n = 1, 2, 3, 

(2.1) 

(2.2) 

We have chosen the odd solutions; a completely 
analogous discussion can be given for the even solu­
tions. The energy of the N-particle system is ob­
tained by simply putting in the particles in accord­
ance with the Pauli enclusion principle up to the 
Fermi energy. The Fermi momentum is defined by 

(2.3) 

It is supposed that N ~ 00, L ~ 00, keeping the 
ratio N / L constant. The ground-state energy of the 
N-particle system can be calculated in this way 
to be 

L ll:r 

Eo = 211" 0 p2 dp = iNk~, (2.4) 

so that the energy per particle is !k;. Now we 
imagine that we have at the origin a short-range 
potential, in fact a delta-function potential of 
strength parameter A. It is known that this potential 
has always a bound state and the lowest single­
particle level cannot be an analytic function of A, 
and has actually a singularity A = O. However, we 
consider again the N-particle system and compute 
the ground-state energy Eo(A) as above. We propose 
to show that Eo(A) has in fact a region of analyticity 
in the A-plane, namely, a strip of finite width con­
taining the entire real A-axis. 

The Hamiltonian for the system is 

H = L EpC:Cp + A L V.C;+.C.. (2.5) 
p P •• 

A will be a complex number in general. The fermion 
operators satisfy the usual anticommutation rules 

{C., C;.} = op,p" 

The equation of motion is 

(2.6) 

[C;, H] = -EpC; - A L v.c;+.. (2.7) 
• 

Let Ii'o) be the exact state of energy Eo, and Ii') 
that of energy E. Then 

(i'l C:n - HC~ Ii'o) 

-Ep(i'l C; Ii'o) - A L V._.(i' 1 C; Ii'o), 
• 
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--H----I-~*_I~-II---II-- -t .repuill .. 

FIG. 2. Solution of Eq. (2.13) for the eigenvalues. 

or 

where 

w = E - Eo. (2.9) 

Putting 

(2.10) 

we get 

(2.11) 

Since we take the potential to be a delta-function, 
we put 

(2.12) 

Hence 

and the eigenvalue equation becomes 

L 1 
~= ~w-E,,· (2.13) 

Schematically the solution of (2.13) is shown in 
Fig. 2. For repulsive potential nothing particular 
happens-all the energy levels are pushed up a 
little. For negative real X, i.e., attractive potential, 
there is always one solution below the unperturbed 
eigenvalues. The behavior of the eigenvalues w as 
a function of real A is shown in Fig. 3. In the limit 
L ~ ex>, for the attractive case, there is a bound 
state for any X with energy proportional to X2

, while 
for repulsive potential there is no such splitting off 
of a state from the continuum. These are well-known 
facts. 

The unperturbed energies E" = p2, and using (2.2) 
we get 

L 
X (2.14) 

or 

(2.15) 

In (2.14) we make use of the well-known partial 
fraction decomposition of the cotangent6 and wi is 
defined to be the positive square root. 

Equation (2.15) gives the strength parameter X 
as a function of w, the energy variable. The problem 
now is to obtain the inverse relation w as a function 
of A, w = r\X) == F(A). Clearly w is a multivalued 
function of X; for real X, the eigenvalues of physical 
interest are obtained (Fig. 3). 

To ascertain the presence of algebraic singularity, 
we want the roots of 

dA/dw == df(w)/dw = O. (2.16) 

If we assume these zeros of few) to be simple, the 
values of X obtained from (2.15) from these zeros 
represent branch points of order one. At such a 
branch point, two sheets of the Riemann surface 
of the function w = F(A) are connected. A general 
argument that the zeros will be simple can be 
supplied2 and we verify explicitly that they are 
simple in Fig. 8 where only double points appear. 
Now 

f'(w) = 1L 2 
/ aLwl cot (!Lwi) - I} 2 

X (1L2w cosec2 !Lw
' 

- 2 + !Lwl cot !Lwt). (2.17) 

Put w = e, the upper-half k-plane is, by definition, 
the physical sheet. Setting !Lk = Z, we have to 
solve 

( ) 
_ L 2 Z2 csc2 Z - 2 + Z cot Z _ 0 

l' w = 8 (Z .. cot Z _ 1)2 -. (2.18) 

The numerator and the denominator diverge to­
gether, so the infinities of the denominator are 
excluded. In the numerator, Z = 0 is obviously a. 
solution, but at that point the denominator also 
vanishes. Besides Z = 0, which is not a true solution, 
all the other solutions are obtained from the zeros 

FIG. 3. The eigen­
values plotted as a 
function of Re X. 
These define the 
different sheets of 
the Riemann sur­
face of the function 
'" = ",(X). 

III 

8 E. C. Titchmarsh, The Theory of FunctilYfl,8 (Oxford Uni­
versity Press, London, 1939), p. 113. 
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of the numerator: 

u(Z) = Z2 - 2 + Z2 cot2 Z + Z cotZ = O. (2.19) 

Obviously 

u( -Z) = u(z). (2.20) 

Also u is a real analytic function7 so that 

u(Z*) = u*(Z). (2.21) 

This means that all the zeros of (2.19), if they exist, 
must come in groups of four, that is, ±Z, and 
±Z~ are simultaneously roots of (2.19). We are 
interested in the roots of the upper-half plane only, 
which corresponds to the physical sheet. Clearly, 
it is enough to investigate the roots in the first 
quadrant. 

Except Z = 0, there are no other zeros of u(Z) 
on the real or the imaginary axis, so all other zeros 
must be complex. For real Z == x, u(x) shows a 
series of minima between infinities at n1l" but re­
mains positive. By the usual argument of function 
theory,8 one expects that the function will decrease 
at right angles to the real axis at these minima and 
the zeros may be expected to straddle the real axis 
in the complex Z-plane. Also the minima are succes­
sively larger in height as one proceeds along the 
real axis (Fig. 4), hence the zeros will be probably 
moving away from the real axis. 

For any fixed value of x, there cannot be any 
solution to (2.19) for sufficiently large values of 
ImZ == y;for, 

i(x+iy} + e-Hx+ill) 

cot Z = i :,(X+iY) -i(x+iy) ---t -i, - e 1/_ 00 

and 

-2 + i 2Z 2 ~ o. 
Thus, sufficiently far from the real aXIS, there are 
no zeros. 

The location of complex zeros is always a com­
plicated problem. In our case, the existence of the 
complex zeros as solutions of Eq. (2.19) is assured 
by Picard's theorem.9 We note that u(Z) is a 

u (xl IVi\ji0 I I I 

I : : 

: : : I 
I I I I 

.". 3". 4 ... 

7 Reference 6, p. 155. 
8 Reference 6, p. 167. 
9 Reference 6, p. 277. 

FIG. 4. The func­
tion u(x) has no 
other zeros except 
the one at the 
origin. 

meromorphic function of Z, and therefore by 
Hadamard's theorem, 10 can be written as the 
quotient of two integral transcendental functions 
of Z. The zeros of the integral function in the 
numerator are the zeros of the meromorphic func­
tion. We know that this integral function has a 
zero at Z = O. Now Picard's theorem states that 
an integral function that is not a polynomial will 
take every value, with at most one exception, an 
infinity of times. Clearly 0 is not an exceptional 
valuell and thus u(Z) has an infinite number of 
zeros.12 

We can find out the distribution of zeros for 
large /Z/ as follows. Write (2.19) as 

Z cot Z + Z2 csc2 Z = 2, 

or 

Z csc2 Z + cot Z = 2/Z ~ O. (2.22) 

for large /Z/. (Notice that, by definition, Z is pro­
portional to L and we will make L ---t <Xl.) Thus the 
roots are approximately given by 

Z csc Z + cos Z = 0, 
or 

Z = -sin Z cos Z; 

putting W = 2Z, we get 

sin W = -W. (2.23) 

Decomposing into real and imaginary parts, W = 
x' + iy', 

sin x' cosh y' 

cos x' sinh y' 

-x', 

-y'. 

(2.24) 

(2.25) 

We have to solve the two transcendental equations 
simultaneously. The solutions are the intersections 
of the two curves 

(i) 

(ii) 

x' 

y' 

cos-1 (-y'/sinh y'), 

cosh-1 (-x'/sin x'), 

and are given qualitatively in Fig. 5. 
10 Reference 6, p. 284g. 

(2.26) 

11 Reference 6, p. 278. 
12 Actually what we have proved is this: If there are zeros 

as solutions of (2.18), they are obtained from (2.19). But we 
have not shown the existence of complex zeros of (2.18) as 
yet. The function (2.18) is itself a meromorphic function. An 
extension of Picard's theorem states that a meromorphic 
function takes every value, with at most two exceptions, an 
infinity of times [see R. Nevanlinna, Le Theoreme de Picard­
Borel, (Gauthier-Villars, Paris, 1929)]. We have not shown 
that the zeros of (2.19) are not canceled by some zeros of the 
denominator, that is, zero may still be an exceptional value 
of (2.18). In order to settle this point, if not for the sake of 
completeness, we have to draw the Riemann surfaces of 
Figs. 8 and 9 to convince ourselves that double points indeed 
appear at the expected solutions of (2.19). 
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x 

FIG. 5. Schematic solution of (2.26). 

The branch points occur for 

x' ~ (4n - IH7r 
or 

Using the definition of z, this gives 

L Re k ~ 2n7r - !7r. 
Writing the first of Eqs. (2.25) for large y', 

!eU
' sin x' ~ -x'. 

(2.27) 

(2.28) 

(2.29) 

Hence, when x' is sufficiently large, the solution 
of (2.29) gives 

(kLl-Plane 

x - Dauble Paints 

-6 .. -4 .. -2,.. 0 2.. 4.. 6,.. 

FIG. 6. Structure of the (kL)-plane showing double points. 

of the box. The distribution of the double points 
in the Z-plane and the branch points in the A-plane 
are schematically shown in Figs. 6 and 7. 

3. STRUCTURE OF THE REIMANN SURFACEu 

The next problem is to construct the complete 
Riemann surface w = F(A) and to establish the con­
nectivity of the different sheets. We have found 
no other way than to plot out a portion of the 
Riemann surface explicitly and examine it. For this 
purpose we write (2.15) as 

A' = Z ~(Z cot Z - 1). (3.1) 

Putting Z = x + iy, and separating real and 
imaginary parts of A', we have 

y' ~ In x' 
or 

(2.30) Re A' = r cos (J = (AC + BD)/(C2 + D2), 
(3.2) 

y ~! In x. 

This gives the asymptotic relation between x and 
y for those values of Z which are solutions of (2.19). 
To determine the branch points in the A-plane, we 
go back to Eq. (2.15) written in terms of Z: For 
large y, cot Z ~-i, and 

Hence 

or 

Also 

= ix - y. 

tL 1m A ~ x = !L Re k 

1m A r-v 4 Re k. 

(2.31) 

(2.32) 

Re A ~ -8y/L ~ -8 In x/L ~ -O(In L/L). 
(2.33) 

Similarly from the values (-x + iy) in the Z-plane 
we get the complex conjugate branch points in the 
A-plane: 

Re A = -O(In L/L) , 

ImA = -4 Re k. 
(2.34) 

The interesting result is that, asymptotically, the 
imaginary part of A is independent of L, the length 

1m A' = r sin (J = (BC - AD)/(C2 + D2), 

where 

A = (x2 - y2) sin x cosh y - 2xy cos x sinh y, 

B = 2xy sin x cosh y + (x2 - y2) cos x sinh y, 

C = x cos x cosh y + y sin x sinh y - sin x cosh y, 

D = y cos x cosh y - x sin x sinh y - cos x sinh y. 

-----....... K2 

------_KI 

KI' 

-----__ 2' 

o 

-lID 

(3.3) 

).- Plane 
_ - Branch Paints 

With Cuts 

FIG. 7. The X-plane showing the branch points with cuts. 

13 H. Weyl, Die Idee der Riemannschen Flache (Teubner, 
Stuttgart, Germany, 1923). F. Klein, On Riemann's Theory 
of Algebraic Functions and Their Integrals (Dover Publications, 
Inc., New York, 1963). 
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5.0 

10.0,-------____________ -, 

9.0 

Z Plane 

Constant "r" Lines 

Z Plone 
~·).I+il.t 

(a) 

(b) 

Con,fonl AI '),2 Lines 

(c) 

Z Pla.e 
Constent 9 Lin •• 

FIG. 8. (a) The Z-plane with constant r-lines. Notice the 
two double points. (b) The Z-plane with constant O-lines. 
These are orthogonal to the constant r-lines. (c) The Z-plane 
with contours for real and imaginary parts of the function 
)..' = )..'(Z). 

First we plot out the r = constant and (J = 
constant contours, and obtain the double points 
[Figs. 8(a)-(c)}. Incidentally the plot demonstrates 
that the assumption of simple zeros [Eq. (2.16)} is 
valid. One also notices that the periodic structure 
of the double points is of great help in constructing 
the Riemann surface. Finally, in Figs. 9(a) and 9(b) 
we have plotted parts of the first and second sheets 
of the Riemann surface Z(X/). This is enough to 
find the behavior of the function w = F(X). The 
x = constant lines in Fig. 9 clearly show the linking 
of the sheets across the cuts. 

Obviously for real X, we can arrange the sheets 
in a definite order (Fig. 3) as there is no crossover. 
We number them as 1, 2, .. , , starting with the 
lowest unperturbed eigenvalue. We also number the 
branch points in the order of their increasing imag-

First Sheet of the Rlemonn Surface 

Z· Z!~) 

.--5,0 

.=>--4,0 

-10.0 10.0 

(a) 

r------------,20.0---------.. 

•• -8.2 

.. *-7.0 

.--6.0 

tm~ 

15.0 

10.0 

5.0 

o 
R, A' 

(b) 

Stcond ShMt of the Ri,mann 
Surfact Z. Z (1.1) 

10.0 

FIG. 9. (a) The first sheet of the Riemann surface, Z = Z()../). 
Note the single cut. The scales along Re )..' and lm )..' are 
not the same. (b) The second sheet of the Riemann surface 
Z = Z()../). Note the two cuts. The lower one is the same cut 
as in (a). All the higher sheets have similar appearance. 
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inary parts in the upper-half A-plane as 1, 2, '" . 
The associated complex conjugate branch points are 
I', 2', ... , respectively. 

At the pair (1, I') the first sheet containing the 
eigenvalue EI is connected to the sheet that contains 
E2. Clearly the pair (N, N') connects the branch 
containing the eigenvalue EN to that containing EN+l' 
Also every sheet, except the first one, has two pairs 
of branch points, one conjugate pair connecting it 
to the next lower one and the other conjugate pair 
to the next higher one. 

Starting from A = 0, W = EI, if we go around the 
branch point 1 (or I') and come back to A = 0, 
we reach W = E2' Any other path not containing 
these branch points brings us back to EI' Similarly, 
proceeding from W = EN+I and A = 0, and going 
around the branch point N (or N') to A = 0, we 
arrive at W = EN' If we go around the branch point 
(N + 1) or (N + 1)', we arrive at EN+2' In Fig. 9 
we have drawn the cuts connecting the first to the 
second sheet and the second to the third sheet. 
Starting at A = 0, W = E2, and going around both 
the branch points 2 and 1 back to A = ° along a 
positively oriented contour, that is, a path that keeps 
the branch points to its left, one clearly ends up 
at Ea. A traversal of the same path in the reverse 
direction leads however to EI' 

4. CONTINIDTY OF BOUND AND UNBOUND STATE 

We are now ready to examine the analyticity 
of the ground-state properties in the A-plane. Con­
sider Eq. (1.14) first. We have the first N eigen­
values inside the contour C (Fig. 1) and we want 
to determine the smallest value of A for which the 
contour is pinched.6 From the structure of the 
Riemann surface described above, we know that 
the only coalescence we will have to consider is 
that of the Nth root with the (N + l)st root. 
It follows from (2.32) that the critical value of A is 
of order kF' as the imaginary part is O(kF)' Note 
that the result is independent of L, the length of 
the box, in the limit L ~ CD. 

The branch points responsible for the singularity 
are the Nth and N'th branch points of the Riemann 
surface, and they are away from the real axis by 
a distance O(kF ). This leaves a strip of finite width 
parallel to the real axis in which one can analytically 
continue from the positive-A to the negative-A side. 

Similarly we can apply the above argument to 
the single-particle density matrix (1.9). Combining 
this with our discussion in Sec. 1,14 we conclude 

14 It is convenient at this point to think of the even solu­
tions of (1.5), in order that Eq. (1.13) may apply unchanged. 

that the density matrix PI(A) is analytic in a strip 
of finite width enclosing the real A-axis. Obviously, 
there is a possibility that the density matrix has 
a larger region of analyticity. For instance, if the 
limiting singularity in the energy Eo(A) happens to 
be a zero of N(E, A) in (1.9), this generates a double 
pole for (xl PI Ix'), and we can move the contour 
around it. This possibility has not been completely 
settled. 

5. CONCLUSIONS 

With the mathematical formalism finished, we 
turn to its physical interpretation, and expatiate 
on some examples already mentioned in Ref. 2. The 
existence of a continuity of state between liquid 
and gas is of course universally known. In a classic 
paper on phase transitions, Yang and Leel6 demon­
strated that this could be interpreted as analyticity 
of pressure and density in a finite strip in the com­
plex plane of fugacity enclosing the entire positive 
real axis (the physical region). We have simply 
reversed the procedure to show a continuity be­
tween bound and unbound states by finding the 
analytic behavior of Eo(A) and PI (A) in a domain 
in the A-plane including the physical region. 

An example of great heuristic value is the well­
known phase transformation of metallic Cerium. IS 
Solid face-centered-cubic Ce shows a phase trans­
formation with a critical point.17 Both the phases 
involved (ex and 'Y) have the same structural sym­
metry; otherwise such a continuous transition is not 
possible.18 The classical expanation of this transi­
tion, due to Pauling and Zachariasen,19 asserts that 
in the 'Y-to-ex transformation, the bound i-electron 

For odd solutions one can derive the equation 

i
lL 

EN(E, A) = - 1/1,2 dx. 
-iL 

For real A and therefore real E, N(E, A) cannot vanish, and 
the zeros lie again in the complex plane. We have not been 
able to find their locations. Since the ground-state energy is 
analytic in a finite strip in the A-plane, it seems plausible that 
a similar result holds for the density matrix PI even for odd 
solutions. Considering the peculiar nature of the delta func­
tion (an "ideal element" in the function space), we are not 
surprised to face such a difficulty. On the other hand, it is 
extremely fortunate that is does provide an example of a 
pathological as well as of a normal situation. 

16 C. N. Yang and T. D. Lee, Phys. Rev. 87,404 (1952). 
10 A. Jayaraman, Phys. Rev. 137, A179 (1965). We are 

indebted to Dr. T. Geballe for drawing attention to this work. 
17 For a complete phase diagram, see K. A. Gschneidner, Jr., 

R. O. Elliott, and R. R. McDonald, J. Phys. Chem. Solids 23, 
555 (1962). 

18 L. Landau and E. M. Lifshitz, Statistical Physic8 
(Pergamon Press, Ltd., London, 1958), p. 260. . 

19 L. Pauling [quoted by A. F. Schuch and J. H. Sturdi­
vant, J. Chem. Phys. 18, 145 (1950)]; W. Zachariasen [quoted 
by A. Lawson and T. Y. Tang, Phys. Rev. 76, 301 (1949)]. 
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becomes unbound (41 -7 5d promotion). The critical 
point marks the end of this transition of the I-elec­
tron, when the degree of ionization 41 -7 5d is 50%. 
Here in complete analogy with the liquid-gas case, 
one can think of a continuity between bound and 
unbound states. It must be emphasized, however, 
that we are using this as an aid to comprehension 
rather than a fait accompli. Phase transitions are 
cooperative phenomena and depend critically on 
electron correlations-a fact not taken into account 
in our demonstration above. In the presence of weak 
electron-electron interaction, our conclusion about 
the analyticity of EoC>..) and P, (>..) will not be affected 
and a continuity between bound and unbound states 
persists. 

It is easy to see that the existence of the limit 
N -7 IX>, L -7 (Xl, keeping N /L constant, is crucial 
to the result. If we simply let L -7 (Xl without the 
concomitant N -7 (Xl, we get the usual results of 
the potential theory. It is known that the use of 
a finite box and then the limit L -7 (Xl, N -7 (Xl, 

N / L constant, is a physicist's way of handling the 
nonseparable Hilbert space appearing in the many­
body problem. 20 Perhaps a more sophisticated math­
ematical treatment would establish our result almost 
trivially from this basic fact. 

Note added in proof. Dr. S. Vosko has kindly 
pointed out that a different example of the con­
tinuity of bound and unbound states may be found in 
D. Butler, Proc. Phys. Soc. (London) 80,741 (1962). 
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The set of Gelfand states corresponding to a given partition [hI •.• h..] form a basis for an irreducible 
representation of the unitary group Un. The special Gelfand states are defined as those for which 
[hI' .• hn] is a partition of n and the weight is restricted to (11 •.. 1). We show that the special Gel­
fand states constitute basis for the irreducible representations of the symmetric group S .. and use 
this property to construct explicitly states in configuration and spin-isospin space with definite 
permutational symmetry. 

I. INTRODUCTION 

T HE symmetric group plays a fundamental role 
in many branches of physics and particularly 

in atomic and nuclear shell theory. The construction 
of states that are bases for irreducible representa­
tions (BIR) of the symmetric group is therefore 
an important task on which much work has been 
done. 1 

The purpose of this paper is to show that recent 
developments in the BIR for the unitary groups, 
i.e., the Gelfand states2

-
4 allow us to discuss the 

BIR for the symmetric group from a simple and 
fruitful angle. We shall introduce the concept of 
special Gelfand (SG) states and discuss their prop­
erties under permutation showing that they are 
BIR of the symmetric group. We will then use this 
concept for the explicit construction of states with 
permutational symmetry, illustrating our technique 
by the discussion of states in configuration space, 
as well as in the spin-isospin space of supermultiplet 
theory.6 

n. GELFAND STATES 

The work of Gelfand/ and later of others/·4 

indicates that the BIR for the n-dimensional unitary 
group U" are given by the Gelfand states 

1 :::; r ::::: 8 S n, (1) 

in which the 8th row [hr.] gives the irreducible rep­
resentation of the subgroup U. in the chain Un ~ 
U .. _1 ~ '" U. ~ ... ~ U1, which defines the bases. 

* This work was supported by the Comisi6n Nacional de 
Energfa Nuclear, Mexico. 

1 An excellent summary of many of the aspects of the work 
done on the symmetric group is given by M. Hamermesh, 
Group Theory and its application to physical problems (Addison­
Wesley Publishing Company, Reading, Massachusetts, 1962), 
Chap. VII and also Chaps. X, XI. 

2 I. M. Gelfand and M. I. Zetlin, Dokl. Akad. Nauk, SSSR 
71, 825 (1950). 

3 M. Moshinsky, J. Math. Phys. 4, 1128 (1963). 
4 G. E. Baird and L. C. Biedenham, J. Math. Phys. 4, 

1449 (1963). 
• E. P. Wigner, Phys. Rev. 51, 106 (1937). 

The Gelfand states have been constructed ex­
plicitly3.4 in terms of polynomial expressions in the 
creation operators a~: applied to a vacuum state 
10). The a~: can be considered as vectors in an 
n-dimensional space. We shall interpret6 8= 1, ... ,n 
as the component index of this vector while p. will 
be the index distinguishing between vectors. We 
introduce the annihilation operators a~' satisfying 
the commutation rules 

[a~-", a;.] = o~' 15:', (2) 

and with their help we can write the generators of 
U" as 

c·- - L + ~.' • = a~.a, 8,8' = 1, .,. n . (3) 
l' 

The Gelfand states (1) are eigenstates of the 
operators C:, 8 = 1, n with eigenvalues w. 
given by3.4.7 

• .-1 

W. E h,. L hrs - 1 • (4) 
r=1 r-l 

The set of eigenvalues (WI .•. w,,) gives the weight 
of the state. 

The Gelfand state for which h.. = hrn for all 
1 :::; r ::s; 8 :::; n has, from (4), the weight (hI" ..• hn,,), 

i.e., is of highest weight.3
•
4

•
7 This state will be 

denoted by Ihrn ) and its explicit form is 

Ihrn) = N(hr .. )(il~)h"-h··(il~~t··-h •• ... (il~::::t·· 10) 
(5) 

where N is the normalization constane·4 

[
" .-1 J' N(hr,,) = g g (hr" - h." + 8 - r)! 

[ 

n J-i X n (hrn + n - r)! (6) 

6 We use here an interpretation of the indices 1', s opposite 
to that employed in Ref. 3. This proves useful when we con­
struct states with permutational symmetry in Sees. V and VI. 

7 J. Nagel and M. Moshinsky, J. Math. Phys. 6. 682 (1965). 
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and A is the determinant 

4;::::::;: = L (-l)tJWa;l'la;~ •• ... a;r.,., (7) 
!IJ 

where I.l3 stands for a permutation of 8 1, 8 2, ••• 8 r • 

m. LOWERING OPERATORS 

To obtain all the Gelfand states (1) from the 
highest-weight state (5), Nagel and Moshinsky7 in­
troduced the concept of the lowering operator. Spe­
cifically, the lowering operator L:, 1 ::;; r < 8 ::;; n is 
a polynomial function of the generators C;', r, r' = 
1, ... , 8 of the U. group that transforms a Gelfand 
state of highest weight in U'- iI characterized by 
the partition [h"._I] into a Gelfand state, again of 
highest weight in U._ 1, characterized by the partition 
[h"._1 - 8".]. The explicit form of the lowering 
operator iss 

,-I 

L C:.C:~ ... C:· 
Cl;p>OP-l>' ··''''>(I'1-r+l 

fJ .-1 

X II E;q~ II Erq , (8) 
i-I o-r+l 

where 

E"a == c: - C: + q - p. (9) 

The lowering operators L: and the hu are only 
defined for 1 ::;; r < 8 and 1 ::;; r ::;; 8, respectively. 
We shall introduce though, for convenience in the 
following discussion, the definitions 

h,,_, == 0, 8 = 1, '" ,no (10) 

With the help of the lowering operators, the 
general Gelfand state (1) is obtained from the 
highest-weight state (5) by the expression 

Ih .. ) = {N(h .. )(L~)hll IT (L;)h,.-h,. ... .-1 
X iT (L:)hro-h,,- • ... iI (L:)h .. -h,.-.} I h ... ) , (lIa) 

r-l r-l 

where N(hu) is a normalization constant that, from 
the discussion in Ref. 7, has the form 

N(hu) = {iI [IT (h",,_, - h.",_, + q - p~! 
m-2 o~,,-I (h"m - ha ... - I + q - p). 

X IT (hpm- 1 - hom + q - p - 1) !J}' . (lIb) 
0>,,-1 (h"m - hqm + q - p - I)! 

The operators L: with the same lower index 8, 

but with different indices r, when acting on highest 

8 Note that the appearance in (8) of the reciprocal operators 
E.a·-l is spurious as they are canceled by the operators E. 
in the next product. The notation is compact and so we shall 
use it in preference to stating that the last product in (8) 
must not contain factors E, ••. 

weight states of U. commute, and so their order 
in (11) is irrelevant. The operators L: with different 
lower indices 8 do not commute, and so care should 
be taken to apply them in the order indicated in 
(lla). 

IV. SPECIAL GELFAND (SG) STATES AND THE 
BIR OF THE SYMMETRIC GROUP 

Let us now define the SG states of U .. as the 
states (1) for which (a) the representation [h" .. J of 
Un as a partition of n; (b) the states have weight 
(11 ... 1). 

From (4) we see that the condition (b) implies that 

(12) 

and from (a) and the restrictions2
-

4 imposed on the 
representations [hu ], we see that the set of numbers 
(Ir2 ••. rn_1r,,) has all the properties of a Yamanouchi 
symbol. 9 We see that the SG states are fully char­
acterized by [h"J, (r,,) (where we drop the index n 
in [h",,]) and from (U) they are given by 

I[h,,](r,,» == I[hi ••• hn](lr2 ... r,,» 

= N([h,,](r,,»(L~L;' ... L:' .,. L~·) Ih,,), (13) 

where N is a normalization coefficient given by (Ub) 
when the hu are particularized to the values (12). 

The Gelfand states are BIR of Un and therefore 
also bases for an, in general, reducible representation 
of the symmetric subgroup S" of U", The SG states, 
which are a subset of the set of Gelfand states 
satisfying (a), will also be a basis for a representa­
tion of Sn as the set of operators C~, C:, ... , C: 
is only permuted by the elements of S". From the 
appearance in the SG states of both [h"J which is 
a partition of nand (r,,) which has all the properties 
of a Yamanouchi symbol, we expect the SG states 
to be BIR of S", 

To prove this point we shall first determine an 
operator function of the generators C:', 8, 8' = 
1, ... , n, whose effect on the SG states is the same 
as that of a permutation. 

We start by noticing that because of (a), the 
SG states are given by homogeneous polynomials 
in the a,.: of degree n acting on the vacuum state, 
while because of (b), the polynomials must be of 
first degree in each value 8 = 1, ... , n of the 
index 8 .Therefore the SG states can always be 
written as 

~ See Ref. 1, p. 221. We use notation (Ira' .. rn) for the 
Yamanouchi symbol rather than (rn •.• r21) as it is a more 
natural one for expressions such as (13). 
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(14) 
P.·· "JAn 

where the A's are some constants. 
Let us now apply to the states (14) the operator 

(rs) == C:C: - 1. (15) 

Taking a typical term in the summation (14), we 
immediately see from the definition (3) and the 
commutation rules (2) that the operator (rs) inter­
changes the indices rand s in this term. Therefore 
the operator (rs), when acting on SG states, behaves 
as a transposition. As all permutations can be ex­
pressed by products of transpositions, we see that 
the effect of a permutation on a SG state can be 
reproduced by an operator which is a polynomial 
function of C:, r, s = 1, ... , n. 

We can now ask what is the representation of 
the symmetric group 8" with respect to SG states. 
Clearly we can restrict ourselves to representa­
tions of transpositions and in fact, only to the trans­
position (n - 1, n) as the other transpositions 
(n - 2, n - 1), (n - 3, n - 2) ... (12) are given 
in terms of the generators of the subgroups U"-I' 
U,,_2, ... , U2 of U" and so are obtained when 
we discuss the representations of 8 10 - 1, 8"-2, ... , 8 2, 

respectively. 
The representation of the transposition (n - 1, n) 

is given by the matrix 

11([h,,](r~)1 C:-1C:_l - 1 l[h,,](r,,»II. (16) 

To evaluate the matrix elements, let us first write 
r" == r, r,,_1 == s so that the Yamanouchi symbols 
become (Ir2 ... r,,_2sr) and similarly for (r~). Notic­
ing2.4

•
1o then that the matrix elements of C:-1 are 

independent of the representations of U,,-3 ~ ... ~ 
U2 ~ U1, and diagonal in those of U,,_2, and that 
C:-l is a raising generator3 with the Hermitian 
property C:-1 = (C:- 1)+, we obtain 

([hI .•• h,,](lr~ ... r~_:a8'r') I 

h" 
X C:- 1 h" 

h" - a"r 

10 J. Nagel and M. Moshinsky, Rev. Mex. Fis. 14, 29 
(1965). 

I h" 

X < h" - a"r 
h" - a"r - a", I ... 

h" 
C:-1 h _ h" 

" a"r -

I 

'>or 
h" I} 

C:-
1 

h _ :" _ r) IT ar•·r., 
p U pr Up. p-1 ~ 

h" 
X h" - a", 

h" - ~~r. - a", ... I 
(17) 

where the appearance of (1 + a,.)-1 is due to the 
factor! that we have to put in the general formula. 
(17) if it is going to remain valid for r = s. 

From the analysis of Gelfand and Zetlin,2,3 .10 we 
see that the matrix element of C:-1 required in (17), 
is given by 11 

h" 

C:-1 h _ h" 
" a"r-

I 
a,,) 

I 

[ (hr." - 1) IT (hr." + a"r + a",)/ IT (hr.,,)]', 
»-1 p-l 

,,"r 
(18) 

where 

hr., == hr - h, + s - r. (19) 

Using (18) we could immediately write down the 
explicit expression for the matrix of the transposition 
(n - 1, n) with respect to the SG states. This 
matrix turns out to be identical to the coorrespond­
ing one in the irreducible representation of 8 n derived 
by standard methods.9 For example, when r, S < 
n - 1, r ~ 8, we get from (17) and (18) 

([h,,](r~) I (n - 1, n) I [h,,] (r,,) ) 

= (hr •• )-1 arr . a ... + [1 - (hr .• )-2]f a,.. a.r., (20) 

which coincides with the corresponding case in Eq. 
(7-111) of Ref. 1, p. 221. 

We conclude therefore that the SG states are 
BIR of the 810 group. 

V. CONFIGURATION-SPACE STATES WITH 
PERMUTATIONAL SYMMETRY 

When we are dealing with systems of identical 
particles, all observables are invariant under per­
mutations and so it is important to construct n­
particle states with permutational symmetry,12 i.e., 
states characterized by the partition [h,,] of nand 
by the Yamanochi symbol (r,,). 

11 There is a misprint in a phase factor in the formula of 
Gelfand's paper that is corrected in Refs. 4 and 10. 

12 See Ref. 1, pp. 243-249. 
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In this section we shall show how to express, 
as special Gelfand states, the configuration-space 
states with permutational symmetry. 

The single-particle states in configuration space 
will be denoted by 

!/I ir), (21) 

where r is the position vector of the particle and 
J.l characterizes the state, i.e., 

J.l = (vlm) , J.l = (kxk.k.) , etc., (22a, b) 

depending on whether we are dealing with particles 
in a central potential with radial quantum number 
v, angular momentum l, and projection m, or free 
particles with (k"k.kz) being the components of the 
momentum, etc. We shall limit our discussion to 
problems in which the number of single-particle 
states is finite, say p and so, choosing an appropiate 
enumeration convention, we have J.l = 1, 2, .,. , p. 

We introduce now the correspondence13 

!/Iir,) ~ a;. 10), (23) 

where 8 is the particle index, ap: are commuting 
creation operators of the type discussed in Sec. II, 
and 10) is the vacuum state. An n-particle wave­
function formed from products of the !/I's corresponds 
to the state 

(24) 

where (8182 ... 8.) is a permutation of (12 .,. n) 
while the J.l'S can take any of the values J.l = 1, 2, ... ,p. 

We can use well known techniques, such as those 
of Young symmetrizers,12 to build up linear com­
binations of the states (23) that have definite per­
mutational symmetry though, in general, the states 
formed in this way do not give an orthonormal 
basis. In this paper we will construct the states 
by the procedures indicated in the previous sec­
tions. We notice first that from the ap:, aP

'" we 
can define the following operators 

(25a, b, c) 

From (2) we obtain the commutation relations of 
the operators and show that they are the generators 
of the groups U pn, 'Up, Un, respectively.14 

With respect to U pn, ap: corresponds to a single 
vector of dimension pn, and so the set of all linearly 
independent states (24), with arbitrary J.li, 8;, form 
a BIR for the completely symmetric representation 
of Upn characterized by [n]. The unitary group U pn 

13 M. Moshinsky, Nuel. Phys. 31, 384 (1962). 
14 T. A. Brody, M. Moshinsky, and I. Renero, J. Math. 

Phys. 6, 1540 (1965). 

admits as subgroup the direct product 'Up X Un 
whose generators are given by (25b, c), and so we 
can characterize further our states by the represen­
tations [k xp ], 1 :::; A :::; p of 'Up and [hpn] , 1 :::; P :::; n 
of Un. It is well known3.l3 that, to be contained 
in the representation [n] of Upn, both [kxp] and [hpn] 
must be the same partition of n, i.e., 

(26) 

We can further characterize our states by the 
representations [kxp], 1 :::; A :::; J.l < p of the subgroups 
'Up in the chain 'Up :) 'UP - l :) ... 'Up :) ... 'Ul, 
and by the representations [h rB ], 1 :::; r :::; 8 < n of the 
subgroups Us in the chain Un :) Un-I:) ... U. :) 
... Ul , i.e., our states become Gelfand states with 
respect to both the 'Up and Un groups, and could 
be represented by 

(27) 

The highest-weight state in the set (27) is obtained 
when 

1 :::; A :::; J.l :::; p, 

1 :::; r :::; 8 :::; n, 
(28) 

and its explicit expression3.l3 is given by (5). An 
arbitrary state (27) can be obtained from the one 
of highest weight by means of lowering operators 
both for the Un group, i.e., L:, as well as for the 
'Up group, i.e., £~, where the latter are given by 
a definition identical to (8) when we replace C:' 
bye:'. 

As indicated above, the states (24) correspond 
to n-particle states formed from the !/Ip(r.) only if 
(81 ••• 8.) is a permutation of (12 ... n) and so 
their weight is (11 ... 1). We see therefore that 
when we expand the states (24) in terms of the 
states (27), we need only concern ourselves with 
those of the latter type that are SG states of Un. 
Assuming, then, that we have, at most, p single­
particle states, the most general n-particle state with 
permutational symmetry is given by 

kIP k2p •...... kpp 

kll 

= {;rr(kxp)(£~l" IT (£;l"-kA, tr (£~)k~p-ohp-, 
X-I X-I 

X N([hp](r,,» L~ L;' ... L:"} Ih,,), (29) 

where we have dropped the index n in [h"n] , the 
state Ihp) is given by (5) and [k"p] = [hpJ as in (26). 
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The £~, L: are the lowering operators and ;n(k).p) , 
N([h,,](r,,) the normalization coefficients of the groups 
'Up, Un, respectively. The operators L:, £~ commute, 
as from (2), 

[C:, e~] = O. (30) 

While the states (29) form a complete set, their 
characterization with respect to the chain 'Up :) 
'Up_1 :) ••• 'U1 has no particular physical signif­
icance. We would like rather to choose a chain of 
subgroups of 'Up that would be related with sig­
nificant physical observables. For example, if we 
are dealing with single-particle states in a common 
central potential, i.e., IL = (vlm) it is very con­
venient to characterize the states by the total 
arbital angular momentum of the n-particle system 
and by its projection. 

It can be easily shown13
•
15 that the operator of 

angular momentum 2., q = 1, 0, -1 can be given 
in terms of the generators of 'Up by the expression 

2. = L L {[l(l + 1)]! (l1m'q Ilm)e:::::'), (31) 
III m,m' 

where (I) is a Wigner coefficient of the ordinary 
rotation group. The operators 2. satisfy the usual 
commutation rules and so are the generators of a 
R3 subgroup of 'Up. 

We would like now to find linear combinations 
of the states (29) with definite [h,,](r,,) but variable 
[k).p], 1 ~ A ::::; IL < P that would be eigenstates of 20 
and 

1 

22 = L (-1)"2.2-., (32) 
cr--l 

with eigenvalues M and L(L + 1), with L integer. 
We have no problem for 20, as from (31) we see 
that it is expressed only in terms of the generators 
e::::: = e:, while from (4) we see that the Gelfand 
states are eigenstates of these generators. As the 
matrix elements of the e:' with respect to Gelfand 
states have been obtained by Gelfand and Zetlin/· 4

•
1o 

we could immediately obtain from (31) the matrix 
elements of 2. and so finally determine the matrix 

\I (k{~ I 22 I k{p) \I 
= \I L L (-1)"(k{~ I 2. IkAP)(kAP I 2-. Ike) \I. (33) 

kAJIo 0: 

The diagonalization of this matrix would provide, 
besides the eigenvalues L(L + 1), i.e., the irreducible 
representations L of R3 contained in a given rep­
resentation of Up, the eigenvectors with whose help 
we could construct the linear combinations of the 

15 M. Moshinsky, "Group Theory and the Many Body 
Problem," in Physics of Many Particle Systems (Gordon and 
Breach Science Publishers, Inc., New York, 1965). 

states (29) that are eigenstates of 22 and 20' i.e., 
the states 

laLM; [h,,](r,,», (34) 

where a is an index or set of indices that distinguishes 
between states with the same angular momentum L, 
projection M, and permutational symmetry [h,,](r,,). 

The index or indices a could be correlated with 
eigenvalues of other operators formed from the 
e:' that commute with the 2. and among them­
selves. Some of these operators can be easily found 
if there are chains of subgroups of Up that contain 
Ra, but the problem of finding a complete set of 
operators is, in general, a difficult one.16 

The states (34) are expressed in terms of homo~ 
geneous polynomials of degree n in the a;. acting 
on 10), but they could be immediately translated 
into the usual notation in terms of the single­
particle states v"p(IL.) by means of the correspondence 
(23). 

Example: States of permutational symmetry in the 
p-shell. 

As an example of the previous developments, we 
consider the problem of the determination of n­
particle states of definite permutational symmetry 
and orbital angular momentum when the single­
particle states vlm are restricted to a particular v 
and to l = 1. The single-particle states are then 
characterized by m = 1, 0, -1 and can be enu­
merated as follows: 

I: 1 2 
(35) 

1 o 
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TABLE I. Characterization of the generators of 'ti, by their 
Racah tensor prperties with respect to R3• 

where we used (26) and the notation k12 = U I , 

k22 = U2, kll = VI' The N(hlh2ha) is given by (6) 
while the other normalization constants can be ob­
tained from (Ub). The lowering operators L: simplify 
considerablyl7 when they act on states in which only 
the first three terms in the partition are different 
from zero. The T" in the Yamanouchi symbols are 
restricted to T" = 1, 2, 3. 

To obtain states equivalent to (34), we first give 
in Table I the linear combination of the generators 
e:' of 'Ua that are Racah tensorsl6 of rank 0, 1, 2, 
denoted, respectively, by X, ~., G •. 

From (31) we see that the 2. are the operators 
of orbital angular momenta, and from the fact that 

o == ~ (-Ir<Uqq' 1 2r) G_. 2. ~.' (37) 
a.a ." 

is a scalar, we conclude that 

~o, ~2, 0 (38) 

are three commuting operators. These operators 
were shown to characterize completely the states 
that are BIR of 'Us in the 'Ua ~ Ra chain. 16 

The states (36) are eigenstates of ~o with eigen­
value 

M = - hi - h2 - ha + U1 + U2 + VI' (39) 

The matrix of 22 with respect to the states (36) 
was obtained explicitly in Ref. 15, and by a similar 
procedure to the one followed there one could ob­
tain the matrix of O. As these matrices commute, 
we obtain from their simultaneous diagonalization 
the completely defined eigenvectors with whose help 
we could construct the linear combinations of the 
states (36) that are eigenstates of 0, 22

, 20, i.e., the 
states 

I",LM; [h,,](T,,», (40) 

One can also obtain the states (40) by directly 
evaluating the states in the 'Us ~ Ra chain16 that 
are of maximum weight in U" and then, applying 
the operators L: as in (36). 

VI. SPIN-ISOSPIN STATES WITH 
PERMUTATIONAL SYMMETRY 

The construction of spin-isospin states with per­
mutational symmetry can be done along lines very 
similar to those discussed in the previous section. 
The only difference is that now the single-particle 
state is xu.(s) where u = !, -! is the spin index, 
r = !, -! is the isospin index, and s is the particle 
index. The single-particle states are then charac­
terized by the indices ur and can be enumerated 
as follows: 

1 2 3 4 

(ur) (!!) (! -i) (-i i) (-i -i) 

We establish the correspondence 

X<TT(S) ~a:. 10) 

. (41) 

(42) 

and see immediately that the states with permuta­
tional symmetry are given by (29) when p = 4. 

To obtain states characterized by definite spin 
and isospin, we first give, in Table II, the linear 
combinations of the generators e:' of 'U4 that are 
Racah tensors of definite rank with respect to spin 
and isospin. 

From (31) we seel6 that S., q = 1, 0, -1 are the 
operators of spin; T., ij = 1, 0, -1 are those of 
isospin; while R •• is a Racah tensor of rank 1 with 
respect to both spin and isospin with projections 
q, ij, respectively. The trace of the generators of 
'U4 is denoted by 91 and is a scalarl6 with respect 
to both spin and isospin, as it commutes with S., T •. 
The operators 

:a: == S·R •• T·, (43a) 

e == S·S.,R •• R··· + R •• R··'T·T •. 

- e····" eiiii'ii "S.R.·ii,R. ",i"T., (43b) 

in which repeated indices are summed and where 
the e··'·" are the completely antiRymmetric tensors, 
are clearly scalar with respect to both spin and 
isospin and so commute with 

(44) 

where we denote by '" the eigenvalue of O. Furthermore, :a:, e commute,18 and so we could use 
17 P. Kramer and M. Moshinsky, Nuc!. Phys. (in press). 18 M. Moshinsky and J. Nagel, Phys. Letters 5,173 (1963). 
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TABLE II. Characterization of the generators of '11.4 by their Racah tensor properties with respect 
to spin and isospin. 

these six commuting operators to characterize the 
states that are BIR of 'U4 in the 'U4 ~ S'U2 X S'U2 

chain, where the S'U2 refer to the spin and isospin 
spaces. 

From the general analysis of Gelfand and Zet­
lin,2.4·10 we could obtain the matrix elements of 
e~', J.L, l = 1, .. , 4 with respect to the states (29) 
with p = 4, and so, in principle, obtain the matrices 
of the operators (43), (44), with respect to these 
states. From the simultaneous diagonalization of 
these commuting matrices we obtain the eigen­
vectors with whose help we construct the linear 
combinations of the states (29) that are eigenstates 
of these six operators, i.e., the states 

1~8SM8TMT; [h,,](r,,», (45) 

where we denote by ~, 8 the eigenvalues of z:, e. 
The determination of states of the form (40) and 

(45), besides being conceptually simple, seems to 
be highly mechanizable. Therefore we plan to have 
programs for electronic computers that will con­
struct states with definite permutational symmetry. 

Note added in proof. It is interesting to relate the 
states with definite permutational symmetry ob­
tained in this paper with those derived by the stand­
ard projection technique,19 i.e., 

.T,[h.] - .hhl "'" D[h.] (m) * ,I, (r \ ,., ,I. (r ) 
'" (r.) (rp') = ,£oJ +' (r.) (r.') 'Y1 11 'Y.. '" n. Il 

(46) 

where $ stands for an arbitrary permutation of the 
vectors r1, '" , rn, D is the IR [h"J of dimension 

19 Ref. I, pp. 111-113 and pp. 246 and 247. 

R 1_ 1 = -! e~ 

1 
RO-1 = v8 (e~ - e!) 

l[h.] and with its rows characterized by the 
Yamanouchi symbols (r,,), (r;), and 1/I.(r.) is a single­
particle state with 8 being a state index. If we assume 
that all the single-particle states are different, the 
state indices can be denoted by 1 ... n. 

Replacing $ by $-1 in (46), and making use of 
the unitary and real character9 of the D's, we can 
also write 

x $-11/11(r1) '" 1/I .. (r .. ). (47) 

From (46) we conclude that 'ltl::l(rp') is a BIR of 
the Sn group for the vectors r l , '" rn, characterized 
by [h"J and corresponding to the row (r,,). From (47) 
(taking into account that $-1 acting on r1 .. , r .. 
has the same effect that $ acting on the state indices 
1 ... n), we conclude that 'ltl!:lh') is a BIR of the 
S .. group for the state indices 1 '" n, characterized 
by [hpj and corresponding to the row (r;). 

We now note that, if in Sec. 5 p = n and the weight 
in 'Un is also (11 .. , 1), the state (29) can be char­
acterized by the Yamanouchi symbols (r;), (r,,) with 
respect to the groups 'U .. and U .. respectively, i.e., 
we have the state 

I [h,,] (r;), [hpJ (r,,) ). (48) 

If we establish the correspondance (23) between 
a~: 10> and the wavefunction 1/I~(r.), we see that the 
states (48) will be linear combinations of the wave­
functions 

1/I~.(r,.) '" 1/I~.(r •• ), 

where both (J.L1 ••• J.L,,) and (81 '" 8,,) are permuta-



                                                                                                                                    

698 M. MOSHINSKY 

tions of (12 ... n). Furthermore the states (48) 
are BIR of S,. characterized by [hpJ with respect to 
both the particle indices and state indices, with the 
rows of the representation being (rv) and (r;) respec­
tively. 

The states (46) and the states (48), in which we 
use the correspondance (23), are then clearly equiv-

JOURNAL OF MATHEMATICAL PHYSICS 

alent, and so we could construct the standard pro­
jection states by applying lowering operators in the 
explicit fashion indicated in (29). 
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Poles of the Proper Vertex Function in the Bethe-Salpeter Formalism* 
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A formal general proof of the statement of Goebel and Sakita is presented on the basis of the Bethe­
Salpeter formalism; namely, it is shown that the poles of a proper vertex function cannot appear in the 
corresponding scattering amplitude. Some related conjectures are also verified. An exactly solvable 
example is presented and discussed in this connection. 

1. INTRODUCTION 

ON criticizing the work of Geshkenbein and 
Ioffe' concerning an upper bound on the cou­

pling constant, Goebel and Sakita2 pointed out, on 
the basis of the nonrelativistic theory, that the poles 
in the a channel of the proper vertex function res) 
of three particles a, b, c do not appear in the scat­
tering amplitude of the two particles band c. 
Subsequently, this statement has been verified in 
an extended Lee model by Drell, Finn, and Hearn,3 

and in the case in which res) has no branch cut 
below the elastic threshold by Jin and MacDowell.4 

The latter4 have proposed the conjecture that the 
poles of res) will lie on a Regge trajectory of the 
b-c scattering amplitude. 

The purpose of this paper is to present a general 
proof of the statement of Goebel and Sakita on the 
basis of the Bethe-Salpeter formalism. We also 
verify the proposition of Jin and MacDowell. The 
general proof is given in the next section, and an 

* This work performed under the auspices of the U. S. 
Atomic Energy Commission. 

1 B. V. Geshkenbein and B. L. Ioffe, Phys. Rev. Letters 
11,55 (1963); Zh. Eksperim. i Teor. Fiz. 44,1211 (1963); ibid. 
45,555 (1963) [English transls.: Soviet Phys.-JETP 17,820 
(1963); ibid. 18, 382 (1964)]. 

2 C. J. Goebel and B. Sakita, Phys. Rev. Letters 11, 293 
(1963). 

3 S. D. Drell, A. C. Finn, and A. C. Hearn, Phys. Rev. 
136, B1439 (1964). 

4 Y. S. Jin and S. W. MacDowell, Phys. Rev. 137, B688 
(1965). 

exactly solvable example, which exhibits the Regge 
behavior, is discussed in the final section. 

2. GENERAL PROOF 

We consider the scattering Green's function G 
of two particles band c, in which an elementary 
particle a can appear as an intermediate state. On 
the basis of the Bethe-Salpeter formalism, G satisfies 
the integral equation 

G = K-' + K-'(I + A)G, (2.1) 

where K- 1 denotes the product of the propagator 
of b and that of c, and I + A is the irreducible 
kernel (I.e., the sum over all Feynman graphs for 
b + c ~ b + c which contains no b + c intermediate 
states) in the operator notation. The part A is 
characterized by the property that it contains at 
least one one-particle intermediate state of a. Hence 
A can be written as 

(2.2) 

where A denotes the irreducible vertex part for 
a ~ b + c, which contains neither a nor b + c 
intermediate states, while X is related to the process 
b + c ~ a, and K;' is the" free" propagator5 of a 
in the sense that it has no b + c intermediate states. 

6 If the particle a can be converted into other virtual states 
without passing through the b + estate, K. -1 must include 
such radiative corrections. 
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tions of (12 ... n). Furthermore the states (48) 
are BIR of S,. characterized by [hpJ with respect to 
both the particle indices and state indices, with the 
rows of the representation being (rv) and (r;) respec­
tively. 

The states (46) and the states (48), in which we 
use the correspondance (23), are then clearly equiv-

JOURNAL OF MATHEMATICAL PHYSICS 

alent, and so we could construct the standard pro­
jection states by applying lowering operators in the 
explicit fashion indicated in (29). 
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Poles of the Proper Vertex Function in the Bethe-Salpeter Formalism* 

N OBORU NAKANISHI 
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A formal general proof of the statement of Goebel and Sakita is presented on the basis of the Bethe­
Salpeter formalism; namely, it is shown that the poles of a proper vertex function cannot appear in the 
corresponding scattering amplitude. Some related conjectures are also verified. An exactly solvable 
example is presented and discussed in this connection. 

1. INTRODUCTION 

ON criticizing the work of Geshkenbein and 
Ioffe' concerning an upper bound on the cou­

pling constant, Goebel and Sakita2 pointed out, on 
the basis of the nonrelativistic theory, that the poles 
in the a channel of the proper vertex function res) 
of three particles a, b, c do not appear in the scat­
tering amplitude of the two particles band c. 
Subsequently, this statement has been verified in 
an extended Lee model by Drell, Finn, and Hearn,3 

and in the case in which res) has no branch cut 
below the elastic threshold by Jin and MacDowell.4 

The latter4 have proposed the conjecture that the 
poles of res) will lie on a Regge trajectory of the 
b-c scattering amplitude. 

The purpose of this paper is to present a general 
proof of the statement of Goebel and Sakita on the 
basis of the Bethe-Salpeter formalism. We also 
verify the proposition of Jin and MacDowell. The 
general proof is given in the next section, and an 

* This work performed under the auspices of the U. S. 
Atomic Energy Commission. 

1 B. V. Geshkenbein and B. L. Ioffe, Phys. Rev. Letters 
11,55 (1963); Zh. Eksperim. i Teor. Fiz. 44,1211 (1963); ibid. 
45,555 (1963) [English transls.: Soviet Phys.-JETP 17,820 
(1963); ibid. 18, 382 (1964)]. 

2 C. J. Goebel and B. Sakita, Phys. Rev. Letters 11, 293 
(1963). 

3 S. D. Drell, A. C. Finn, and A. C. Hearn, Phys. Rev. 
136, B1439 (1964). 

4 Y. S. Jin and S. W. MacDowell, Phys. Rev. 137, B688 
(1965). 

exactly solvable example, which exhibits the Regge 
behavior, is discussed in the final section. 

2. GENERAL PROOF 

We consider the scattering Green's function G 
of two particles band c, in which an elementary 
particle a can appear as an intermediate state. On 
the basis of the Bethe-Salpeter formalism, G satisfies 
the integral equation 

G = K-' + K-'(I + A)G, (2.1) 

where K- 1 denotes the product of the propagator 
of b and that of c, and I + A is the irreducible 
kernel (I.e., the sum over all Feynman graphs for 
b + c ~ b + c which contains no b + c intermediate 
states) in the operator notation. The part A is 
characterized by the property that it contains at 
least one one-particle intermediate state of a. Hence 
A can be written as 

(2.2) 

where A denotes the irreducible vertex part for 
a ~ b + c, which contains neither a nor b + c 
intermediate states, while X is related to the process 
b + c ~ a, and K;' is the" free" propagator5 of a 
in the sense that it has no b + c intermediate states. 

6 If the particle a can be converted into other virtual states 
without passing through the b + estate, K. -1 must include 
such radiative corrections. 
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We also consider the b + c scattering Green's a is nonsingular at S = SB. Then (2.9) and (2.10) 
function G in the absence of the particle a. It satisfies lead to 

(2.3) 

Now, assuming the existence6 of (K X1)-1 and 
[K - X(I + AWl for small X, by analytic continua­
tion in X we may write 

and 

G = (K - I - A)-I 

= (G-1 _ A)-1 

(2.4) and 

r = icf>B(CPBA) + GA, 
S - SB 

(2.13) 

11' = [Ka - i(Xcf>B)(CPBA) - XaA]-1 
a 8 - 8B 

= i(s - SB)[(CPBA)-I(Xcf>B)-1 + O(s - SB)]. 
(2.14) 

= (1 - GA)-IG 

=H+G, 
Here we have assumed that Xcf>B and therefore CPBA 

(2.5) are nonvanishing. Hence 

where 

H = GA(l - GA)-IG 

= GAK;;IX(l - GAK;;IX)-IG. (2.6) 

Since 

a(l - {3a)-1 = (1 - a(3)-la (2.7) 

for two arbitrary operators a and {3, provided that 
(1 - a(3) -I and (1 - (3a) -1 exist, (2.6) is rewritten as 

H = GA(l - K;;IXGA)-IK;;IXG 

= GA(K. - XGA)-I XG 

Here 

r = GA, f' = XG 

are the proper vertex functions, and 

11~ = (Ka - XGA)-I 

(2.8) 

(2.9) 

(2.10) 

is the modified propagator of a. From (2.5) and (2.8), 
we see 

G = rl1~f' + G. (2.11) 

The graphical interpretation of (2.11) will be 
obvious. 

Now, let s be the invariant square of the total 
4-momentum, and suppose that G has a pole at 
s = SB: 

G = iCPBCPB + a. 
S - SB 

(2.12) 

Here cf>B denotes the Bethe-Salpeter amplitude for 
a bound state B of band c in the absence of a, and 

6 If they do not exist, one should introduce a cutoff in 
order to make them exist. The cutoff should tend to infinity 
in the final stage. 

(2.15) 

where Ii is nonsingular at S = SB. Thus G = H + G 
has no pole at S = SB. This is nothing but the state­
ment of Goebel and Sakita,2 but we should add 
some comments. 

(1) The existence of a pole in r does not neces­
sarily imply a pole of G, namely A may have a pole at 
S = so. Then 11~ has a double zero at S = so, so 
that both Hand G are nonsingular there. 

(2) In the above proof, the assumption that Xcf>B 
is nonzero is very essential. This assumption is 
equivalent to the statement that B has the same 
quantum numbers with a. This justifies the proposi­
tion of Jin and MacDowell.4 For example, if one 
considers the case in which a, b, c are scalar, then 
the cancellation cannot occur for the poles of G 
which correspond to the bound states having angular 
momentum l ;;e O. Thus the Regge trajectories of 
G are the same with those of G. Correspondingly, the 
high-energy behavior of G in the crossed channel is 
governed essentially by that of G because H tends 
to a constant. 

(3) Okubo and Feldman7 analyzed the Bethe­
Salpeter equation for bound states of a scalar nu­
cleon and a scalar antinucleon in the ladder-chain 
approximation. In that case, they found that the 
Bethe-Salpeter amplitude is proportional to the 
proper vertex function. A general proof of this 
statement immediately follows from (2.11) because 
the poles of 11~ other than that of the particle a 
represent true bound states of band c. Let S ~ be 
a pole of 11~, which will tend to SB as A ~ 0, and 

ZB = -i lim (s - s~)I1~. (2.16) 
3_B B I 

7 S. Okubo and D. Feldman, Phys. Rev. 117,279 (1960). 
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Then the Bethe-Salpeter amplitude is given by 
zlr with s = s;. 

(4) The bound state obtained above is quite akin 
to an elementary particle. It does not lie on a Regge 
trajectory and has a nonzero Z-factor if (2.16) is ac­
cepted as a definition of a Z factor. Thus it provides 
an interesting counterexample to the usual criterion 
for bound states. 

(5) If the particle a itself is a bound state, all the 
above reasoning no longer holds. In this case, it 
is not clear how to define the proper vertex function 
r. If a is spinless, the improper vertex function may 
be defined by8 

Then it is evident that 

if;(P) = - J d4q G(p, q). (3.4) 

The solution to (3.2) is known already9.10: 

G(p, q) = -(1 - q2r2[t(p - q) 

+ (A/rr2i)f«p _ q)2, p\ q2)]. (3.5) 

where 

(2.17) with 

q;(y, l) == F{-p,p + 1;2; -[(1 - y)/y(l -l)]}, 
where q denotes the relative momentum of band c 
in the initial state. The poles of (2.17), of course, (3.7) 
correspond to bound states of band c. and 

3. EXACTLY SOLVABLE EXAMPLE 

In this section, we consider an exactly solvable 
example which exhibits the Regge behavior. Let 
band c be two scalar particles having unit mass. 
They exchange massless scalar particles with scalar 
coupling g. Then the integral equation for G in the 
case of vanishing tota14-momentum is 

G(p, q) = (1 ~ p2)2 {- 04(P - q) + J d4
p' 

X [ A/rr2i, + Aa/7f'2i]G(P' )} 
_ (p _ P )2 m~ , q (3.1) 

in the ladder-chain approximation. Here, q and p 
are the relative momenta in the initial and in the 
final state, respectively; X = l/(47f')2, Aa = g!/(47f')2, 
and ga and mo denote the unrenormalized (abc) 
coupling constant and the unrenormalized mass of 
a, respectively. For simplicity, -iE has been omitted 
in all denominators. 

We also consider the following auxiliary integral 
equations: 

G(p, q) = (1 ~ p2)2 [ - t(p - q) + 7f'~i 

X J d4
p' _ ~(p~ ~,/], (3.2) 

) 1 [1 + A J d4 , if;(P') ] if;(p = (1 _ p2/ 7f'2i p _(p _ p')2 . 

(3.3) 

• 1. Sato, J. Math. Phys. 4, 24 (1963). 

I' == (A + t) t - !. (3.8) 

Since G(p, q) = G(q, p), (3.5) with (3.6) leads to 

if;(q) = - J d4p G(p, q) 

= (1 - q2)-2[1 + X 11 dyq;(y, q2)2]' (3.9) 
° 1 - yq 

Using p in place of q, and assuming p2 < 1 for the 
moment, we obtain 

if;(P) = (1 _ p2)-2 

X {I + A EO dx ([~:)[1 ~ l;(i; ~;~)]}, (3.10) 

a result which is identical with a formula given by 
Okubo.ll But, according to Okubo and Feldman,7 it 
is convenient to employ an integral representation 

1"" xq;(x) 
if;(P) = 2 0 dx [1 + x(l _ p2)]3' (3.11) 

Then it is straightforward to findll 

q;(x) = F( -I', I' + 1; 2; -x) (3.12) 

from (3.3). The equivalence between (3.10) and 
(3.11) can be easily seen by substituting (3.11) in 
the right-hand side of (3.3). 

We are now ready to solve (3.1). Making an 
ansatz 

G(p, q) = aif;(p)if;(q) + G(p, q), (3.13) 

9 N. Nakanishi, Nuovo Cimento 34,795 (1964). 
10 N. Nakanishi, Phys. Rev. 138, B 1182 (1965). 
11 S. Okubo, Progr. Theoret. Phys. (Kyoto) 10,692 (1953) . 
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and using (3.2), (3.3), and the first equality of (3.9), 
we obtain 

ex = -i(~jm~)ex + tAo/tr2m~, 
where a quantity 

1"" ~(x) 
= tAo 0 dx x(1 + x) 

(3.14) 

(3.15) 

7rV(P + 1) 1 
1/I(P) = sin 7rV • (1 _ p2)3 

·F[-p + 1, p + 2; 2; _p2j(1 _ p2)]. (3.21) 

Hence13 

(3.22) 

is the proper self-energy of a. Substitution of the This is of course equal to 
solution ex of (3.14) in (3.13) yields 

G(p, q) = r(p).:l~r(q) + G(p, q), (3.16) 

with 

(3.17) 

and 

.:l~ == -ij(m~ + i~). (3.18) 

Here the divergence of ~ should be removed by 
mass renormalization. Evidently, (3.16) corresponds 
to (2.11). 

Though our model does not contain the variable 8, 

we can still consider the poles of r (P) in terms of 
P. It was shown that G(p, q) has a simple pole at 
p = N, where N is a positive integer. Its residue 
is given bylO 

lim (p - N)G(p, q) ._N 
= i E (-I)L(L + PN(N + 1)(N - L - 1)1 

L-O 11" (N + L + 1)1 

X (p2)iL(l)iLC i,(Pqj(P2l)t)fNL(P2)fNL(q2), 
(3.19) 

where Ci (z) is a Gegenbauer polynomial, and f NL (p2) 
is the radial part of the Bethe-8alpeter amplitude, 
which is given bylo 

f (P
2) . (2L + 2)! 1 

NL = -t (L + 1)1 . (1 _ p2)L+3 

CL +J (~) X N-L-l 1 _ p2 . (3.20) 

The appearance of various angular-momentum states 
in (3.19) is due to the degeneracy at zero energy. 

The integral in (3.11) can be easily carried out12
: 

12 A. Erdelyi et al., Tables of Integral Transforms, (McGraw­
Hill Book Company, Inc., New York, 1953), Vol. II, p. 400. 
For explicit derivation, see N. Nakanishi, Phys. Rev. 137, 
B1352 (1965), Appendix A. 

-J d4q lim (p - N)G(p, q), 
.... N 

(3.23) 

as is seen from (3.19) together with 

(3.24) 

Likewise, we may calculate the residue of ~ in the 
following way: 

(3.25) 

Thus, from (3.17), (3.22), (3.18), and (3.25), we have 

H(P, q) == r(p).:l~r(q) 

= _ 1
2

• i fNO (rl)fN(q2) + fI(p, q), 
11" p-

(3.26) 

where H(p, q) is nonsingular at p = N. Therefore, 
the L = 0 part of the residue of G(p, q) exactly 
cancels with that of H(p, q) in G(p, q) as it should. 

The high-energy asymptotic expansion of G(p, q) 
in the crossed channel was already given elsewhere.9 

The high-energy behavior of G(p, q) is exactly the 
same with that of G(p, q) apart from a constant 
term. Thus the poles of r (p) are related to the high­
energy behavior of G(p, q). 

Note added in proof. Dowker [Nuovo Cimento 33, 
110 (1964)] presented a consideration similar to our 
proof of the cancellation of a vertex pole, but in his 
paper the external-mass dependence of the ampli­
tudes was not taken into account. The author ap­
preciates his notice. 

13 M. Abramowitz and 1. A. Stegun, Handbook of Mathe­
matical Functions with Formulas, Graphs, and Mathematical 
Tables, (National Bureau of Standards, Washington, D. C., 
1964), p. 779. 
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Analytic Continuations of Higher-Order Hypergeometric Functions* 

PER o. M. OLSSON 

Institutionen fOr Teoretisk Pysik, Stockholms Universitet, Stockholm, Sweden 
(Received 16 November 1964) 

Solutions in powers of I-x of the differential equation associated with the hypergeometric function 
pF'p-l are derived and the function is continued analytically in terms of these solutions. The analytic 
continuation is derived in a simple way from an expansion which is well suited for the purpose and 
which is valid for all values of the argument x. The usefulness of the aF2 function in studying certain 
hypergeometric functions of two variables is emphasized. ' 

INTRODUCTION 

I N a previous investigation of the analytic prop­
erties of the Appell function Fl(a, bl, b2, C, X, y)l 

it was shown that all solutions of the partial dif­
ferential equations associated with the Fl function 
which are expressible in terms of the Appell function 
Fl and Horn's function G2 could be obtained in an 
elementary way by expanding known solutions in 
2Fl functions and then using transformations and 
analytic continuations of the latter functions. In 
this way, new solutions as well as connections be­
tween the various solutions were obtained and ana­
lytic continuations of the FJ function to the whole 
domain of its variables were derived. 

The success and simplicity of the method inspired 
an attempt to derive solutions of the equations asso­
ciated with the Appell function F2 (a, bl , b2, Cl , C2 , X, y) 
in the same way. It was then found that higher-order 
hypergeometric functions had to be taken into ac­
count. The lack of simple representations of the 
analytic continuations of these functions to the 
neighborhood of x = 1 caused considerable diffi­
culties which difficulties gave the incitement to the 
present investigation. 

In continuing SF2 functions and functions of higher 
order we are concerned with the neighborhood of 
x = 1 only, since the behavior near the singularity 
at infinity has long been known and offers in fact 
no difficulties. 

In the first section of this paper we derive an 
explicit analytic continuation of the function pFp_l 

in the neighborhood of x = 1. In deriving this result 
we use certain convenient expansions of hypergeo­
metric functions in series of hypergeometric func­
tions of lower order. These expansions have the 
advantage of being valid for all values of the vari­
able x. With the aid of these expansions, a hyper­
geometric function can be expanded in hypergeo-

* This work was carried out under the auspices of the 
Swedish Atomic Research Council. 

1 P. o. M. Olsson, J. Math. Phys. 5, 420 (1964). 

metric functions whose properties are well known 
and can be taken advantage of in order to derive 
solutions of the differential equation associated with 
the function as well as connections between the 
various solutions and their transformations. 

The intimate relations between some of the Appell 
functions and sF 2 functions are revealed by the fact 
that the former functions, provided that they are 
finite, are aF2 functions in one variable if the other 
variable is equal to unity. Relations of this kind 
are given in the last section. They suggest strongly 
the usefulness of the SF2 function in the theory of 
certain hypergeometric functions of several vari­
ables frequently occurring in mathematical physics. 

ANALYTIC CONTINUATIONS 

A simple way of obtaining analytic continuations 
of the hypergeometric series 

F (aI' a2 , ••• , a", x) 
" ,,-1 bl , b2 , ••• , b"-l 

= f (a1)n(a2) .. ••• (a"),,x" 
.. -0 (b 1)n(b2 ) .. ••• (b"-l) .. n! ' Ixl < 1, (1) 

is to expand it in functions of lower order and 
then make use of the analytic continuations of the 
latter functions. We carry this out in detail on sF 2 

functions only and merely outline the fairly straight­
forward generalization to functions of higher order 
at the end of this section. 

There exist many expansions of SF2 functions in 
terms of 2Fl functions but most of them are in­
convenient for our purpose. There are, however, also 
expansions which deliver the desired result in a very 
direct way. We show that 

= r(b 1)r(b2) f (b1 - al )..(b2 - a l ) .. 

r(a1)r(bl + b2 - al ) .. -0 (b1 + b2 - a1) .. n! 

X 2Fl(a2, as, bl + b2 - a1 + n, x), (2) 

702 
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and that this expansion converges absolutely if 
Re a l > 0 for all finite values of x except possibly 
x = 1, where the function on the left-hand side 
(lhs) may be infinite. Since the aF2 function is sym­
metric in the parameters ai, an expansion of the 
type (2) exists as soon as the real part of any of 
the parameters ai is positive. 

The convergence follows easily from the estimate 

(b l - al Mb2 - al ) .. 

(b l + b2 - al) .. n! 

and from the asymptotic behavior2 

r-J 1 + O(l/n). 

The equality can be proved by expanding the 
right-hand side (rhs) of (2) in a McLaurin series. 
The derivatives of the expansion may be calculated 
by term-by-term differentiation 

~ :t (b l - al Mb2 - at) .. 
dx'" .. -0 (bl + b2 - at) .. n! 

X 2FI(a2, aa, bl + b2 - at + n, x) 

= (a2)m(aa)m :t (bt - at) .. (b2 - at) .. 
(bl + b2 - at)". .. -0 (bt + b2 - at + m)"n! 

X 2Ft(a2 + m, aa + m, bl + b2 - al + m + n, x), 

from which we obtain the derivatives for x = 0 

[~ :t (bt - a,) .. (b2 - at) .. 
dx'" .. -0 (b l + b2 - al) .. n! 

X 2Ft(a2, aa, bt + b2 - at + n, X)] .-0 
= (a2)m(aa)m :t (bt - at) .. (b2 - at) .. 

(bl + b2 - at)", .. -0 (b l + b2 - a l + m) .. n! 

feb t + b2 - at)r(at) (at)m(a2)m(aa)", 
= r(bt) r(b2) • (b t )",(b2)". 

since 

:t (b l - at) .. (b2 - at) .. 
.. -0 (bl + b2 - a l + m) .. n! 

_ r(at + m)r(bt + b2 - at + m) 
- r(b t + m)r(b2 + m) 

provided Re al > O. 

From the derivatives at x = 0 it is easily seen 
that the McLaurin expansion of the rhs of (2) is 
identical with the hypergeometric series (1) for p = 3 
which proves the expansion. 

Since the 2Ft functions are analytic functions in 
a plane cut from x = 1 to x = + 00, the aF2 function 
is analytic in the same domain. 

In order to obtain also an explicit analytic con­
tinuation in the neighborhood of x = 1, we replace 
the 2FI functions in (2) by their analytic continua­
tions in this neighborhood. 

We havea 

2FI(a2, aa, bl + b2 - a l + n, x) = Al 2Ft(a2, aa, a l + a2 + aa - bl - b2 - n + 1, 1 - x) 

+ A2 x··-b.-bs + I (1 - x)b.+bs-a.-as-a.(1 ~ x)" 

where 

and 

Using 

X 2FI(1 - a2, 1 - aa, bl + b2 - a l - a2 - aa + n + 1, 1 - x), 

r(b l + b2 - at + n)r(bt + b2 - at - a2 - aa + n) 
r(b l + b2 - al - a2 + n)r(b l + b2 - al - as + n) , 

rea + n) = r(a) (a) .. , 

r( _ ) = (-I)"r(a) 
a n (1 - a) .. ' 

2 O. Perron, Sitzber. Heidelberg. Akad. Wiss. Math. Naturw. Kl. Abhandl. SA, 3 (1917). 
3 Bateman Manuscript Project, Higher Transcendental Functions, edited by A. Erdelyi (McGraw-Hill Book Company, 

Inc., New York, 1953), Vol. I, p. 109. 
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we obtain 

F (ai, ~, as, x) _ F (ai, a2, aa, x) + r(bl)f(b2)r(al + a2 + as - bl - ba) ~(al' a2, aa, x) (3) 
a 2 bl , ba - R bl , ba f(al) f(aa) f(as) bl , ba ' 

where 

F B(al' ~, as, x) 
bl> ba 

= r(bl)r(b2)r(bl + b2 - al - a2 - as) f (bl - a l ) .. (b2 - alMbl + b2 - al - a2 - as)" 
f(al)f(bl + ba - al - aa)f(bl + b2 - al - as) .. -0 (bl + ba - al - aa),,(bl + ba - al - as)"n! 

Re al > 0, Rex> l, (4) 

and 

~(al' a2, as, x) = xa,-b.-bo+I(1 _ x)b,+bo-a,-ao-ao f (bl - al),,(b2 - a l )" (x - I)" 
bl, b2 .. -0 (b l + ba - al - aa - as + 1)"nt x 

X 2FI(1 - a2, 1 - as, bl + ba - al - a2 - as + n + 1, 1 - x), 

The second series (5) converges absolutely for 

Rex> i. (5) 

Ix - 11 -x- < 1, or Re x > j, 

since, as we have seen, 

and we conclude that the first series (4) also con­
verges absolutely for Re x > t provided Re al > 0, 
since its terms are the differences between the terms 
of two series which converge under these conditions. 

The two functions (4) and (5) are solutions of the 
differential equation associated with the sFa function 
in (1). This is not difficult to prove, but follows 
directly from a result derived by N j21rlund4 

F (ai, a2, as, x) _ f(bl)f(ba) ( ) 
a 2 bl , ba - r(al)f(a2)f(as) cp X 

+ r(bl)f(ba)f(al + a2 + aa - bl - ba) ~(x) 
f(al)f(a2)r(aS) , 

where cp(x) is a regular solution at the point x = 1 
of the differential equations associated with the sF 2 

function. For the function N ~rlund gives the integral 
represen ta tion 4 

° < c < 1, 

where x lies on the right of the path of integration. 
The function Hx) is an irregular solution for which 

N ~rlund gives expansions of the type 

4 N. E. N~rlund, Act. Mat. 94, 289 (1955). 

~(x) = xl- bO (1 _ x)b.+bo-a,-ao-a. 

X f (bl - a l - as + 1) .. (bl - aa - as + 1)". (1 _ x)" 
.. -0 (b] + ba - al - a2 - as + 1)"n! 

X F ( -n, 1 - as, bl - as, 1 ) 
a a bl - al - as + 1, bl - aa - as + 1 ' 

11 - xl < 1, 
as well as integral representations. 

Clearly the two functions (4) and (5) can be iden­
tified with the solutions cp(x) and Hx), respectively, 
and are thus solutions. 

If Re (b l + b2 - a l - aa - as) > 0, the hyper­
geometric series (1) converges also for x = 1 and 
we obtain from (3), (4), and (5) 

aFa(a l , a2, as, 1) 
bl , ba 

= ~--:-.::;,f~(b:....!.1)~f,-,(~b2'-!.).::..f.>.:(b:....!.I_+.:-....:b:..!:.a-:------::a:..!.1_-.,.--,:a~a _----:.a""a)'----:­
r(al)f(bl + ba - al - a2)f(bl + ba - al - as) 

X aFa(bl - ai, ba - ai, bl + b2 - al - a2 - as, 1), 
bl + ba - al - a2, bl + b2 - al - as 

Re a l > 0, (6) 
Re (b l + b2 - a l - a2 - as) > 0, 

a result that was first derived by Thomae.6 It con­

a J. Thomae, J. fiir Math. 87, 26 (1879); also G. H. Hardy, 
Proc. Cambridge Phil. Soc. 21, 492 (1923). 
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tains all known two-term relations between aF2 
functions of unit argument. Further relations can 
be obtained by repeated application of the formula 
and by permuting the parameters a. or b •. 

Both sides of (6) are analytic functions of any 
one of the parameters but they are not defined in 
the same domain by their series expansions. We 
can take advantage of this fact by using (6) to 

FR(al ' a2, aa, x) 
bl , b~ 

obtain analytic continuations of sF 2 functions of 
unit argument as functions of the parameters. 

Defining the sF 2 function of unit argument in 
this way it is permitted to use (6) to transform 
the series obtained. This can be used to simplify 
the expansion of the F II. function. It is first trans­
formed by carrying out an Euler transformation on 
the 2F 1 functions which gives, e.g., 

= r(bl)r(b2)r(bl + b2 - al - a2 - as) x-G, i (bl - alMb2 - a1),,(bl + b2 - a l - a2 - as)" 
r(al)r(bl + b2 - al - a2)r(bl + b2 - al - as) ,,-0 (bl + b2 - al - a2),,(b l + b~ - a l - as) .. nl 

The series is a uniformly convergent series of analytic functions when Re a l > 0 and Re x > I 
and may thus be differentiated any number of times. Its power series expansion is then easily derived. 

F R(al' a2, as, x) 
bl , b2 

_ r(b1)r(b2)r(bl + b2 - a l - a2 - as) x-G, i (aa),,(al + aa - bl - b2 + 1).. (x - I)" 
- r(aj)r(bl + b2 - a l - a2)r(bl + b2 - al - as) ,,-0 (al + a2 + aa - bl - b2 + 1)"nl x 

Applying now the transformation (6) on the aF2 
functions of unit argument, the above expansion can 
be written in the simple form 

FR(al' a2, aa, x) = x-z. t (aa;" (x - 1)" 
bl , b2 .. -0 n. x 

Re x> !. (8) 

Here as well as in the irregular solution, we may, 
permute the parameters a. or b. arbitrarily since the 
sF 2 function is symmetric in these parameters and 
the regular part of the function cannot be changed. 

Since six distinct solutions of the equation asso­
ciated with the sF 2 function which are expressible 
in terms of sF2 functions are known, we obtain six 
regular solutions by taking the regular parts of the 
functions according to (3). Obviously any three of 
them must be linearly dependent. 

Rex> !. 

There exists a slightly different kind of regular 
solutions which are obtained not by taking the 
regular part of a sF 2 function, but by forming a 
regular combination of two solutions in terms of 
sF 2 functions which is possible since there exists only 
one irregular solution. The expression 

l' (al ) r(a2) r(as) F (ai, a2, as, x) 
r(bl)r(b2) a 2 bl , b~ 

r(al - bl + l)r(a2 - bl + 1) l' (as - bl + 1) l-h 
- 1'(2 - bl)r(b2 - bl + 1) ·X 

X F (al - bl + 1, a2 - bl + 1, as - bl + 1, x) _ () 
S 2 2-b

l
, b

2
-b

l
+l - Y12 x, 

which is the difference between two solutions, is 
easily seen to be such a combination. 

With the aid of (8) we may write 

( ) _ -G, t (1 - l/x)" [r(al + n)r(a2)r(aS) F (a1 + n, a2, as, 1) 
Yl2 X - X ,,-0 nl r(b

l
)r(b2) a ~ bl , b2 

r(al - bl + n + l)r(a2 - bl + l)r(aa - bl + 1) F (al - bl +n + 1, a2 - bl + 1, aa - bl + 1, I)J 
- 1'(2 - bl)r(b~ - bl + 1) B 2 2 - bl, b2 - bl + 1 . 
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The expression within the bracket can be replaced by 6 

r(a2)r(aa)r(al - bl + n + l)r(a2 - bl + l)r(aa - bl + 1) F (b2 - a l -n, a2 - bl + 1, aa - bl + 1,1) 
r(bl)r(1 - bl)r(a2 + aa - bl + l)r(b2 - bl + 1) a 2 a. + aa - bl + 1, b2 - bl + 1 

which is one of the many known three-term relations between aF2 functions of unit argument. This gives 

( r(a2)r(aa)r(al - bl + l)r(a2 - bl + l)r(aa - bl + 1) x-a, f (al - bl + I)" (x - I)" 
Yl2 x) = r(bl)r(1 - bl )r(a2 + aa - bl + l)r(b2 - bl + 1) .. -0 n! x 

X aF2(b2 - al - n, a2 - bl + 1, aa - bl + 1, 1), 
a2 + aa - bl + 1, b2 - bl + 1 

Re x> !. (9) 

The regular combination (9) has been derived in 
a different way by N !1lrlund and is subject to more 
extensive study than the regular parts F R which 
we have considered here. The series (9) is slightly 
simpler than N !1lrlund's expansion but can be iden­
tified with the aid of a Thomae transformation. 
When Re a l > 0 we may expand the aF 2 function 
in (9). If we sum over n in this double series we 
obtain an expansion in 2FI functions. Carrying out 
a suitable transformation on the 2FI functions we 
can derive 

X 2FI(-n, al - bl + 1, b2 - bl + 1, x), 

Re al > 0, 11 - xl < 1. 

This is an expansion in hypergeometric poly­
nomials, and can be found in the paper by N !1lrlund. 
The constant C appearing here is the same constant 
as appears in front of the function in (9). 

An instructive example of the analytic continua­
tion is obtained if we put b2 = aa in the result (3). 
All three functions are then ordinary hypergeometric 
functions. Interchanging al and aa we obtain from (3) 

F ( b) -a, ~ (a l )" (x - I)" 2 I aI, a2, 1, x = x £...J -,- ---
.. -0 n. x 

X 2FI(al + n, a2, bl , 1) 

+ r(bl)r(a l + a2 - bl ) xl-b'(1 _ x)b,-a,-a. 
r(al)r(a2) 

X 2FI(1 - aI, 1 - a2, bl - al - a2 + 1, 1 - x), 

which continues a 2FI function in the neighborhood 
of x = 1. The 2FI functions of unit argument in the 
regular part are defined by their hypergeometric 
series when they converge, or by analytic continua­
tion of n from a domain of convergence. From the 

6 G. H. Hardy, Proc. Cambridge Phil. Soc. 21, 492 (1923). 

Thomae transformation (6) we obtain the sum of the 
series which converges if Re (b l - al - a2 - n) > 0, 

2FI(al + n, a2 , bl, 1) 

which sum delivers the desired analytic continuation 
in case the series does not converge. Inserting the 
sum into the regular part we obtain 

FR(al' ~2' x) 
-a, ~ (a l )" (x - I)" F ( b) = x £...J -,- --- 2 I a l + n, a2 , 1, 1 

n-O n. x 

_ r(b l ) r(b l - al - a2) 
- r(bl - al ) r(bl - a2 ) 

X 2FI(al, a2, al + a2 - bl + 1, 1 - x), 

and we have derived a well-known analytic con­
tinuation of the 2FI function in terms of 2FI func­
tions.a 

Clearly we can expand the regular and the ir­
regular parts of a aF 2 function in the corresponding 
parts of a 2FI function 

FR(al, a2, aa, x) = r(bl)r(b2) 

bl , b2 r(aa)r(bl + b2 - aa) 

X f (bl - aa) .. (b2 - aa)" FR( aI, a2, x ), 
,,-0 (bl + b2 - aa)"n! bl + b2 - aa + n 

(10) 

a result that is obtained simply by replacing the 
hypergeometric functions in (2) by their regular 
parts. Introducing the notation 
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X 2Fl(1 - aI, 1 - a2 , bl - al - a2 + 1, 1 - x). 

r(bl)r(b2)r(a1 + a2 + aa - bl - b2) 

real) r(a2) r(aa) 

The expansions (10) and (11) are easily general­
ized to hypergeometric series of arbitrary order. 

We have 

X ~(al' a2, aa, X), 
bl , b2 

F (aI' a2 , ••• ap , x) _ r(b"_1)r(b"_2) 
" ,,-1 bl , b2, ... b"-l - r(ap)r(b,,_l + b"-2 - a,,) 

we obtain a corresponding expansion for the Ir­
regular part 

FI(a1 ' a2, aa, x) = r(bl)reb2) 

bl , b2 r(aa)r(bl + b2 - aa) 

X f (bl - aa)..(b2 - aa) .. FI( aI, a2, x ), 
.. -0 (bl + b2 - aa)"n! bl + b2 - aa + n 

X f (bp - l - ap )n(b,,-2 - a,,) .. 
.. -0 (bp- l + bp - 2 - ap) .. n! 

Re a" > 0, x ~ 1, (12) 
(11) 

which identity can be proved exactly as the proof 
was carried out for p = 3. From this relation we 
obtain the regular and irregular parts of a ,Fa func­
tion in terms of the corresponding parts of a aF 2 

function, etc. 
Consider, as an example, a ,Fa function. We have 

4Fa(al , a2 , aa, a4, x) = r(b2)r(b3) f (b2 - a4)..(ba - a4) .. aF2( aI, a2, aa, x ) 
bl , b2 , ba r(a,)r(b2 + ba - a4) .. -0 (b2 + b3 - a4) .. n! bl , b2 + b3 - a4 + n 

= reb2) r(b3) f (b 2 - a4)..(b3 - a4) .. 

r(a4)r(b2 + b3 - a4) .. -0 (b2 + b3 - a4) .. n! 

X [FR( aI, a2, a3 , x ) + Fr( aI, a2, a3 , x)]. 
bl , b2 + b3 - a4 + n bl , b2 + b3 - a4 + n 

For the irregular part we obtain the double series 

Fr( aI, a2, aa, x ) = r(bl)r(b2)r(b3)r(al + a2 + aa + a4 - bl - b2 - b3) Xa.+a.-h-b.-b.+1 
bl , b2 + ba - a4 + n r(al)r(a2)r(aa)r(a4) 

X (1 _ X)b.+b.+b.-a.-a.-a.-a. f (b2 - a4)n(ba - a4).. (x - I)" 
,,-0 (bl + b2 + ba - al - a2 - aa - a4 + 1)"n! x 

X f (bl - a3)m(b2 + ba - aa - a4 + n)", (x - 1)'" 
",-0 (bl + b2 + ba - al - a2 - aa - a, + n + l)mm! x 

X 2Fl(1 - aI, 1 - a2, b1 + b2 + ba - al - a2 - aa - a4 + m + n + 1, 1 - X). 

Since the 2Fl functions tend to unity for large values of m + n, the series converges as the simpler 
series 

f (b2 - a4),,(ba - a4)" (x - 1)" f (bl - a3)m(b2 + b3 - a3 - a')m+" (x - 1)"', 
.. -0 (b2 + ba - aa - a4) .. n! x ",-0 (b1 + b2 + ba - a1 - a2 - aa - a4 + l)m+nm! x 

which converges absolutely if 

Ix - 11 -x- < 1, or Re x > ~. 

Then the series 

Fr(a1 , a2, as, a4, x) = r(b2)r(b3) f (b2 - a4),,(ba - a4)" F ( aI, a2, a3 , x ) R 1 

b1 , b2 , ba r(a4)r(b2 + ba - a4) ,,-0 (b2 + ba - a4)"n! I bl, b2 + ba - a4 +n • ex> 2. 
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converges for Re x > ! and we conclude that the 
series 

FR(aI , all, as, a4 , x) = r(b2)r(ba) 
bIt b2 , bs r(a4)r(b2 + ba - a.) 

X f (b2 - a.Mba - a.) .. FI/( ai, a2, as, x ), 
.. -0 (b2 + ba - a.) .. n! bl , b2 + ba - a4 +n 

Re a. > 0, Re x> i, 
converges if Re a4 > 0 and Re x > I, since its terms 
are the differences between the terms of two series 
which converges under these conditions. 

For x = 1 we obtain 

FR(a I1 a2, as, a., 1) = r(b2)r(ba) 
bl , b2, bs r(a.)r(b2 + ba - a.) 

X f (b2 - a4) .. (ba - a.) .. F ( ai, a2, as, 1 ) 
.. -0 (b2 + ba - a.) .. n! 3 2 bl , b2 + ba - a4 +n ' 

Re a. > 0, 

since, from (8), 

F ( ai, all, as, 1 ) _ F ( aI, all, a3, 1 ) 
I/ bI , b2 + bs - a. + n - 3 11 bl , bll + ba - a. + n . 

If Re (b l + b2 + ba - al - all - aa - a4) > 0, the 
hypergeometric series of the .Fa function converges 
for x = 1, and we obtain the value of the function 
for x = 1, 

4.Fs(al, a2, as, a., 1) = r(b2)r(ba) 
bl , b2 , ba r(a.)r(b2 + ba - a.) 

X f (b2 - a.) .. (ba - a.) .. F ( all a21 as, 1 ) 
.. -0 (b2 + ba - a.)"n! 3 2 bll b2 + ba - a. +n ' 

Re a4 > 0, (13) 

Re (b l + b2 + ba - al - all - aa - a.) > O. 

The rhs converges for Re a4 > 0, the Ihs for 
Re (bl + b2 + ba - al - a2 - a3 - a4 ) > O. Since 
the 4F s function is symmetric in the parameters a. 
or b, the parameters a, or b, may be permuted 
arbitrarily. 

From (8) we obtain 

= r(b2)r(ba) x-a, f (b2 - a.) .. (ba - a4) .. 
r(a4)r(b2 + ba - a4) .. -0 (b2 +ba -a.) .. n! 

X f (a l ) .. (x - 1)" aF2( at + m, a2, aa, 1 ) 
... -0 ml x bl , bll + ba - a. + n 

= x-a, f (al)", (x - 1)'" r(b2)r(ba) 
",-0 m! x r(a4)r(bJl + ba - a.) 

X f (b2 - a.) .. (b s - a.) .. aF2( al + m, a2, as, 1 ), 
.. -0 (bJl + ba - a.) .. n! bl , bll + ba - a. +n 

where the change of the order of summation is 
allowed since the series is absolutely convergent. 
The rhs of (13) is an analytic function of, e.g., a l 

when Re a. > O. It is defined also for large values 
of Re al when the condition Re (b l + bz + ba -

al - a2 - aa - a.) > 0 is not valid and continues 
analytically the lhs, which, so far, is defined by its 
hypergeometric series only. In this sense we can 
replace the sum over n, above, by a .F 3 function 
of unit argument. 

Then 

FI/(al' all, as, a., x) = x-a. f (al;" (X - I)" 
bl • b2 , ba .. -0 n. x 

X .Fa(al + n, a2 , aa, a" 1). 
bl , b2 , ba 

(14) 

CONNECTIONS WITH APPELL FUNCTIONS 

Appell introduced the hypergeometric functions7 

F2(a, bl , b2 , CI , ~, Xl, Xli) 

= f (a)m+ .. (bl)m(b2)"X~X; I I + I I 1 
...... -0 (CI) ... (C2) .. m! n! ,Xl Xli < , 

= ~ (al) ... (~) .. (bl)m(b2)"X~X; I I 
.. ~o (C)m+tom1 n! ,Xl < 1, Ix,l < 1, 

(15) 

as well as two other series denoted by F I and F 4, 

but we are concerned here with FlI and Fa only, 
since they are the only functions that contain the 
same number of parameters as the 3F z functions. 
Later Horn made a classification of hypergeometric 
series of two variables. 8 In Horn's classification there 
is, in addition to the F2 and Fa functions, only one 
more function with five parameters. This function 
is defined by the series 

H (a b c d e X x) = ~ (a)",_ .. (b) .. (c) .. (d)..x~x;. 
2 , , , , , I, 2 £... (e) m' n' 

m.n-O 1ft. • • 

(16) 

The functions F z• Fa, and H2 satisfy certain sys­
temsof partial differential equations which, how­
ever, can be transformed into one another. The 
solutions of one system satisfy, then, the other sys­
tems after suitable transformations. Appell has 
given four independent solutions of the equations 
associated with the F 2 function in terms of F 2 func-

7 P. Appell and J. Kampe de Feriet, Fonetion8 hyper­
gtometriques et hyperspherique8 (Gauthier-Villars, Paris, 1926). 

8 J. Horn, Math. Ann. 105,381 (1931); also Ref. 3, p. 224. 
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tions, but there are also solutions in terms of Fa 
and H2 functions, which solutions are connected 
with aF2 functions in the sense that they are aF2 
functions in one variable if the other variable is 
equal to unity. 

The connections between aF2 functions and Fa 
functions are easily established from the formulas 
we have derived here. By summing over m in (15) 
we obtain 

This series converges, as we have seen, for X2 = 1 
provided Re (c - a2 - b2) > 0 and we obtain, 
using (2) and the symmetry of the Fa function, 

Fa(a l , a2, bl , b2, c, X, 1) = Fa(a2' ai, b2, bl , c, 1, x) 

= r(c)r(c - a2 - b2) aF2(al , bl , C - a2 - b2, x) 
r(c - a2)r(c - b2) c - a2 , c - b2 ' 

= (_XI)-a, t (al - c + I) ... (a l ) ... (1/xI)'" 
.. -0 (a l - bl + 1)",m! 

X 2FI(a2, b2, c - al - m, X2)' (19) 

The series converges for Re X2 < ! and for /xd ~ 1 
provided Re (c - a l - bl ) > 0, since, for Re X2 < t 
we havelo 

2FI(a2, b2, c - al - m, x2) "" 1 + O(I/m). 

We next put XI = 1. The functions on the rhs 
are, however, many-valued due to the factors 
(_XI)-a, and (-xI)-\ and, by letting XI ~ 1 from 
above or below the cut from Xl = 0 to Xl = <Xl, 
two different expressions will be obtained for the 
Fa function. We can then argue that one of the 
H 2 functions can be eliminated and that there must 
exist an expansion of the type (19) for the aF3 
function. We have, indeed, after a suitable change 
of the parameters 

(17) aF2(al , a2, aa, X) 
bl , b2 

If also Re (c - al - bl ) > 0, the hypergeometric 
series of the sF 2 function converges for X = 1 and 
we have 

Fa(al , a2, bl , b2 , C, 1, 1) 

_ r(c)r(c - a2 - b2) F (ai, bl , C - a2 - b2, 1) 
- r(c - a2)r(C - b2) a 2 C - a2, C - b2 ' 

Here the lhs is invariant for interchange of indices 
1 and 2 as well as for interchange of all the a's and 
b's, which gives us the Thomae transformations ob­
tained in connection with the analytic continuation. 

In order to establish the connections between H 2 

functions and aF 2 functions we use an analytic con­
tinuation of the Fa function9 

XH2(bl -c+I, bl , a2, b2, bl -al +I,I/x1 ,-x2)' 

In the expansion (16) of the H2 function we may 
sum over m, 

eA. Erdelyi, Proc. Roy. Soc. (Edinburgh) A62, 378 (1949). 

C ~ (b2 - al),,(1 - bl).. F ( b ) 
= £..J (b _ b + 1) , 2 I a2, aa, I - n, X , 

.. -0 2 I "n. 

Re al > 0, Rex < 1. (20) 

The result is easily proved in the same way as the 
result (2) by expanding the rhs in a McLaurin 
series. This determines the constant 

c = r(al - bl + I)r(b2). 

r(b2 - bl + I)r(al) 

From (19) and (20) we obtain for an H2 function 

H2(a, b, c, d, e, 1, -X2) 

_ r(e)r(e - a - b) F (e - a - b, c, d, X2) 

- r(e - a)r(e - b) a 2 1 - a, e - a ' 

Re (e - a - b) > O. (21) 

Provided that the aF2 series converges for X2 = 1, 
whichisthecasewhenRe (b - a - c - d + 1) > 0, 
we have 

H 2(a, b, c, d, e, 1, -1) 

_ r(e)r(e - a - b) F (e - a - b, c, d, 1) 
- r(e - a)r(e - b) a 2 1 - a, e - a ' 

Re (e - a - b) > 0, 

Re (b - a - c - d + 1) > 0. 

10 O. Perron, Ref. 2, p. 11. 
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This result, as well as (18), holds in fact independ­
ent of how the two variables Xl and X2 approach 
unity. 

The case of an F2 function of unit arguments 
is more complicated due to the fact that we are 
no longer dealing with unique limits. 

~(al' a2, a3 , X) = Xa,-b,-b.+l(1 _ x)bdb.-a,-a.-a. 
bl , b2 

There are also connections between Appell func­
tions and other solutions of the equations associated 
with the 3F2 function. One immediate example is 
the function Hx) in (5). Expanding the 2Fl function 
we obtain the double series defining the Appell func­
tion F 3, and we may write 

X F3(b1 - al, 1 - a2, b2 - al , 1 - a3, bl + b2 - a l - a2 - a3 + 1, 1 - 1/x, 1 - x). (22) 

There are numerous similar examples relating not 
only the functions F2, F3 , and H2 to solutions of 
the equations associated with the 3F 2 function, but 
also higher-order hypergeometric functions which 
are solutions of the equations associated with the 
Appell functions. Certain higher-order hypergeo­
metric series have been investigated by Appell.6 

However, the fact that the equation associated with 
the aF2 function does not permit solutions in powers 
of 1 - x, which are hypergeometric series in the 
sense that the expansion coefficients are quotients 
of r functions as in (1), indicates that the equations 

associated with the Appell functions considered here 
have no solutions in terms of double hypergeometric 
series in powers of 1 - Xl and 1 - X2, whatever is 
the order. 

A classification of the hypergeometric functions, 
based on the equations they satisfy, is in many 
respects more natural than a classification based 
on properties of expansion coefficients, but requires 
an introduction of associated Appell functions which 
do not seem to be hypergeometric in the sense of 
the functions in Horn's list. 
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Permutation-Algebraic Formulation of Spin-Free 
Transition Density Matrices* 
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Spin-free transition density matrices are derived from spin-free kets which are symmetry-adapted 
to the symmetric group and its algebra. The Dirac identity establishes that these spin-free density 
matrices are identical to those obtained by integrating the spin from the full-spin density martices. 
Derivations are first given for arbitrary primitive kets which may be geminals of higher polymals, 
after which we consider products of orbitals, either orthonormal or nonorthonormal. 

Correlation in the spin-free space is discussed and we show the influence of permutational sym­
metry on the probability of coincidence of pairs. A special case of this correlation is the well-known 
Fermi hole. 

INTRODUCTION 

REDUCED density matricesl
•
2 introduce con­

siderable economy in the description of systems 
of identical particles. First- and second-order density 
matrices contain enough information to compute all 
observable properties of such systems. This rep­
resents an enormous saving over the full eigenkets 
when the number of particles is much larger than 2. 
Additional saving results if the observables do not 
involve spin; for then one may use the spin-freel 

density matrices. Computer programs can advan­
tageously use density matrix formulations in calcula­
ting matrix elements of observables. Besides their 
economy of description, density matrices have in­
terest because of the possibility3.4 that they can be 
obtained directly from the Hamiltonian, thereby 
circumventing the determination of the full eigen­
kets. 

In this paper we formulate the spin-free transition 
density matrices in the language of permutation 
group algebra. 5 This enables us to exploit the per­
mutational symmetry without introducing an ex­
plicit form for the spin-free kets. That is, our kets 
might be products of orbitals, geminals or higher 
polymals. Before beginning the derivation of spin­
free density matrices, we present a brief review of 
notation and the mathematical tools to be used. 
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A. 

Kets and bras of an N-particle system are denoted 
by I U) and (VI and can be expanded in orthonormal 
basis kets and bras: 

IU) = 2: li(N)(i(N) I U) (1.1a) 
'(N) 

and 

(UI 2: (U I i(N»(i(N) I, (l.lb) 
i(N) 

where 

(i(N) I U) = (U I i(N»*. (1.2) 

Here li(N» and (i(N) I stand for the N-fold tensor 
product6 of single-particle kets and bras: 

li(N» == Iii) li2) ... liN), 

(i(N) I == (iN I ... (i21 (ill. 

(1.3a) 

(1.3b) 

Bra-kets between these basis bras and kets are 
chosen to be 

(i(N) I j(N) = {~ if ir = Jr for each r, 
(1.4) 

otherwise. 

Particle numbers and coordinates never appear in 
this notation. The order of single-particle kets takes 
the place of particle numbers. The first ket in li(N» 
represents the state of particle one, the second rep­
resents that of particle two, and so forth. In the 
dual bra, the order is reversed as required for the 
"adjoint of a product." 

B. 

Density matrices are tensor products between 
kets and bras and are denoted by either I U)(VI, 
I U) @ (VI, or (VI @ I U). Such a" tensor" is called 

6 The elementary properties of tensor products and their 
use in many-particle quantum mechanics are discussed by 
W. Band in The Mathematics of Physics and Chemistry edited 
by H. Magenau and G. M. Murphy (D. Van Nostrand 
Company, Inc., Princeton, New Jersey, 1964), Vol. II, Chap. 8. 

711 
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a ket-bra and acts as a linear transformation on both 
kets and bras; it sends the ket IW) into I U)(VIW) 
and the bra (WI into (WI U)(VI. One may interpret 
I U)(VI as a transformation which annihilates all of 
IW) except the IV) component which it projects onto 
IU). By means of (1.1a) and (1.1b) such a ket-bra 
has an expansion in basis ket-bras: 

IU)(VI 

L: li(N)(i(N) I U)(V U(N)(j(N) I. (1.5) 
'(N).i(N) 

Successive application of transition density mat­
rices I U)(VI and IW)(XI to bras and kets indicates 
that transition density matrices form a linear as­
sociative algebra: 

(IU)(Vj) IW)(XI = IU)(V I w)(XI· 

For example, the density matrix of a normalized 
ket I U) is idempotent: 

(IU)(Uj) IU)(UI = IU)(U I U)(UI 

= IU)(UI· 

In fact, the homomorphism algebra 7 of all linear 
mappings of the N-particle ket space into itself is 
spanned by a collection of such ket-bras. 

Partial traces are linear operators on N-particle 
ket-bras which we define by means of basis ket­
bras: 

Tr'" li(N»(j(N) I == li(n»(j(n) I (j(m) I i(m» (1.6) 

where 

li(n» == Iii) li2) ••• lin), 

li(m» == lin +l ) ••• liN)' 
(1.7) 

We adopt the convention that i(n) stands for the 
first n indices from i(N), and i(m) stands for the 
last m indices where n + m = N. Thus Tr"'l U)(VI 
is a transformation on n-particle kets and bras where 
I U)(VI was a transformation on N-particle kets and 
bras. One also speaks of Trm as a contraction on the 
last m indices or the last m particles of I U)(VI. If 
m = N, the contraction sends I U)(VI into a complex 
number and we call TrN the full trace or simply the 
trace operator: 

1Y IU)(VI = (V I U). (1.8) 

7 A discussion of abstract vector spaces, tensor spaces, 
contractions, homomorphism algebras, and related mathe­
matical concepts is to be found in the freshman text by 
G. D. Mastow, J. H. Sampson, and J. Meyer, Fundamental 
Structure of Algebra (McGraw-Hill Book Company, Inc., 
New York, 1963). 

C. 

SN denotes the symmetric groupS of all NI per­
mutations of the N particles in any N -particle ket 
or bra. The effect of an element P of SN on an arbi­
trary ket is expressed in terms of the basis bras and 
kets: 

= (PI P2 ... PN) p- , 
1 2 ... N 

P li(N» == lip.) lip,) ... lipN), 

(i(N) I p-l == (iPN I ... (ip, I (ip.l· 

It follows from the definition that 

(1.9) 

(1. lOa) 

(10.lb) 

(UI p IV) = (VI p-I IU)*. (1.11) 

D. 

AN denotes the Frobenius algebra5
•
G of SN and 

consists of all linear combinations of permutations 
with complex coefficients. A matric basis of AN is 
denoted by {er~; a = 1,2, ... ,M; T, 8 = 1,2, ... r}. 
Partitions8 of N, a = {1 a., 2a" ... , HaH }, are used 
to label the matric basis and a = 1, 2, ... , M means 
that a ranges over all M partitions of N. Matric 
basis elements have the following properties: 

(1.12) 

This is the matric basis multiplication rule in which 
aa/l and a' l are Kronecker deltas. 

The invertable relation between the matric basis 
and the so-called regular basis of the algebra is 

a r" [p-I]ap er• = N' ~ .r J 
. P 

(1.13) 

Ai ,a 
p = L: L: [P]:.e; •. (1.14) 

a-I r,.-l 

Here the expansion coefficient, [P]r~' is the T, 8 

element of the r X r matrix of P in the ath ir­
reducible representation of SN. 

A unitary matric basis can always be found for 
which the adjoint of er~' defined to be 

at = L. " [p-I]a'p-I erl - N' £...oJ or • p 
(1.15) 

is given by 

(1.16) 

8 D. E. Littlewood, The Theory of GrOUR Character8 and 
Matrix Representations of Groups (Oxford University Press, 
New York, 1958). 

9 H. Boerner, Representations of Groups (North-Holland 
Publishing Company, Amsterdam, 1963). 
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Hence there is also a unitary irreducible representa­
tion: 

(1.17) 

E. 

A quantum mechanical system of N indistinguish­
able particles must undergo no observable change if 
the particles are permuted (equivalent to relabeling 
the particles). It follows that observables correspond 
to linear operators which commute with all the 
elements of AN. Consequently,5,IO AN induces the 
following structure on the eigenkets of any observ­
able operator, H. 

(i) The matrix of H is factored: 

(Vj ~utl H IUj ars) 

== (VI e!;He~. IU) 

= (VI He~ue~. IU) 

aaPaur(VI e~:He:' IU) 

aaPaur(Vj avtl H IUj avs). (1.18) 

In words, H has zero intersection between matric 
basis projections of arbitrary kets I U) and I V) 
unless the symmetries a, ~ match and the first 
indices u, r are equal. Further, the matrix element 
is independent of the first index u = r. 

(ii) Symmetry-adapted kets are defined to be 
those of the form 

IUj uar) == L: (u),e~. IU). (1.19) 
• 

Because of the factorization of (i), the eigenkets of 
H assume this form. The partition, a, is called the 
permutation quantum number of the state I Uj uar). 
The collection of all kets with permutation quantum 
number a is called a permutation state. The zeros 
aaP forbid mixing between different permutation 
states. A permutation P transforms a symmetry­
adapted ket according to an irreducible representa­
tion of SN: 

P IUj uar) = L: [P]~'r IUj uar') (1.20) 
r' 

and similarly for the bras: 

(Uj uarl p- l = L: (Uj uar'/ rp-l]~r" (1.21) 
r' 

Matrix elements of H over these symmetry­
adapted kets are easily expressed in the following 
form: 

10 F. A. Matsen, Advance8 in Quantum Chemi8try (Academic 
Press Inc., New York, 1964), Vol. 1. 

(Vj Tar/ H /Uj uar) 

= L: L: (T)~,(Vj ars'/ H IUj ars)(u). 
" , (1.22) 

= 'ttHd. 

Here d and 't denote the column matrices of coef­
ficients (17), and (T). while H is the faX r matrix 
of Eq. (1.18). For example, the normalization of 
I Uj uar) depends on the matrix element 

(Uj uar I Uj uar) = d
t 
Ad, (1.23) 

where A is the matrix of the identity. 
We treat a system of N electrons whose Hamil­

tonian contains no spin interactions.5
,lo The Pauli 

principle for spin-free eigenkets is: a has the form 
{2", 1 N-2,,} for electronsj no more than two electrons 
may occupy the same orbital. 

Permutational symmetry is connected with spin 
through the Dirac identity. Briefly, the spin quan­
tum number, S, of electronic systems is related to 
the permutation quantum number a {2", 1 N-2,,} 
by the equation5 

S = !N - p. (1.24) 

A spin-free N-electron ket with permutation quan­
tum number a, gives the same matrix elements of 
spin-free observables as does its corresponding spin­
eigenket with spin quantum number S. 

SPIN-FREE DENSITY MATRICES 

Consider an n-particle operator on a system of 
N identical particles. We denote such an operator 
by Gn and define it by the equation 

(N-n+l) N 

an == L: L:. . . L: gi';. "·i., (2.1) 
i,-1 i2>it i,,>i"_1 

where gl,2"'n is a transformation on the kets rep­
resenting particles 1, 2, ... n. Further gl2'"'' is 
assumed to be symmetric in the indices 1, 2, ... n, 
so that, e.g., g213"'" = gl23'''''' etc. The remaining 
terms of an are defined by means of the transposi­
tions 

g;,i .... i. == (inn) ... (i22)(il1) 

X gl2"'n(i11)(i22) ... (inn). 

When the abbreviation PH,,) == (ill)(i22) (inn) 
is used, this definition becomes 

It follows from (2.1) that an commutes with every 
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permutation from SN' The observables on our system 
are linear combinations of operators of this kind. 
For example, the Hamiltonian is H = HI + H2, 
where HI represents the sum of one-particle energies 
(kinetic and potential) and H2 represents the sum 
of interparticle interaction energies. 

nth-order reduced spin-free transition density mat­
rices are suggested by the matrix elements of (F 

between symmetry-adapted kets. First, from Eq. 
(1.18), one may conclude that matrix elements are 
independent of the index r in symmetry-adapted 
kets (1.19) and therefore may be averaged. Second, 
one forms the completely random average: 

{V; rarl a" IU; (Jar) 

= F ~ (V; Tat I Gn 
IU; (Jat). (2.3) 

We next substitute (2.1), (2.2), (1.20), and (1.21) 
into (2.3) to obtain 

1 
(V; rarl a" IU; (Jar) = -;:;- L L (L [Pi(n)].~ f i 1 {i:;J°··Un 8,a' t 

X [P~(~)]~.,)(V; ras'l gI2"'" IU; (Jas). (2.4) 

The sum on t in parenthesis gives 8 •• , regardless of 
the summation indices iI, i2, ... , in so that we find 

<V; rarl G" IU; (Jar) 

= (~) /a ~ (V; rasl g12"'" IU; (Jas). (2.5) 

In words, this equation states that Gn may be re­
placed by the single operator gI2"'" (on the first 
n particles) if a random average is made on the index 
r and the result multiplied by ("::). The bra-ket of 
(2.5) is the trace of a ket-bra: 

{V; rarl Gn IU; (Jar) 

= TrN (Gn IU; (Jar)(V; rar!) 

= Tr
n (g12"'''(~) /a ~ Tr

m 

IU; (Jas)(V; rasl) 

= Tr" (g12 ... nr[U; (Jar I V; rar]). (2.6) 

Here we have introduced the definition of the nth­
order reduced spin-free transition density matrix: 

r[U; (Jar I V; rar] 

== (~) /a ~ Tr
m 

(IU; (Jas)(V; rasl). (2.7) 

We use the convention of Eq. (1.6), that n + m = N. 
In the notation of McWeenyl (which is similar 

to that of Lowdin2
), the reduced density matrix 

between states lfu;var(1, .. " N) and lfv;rar(l, ... N) 
is defined 

P';,.;varlv;rar(l, •.. ,n; 1', ... ,n') 

== (~) I ... I lfu;var(1, ... ,N) 

X If't;rar(1',''' ,n',n+ 1,'" ,N)dTn+l'" dTN, 

where 1, 2, ... stand for ordinary and spin coordi­
nates of particles 1, 2, . The spin-free reduced 
density matix is 

P';,.;varlv;rar(l, ... n; 1', ... n') = II [P';,.;urlV;ra, 

X (1, ... ,n; 1', ... ,n')].",_w, dw i ••. dwn , 

where w: ~ Wr means that the primes are removed 
from the spin coordinates before integration. In 
spin-free density matrices, 1, 2, '" stand for ordi­
nary space coordinates only. 

One can interpret the sum on s in (2.7) as a 
random statistical average of the pure-state density 
matrices 

(~) Trm IU; (Jas)(V; rasl· 

It should be emphasized that Eq. (2.7) is an nth­
order spin-free transition density matrix derived 
from a spin-free keto No change would result if one 
began from a antisymmetric space and spin ket and 
contracted on spin indices after finding the usual 
nth-order density matrix. Equation (1.24) gives the 
connection between spin quantum numbers and per­
mutation quantum numbers. 

It follows from (2.7) that the various orders of 
reduced density matrices are related by the recursion 
formula 

(N - n)r[U; (Jar I V; rar] 

= Trl r+l[U; (Jar I V; rar]. (2.8) 

Density matrices for arbitrary kets can be ob­
tained from Eq. (2.7), the density matrix of sym­
metry-adapted kets. Such symmetry-adapted kets 
receive the most attention in the following sections 
because they represent pure states (either of per­
mutational symmetry or spin eigenvalue). But the 
density matrices between arbitrary kets can be 
derived in a similar manner. Briefly, the resolution 
of the identity into matric basis elements [Eq. 
(1.14)] resolves I U) into its symmetry-adapted com­
ponents. The matrix elements of (F then become 

(VI Gn IU) = L L (V; a'r'r'l Gn IU; arr) 
a I a' r,r' 
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and by Eq. (1.18): 

(VI an IU) = L: L: (V; arrl an IU; arr). (2.9) 
a r 

Since the components I U; arr) are symmetry-adapted 
(with d = a unit column vector with a single one 
in row r), the definition (2.7) may be used to in­
troduce the nth-order density matrix: 

(VI an IU) 

= L: L: Tr
n 

g12"'nr [U; asr I V; asr]. (2.10) 

Thus, the nth-order reduced spin-free transition 
density matrix between arbitrary kets is defined to 
be 

r[u I V] ~ L: L: r[U; asr I V; asr]. (2.11) 
a r 

[Notice (2.11) is independent of s.] The sum on a 
in (2.11) resolves r[UIV] into symmetry compo­
nents. The density matrix between arbitrary kets 
has components of each permutation quantum num­
ber. If I U) and I V) are replaced by symmetry­
adapted kets, (2.11) reduces to 

r[u; (Tar I V; TfjU] 

(2.12) 

EVALUATION OF SPIN-FREE DENSITY MATRICES 

The properties of AN permit us to express the 
spin-free density matrices of Eq. (2.7) in more 
elementary form. 

The permutational symmetry of the adapted kets 
I U; (Jar) and IV; Tar) is used by substituting (1.19) 
and (1.13) into (2.7): 

~r) 1 r[U; (Jar I V; Tar] = -- L: L:-
! n! p P' m! 

X (L: L: (T)r, L: [P']~'8[P]:t«(J)t) 
t t' B 

X Trffl (P I U)(V I P'). (3.1) 

The triple sum enclosed in parenthesis in (3.1) is 
recognized as the matrix product "C t [P'P] " d, where 
[P]" is the matrix of P in the ath-irreducible repre­
sentation of SN and d, "C are the column vectors of 
coefficients from (1.19). We define the following 
expansion density matrices in terms of I U) and IV): 

p7Iv[P I P'] ~ Trm (P IU)(VI P'). (3.2) 

When these are introduced in (3.1), the transition 
density matrix between I U; (Jar) and IVj Tar) becomes 

r[Uj (Jar I Vj Tar] 
f" Nt Nt 1 

= N! n! ~ f,: m! "C
t
[P'P]"dp7Iv[P I P']. (3.3) 

Expansion density matrices consist of contractions 
on particles n + 1 through Nj consequently, they 
have the property 

p7Iv[P I P'] = p7Iv[1I"P I P'1I" -1], (3.4) 

where 11" is any permutation from Sm C SN, the group 
of all m! permutations on the last m particles. To 
make use of this property, we decompose SN in left 
co sets relative to Sm: 

N!/m! 

SN = L: PISm, (3.5) 
I 

where PI is a left coset representative and PIS m is 
the left coset generated by PI' In view of (3.5), we 
are able to express a sum over the whole group SN 
as a double sum over Sm and the generators of dis­
tinct left cosets of Sm. Thus, we write P' = P 111" 

and (3.3) becomes 

r[Uj (Jar I V; Tar] = (r IN! n!) 

By the property of (3.4), this becomes 

r[Uj (Jar I Vj Tar] = (f" IN! n!) 

X L: L: L: J, "C t
[Pf?tP]"dP7Iv[1I"P I PI]' 

PI .. m. 
(3.7) 

As 11" varies over Sm and P varies over SN, the prod­
uct 1I"P varies over SN a total of m! times; therefore, 

r[Uj (Jar I Vj Tar] 

= N~~! ~ ~ "C
t
[Pf Pj"dP7Iv[P I PI]' (3.8) 

This expression represents the simplest form of the 
nth-order reduced spin-free transition density ma­
trix for arbitrary I U) and I V). For electronic sys­
tems, (3.8) gives the spin-free density matrices iden­
tical to those of pure spin states with spin quantum 
numbers given by (1.24). 

ORBITAL PRODUCT DENSITY MATRICES 

In this section we enploy kets I U) and I V) with 
the special form 

IU) ~ lu(N» , 
IV) == Iv(N», 

(4.1a) 

(4.1b) 

where IUr) is a single-particle ket or orbital (not 
necessarily orthonormal). The partial traces of ket­
bras between products of non-orthonormal kets are 
given by the same expression (1.6) as for orthonormal 
kets. This is seen by substituting the expansion of 
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Iu r ) and Iv,) in orthonormal orbitals, 

Iur) = L li)(i I ur), 
i 

into the partial trace expression and using the linear 
property of Trm: 

Tr"' lu(N) )(v(N) I 
= Tr'" L L li(N»(i(N) I u(N»(v(N) I j(N»(j(N) I 

'(N) ;(N) 

= L L: li(n»(i(n) I u(n»(v(n) I j(n»(j(n) I 
HA) H .. ) 

x L: (i(m) I u(m»(v(m) I i(m» 
• (01) 

= lu(n»(v(n) I (v(m) I u(m». 

Equation (1.6), the definition of partial trace, thus 
applies to nonorthonormal orbitals as well as or­
thonormal orbitals. 

Expansion density matrices between orbital prod­
uct primitive kets become, from Eqs. (3.2) and (3.8), 

p~v[P I PI] = Trm (P(u)P;\v) IU1)(VII ® IU2) 

X (v21 ® ... ® IUN)(VN/). (4.2) 

Here P(u) is a permutation on the ordered u­
orbitals and P,I(V) is a permutation on the v­
orbitals. The effect of Trm is to send the last m of 
the single particle ket-bras lur)(vrl into the complex 
numbers )vrlur). Permutations P(u) and P,I(V) on 
Trm(ju(N»(v(N)j) give the same reduced density 
matrix as results from applying the permutations 
before the partial trace. Hence, (4.2) can be written 

p~v[P I PI] = P(U)P;I(V) Tr'" (lu(N»(v(N)/) 

= P(U)P;l(V) lu(n»(v(n) I (v(m) I u(m» 

= P(U)P;I(V) lul)(vll ® IU2)(v2 1 ® '" 
® lun)(vnl (Vn+l I un+l ) ••• (VN I UN)' (4.3) 

and the nth-order reduced spin-free transition den­
sity matrix (3.8) becomes 

P"[U; !TOO" IV; TOO"] = N{a , L: L: ~ t[PfP] 
. n. P I 

X dP(U)P;I(V) lu(n»(v(n) I (v(m) I u(m». (4.4) 

As P ranges over SN, the first orbital of lu(N» 
ranges from IUt) through IUN) and similarly for the 
second, third, etc., orbitals. Hence, the sums on 
P and P, may be replaced by multiple sums on 
orbitals: 

P"[ U; !TOO" I V; TOO"] 

= E' E' 'Y~v(i(n) I j(n» IU"n»(Vi<") I, (4.5) 
«n) i<n) 

where each summation index ir ranges from 1 

through N and the prime indicates that no two in­
dices are equal. By IUH .. » is meant lu.,)lui.) ... lUi.) 
and the coefficient "Y~v(i(n)/i(n» is the sum of all 
coefficients of IU«TI»(VjC,,>! in 4.4. In Appendix A 
we show that 

'Y~v(i(n) I j(n» 

= N;a , ,L:" ~t[(~«n»~«m»)Jad(VHm) I "H"»' (4.6) 
. n . • Cm) J n J m 

where the double prime indicates that no two indices 
of i(m) are equal and none is equal to an index of 
i(n). j(m) is any arrangement of the integers which 
remain from (N) after j(n) is specified . 

If the single-particle kets and bras are ortho­
normal, the expansion density matrices IUHfJ) )(VjCTI) I 
form a matric basis of the homomorphism algebra 
of all linear transformations on n-particle kets and 
bras: 

(IUiCnJ)(Vi<,,) /) IUkCTlJ)(VICn) I 
= {IUiC"J)(VICnJ I if 

o otherwise. 

j(n) = ken) 

In this case, the coefficients 'Y~v(i(n)lj(n» may be 
interpreted, as is done by Lowdin2 and others, as rep­
resentations of transition density matrices on the ho­
momorphism algebra. The coefficient "Y~u(i(n)li(n» 
of the density matrix is interpreted as (~) times the 
probability of finding n particles occupying the 
space-orbitals lUi,), lUi.), ... , lUi.). The off-diagonal 
elements in the representation of the first-order 
density matrix, 'Y~u(ilj), are the bond orders, and 
the diagonal elements, 'Y~u(ili), are the occupation 
numbers of the space-orbitals. The unitary trans­
formation which diagonalizes "Y~u(ilj) will transform 
the orbitals into a set of natural spin-free orbitals 
in analogy with Lowdin's natural spin orbitals. 

Equation (4.6) can be simplified when the orbitals 
are orthonormal. The A matrix of (1.23) becomes 
the scalar matrix (fa IN!) 1, and I U; !TOtr) is normal­
ized if dtd = NV/". The density matrix coefficients 
'Y~v(i(n)lj(n» vanish unless i(n) is a permutation of 
j(n): the sum on i(m) in (4.6) is replaced by the 
single term 

'Y~v(i(n) I j(n» = {<rIN! n!) ~t[(J~::)td 
o otherwise 

if i(n) is a permutation of j(n). For example, let 
I U) be the N-fold product of orthonormal orbitals; 
then the first and second order density matrices over 
I U; !TOtr) are given by 

N 

PI[U; !TOO" I U; !TOO"] = E IUi)(u.1 (4.9) 
i-I 
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and 

P2[U; (Jcxr I U; (Ja.] = ! 2:' lu.)(u.1 (8) IUj)(Ujl 
i.i 

+ r/2(N!) t' df G D J d lu.)(Ujl(8) IUj)(u.l· 

(4.10) 

Appendix B provides a simple example of Eqs. (4.9) 
and (4.10) for the case of three particles in permuta­
tion state a = 12, I}. 

SINGLE-DETERMINANT DENSITY MATRICES 

Symmetry-adapted kets for the permutation state 
a = lIN} have the form 

where E(p) is the parity of P and (J and r have been 
suppressed because fl1 N

) = 1. Alternately, Eq. (5.1) 
may be written 

(5.2) 

where G, is the antisymmetrizer. If I U) is spin-free, 
then (5.2) represents a state with spin quantum 
number 8 = !N. When I U) is any orbital product 
(spin-free or not) ket lu(N), (5.2) becomes 

IU; lIN}) = G, lu(N) 

= det lu(N)}. (5.3) 

The nth-order spin-free transition density matrix 
between two such kets is given by 

P"[U; lIN} I V; lIN)] 

2:' 2:' 'Y~v(i(n) I j(n)) Iu.(,,})(v;<,,) I, 
i(,,) j(n) 

where 

'Y~v(i(n) I j(n)) 

1 ,",,, (i(n)i(m)) 
= NI n! .7:) E j(n)j(m) (Vj(m) I Ui(m» 

1 ,",,, (i(n)i(m)) lIN 
= N-I I "-' e.().( ) (Vjr I U. r ) n. i(m) J n J m .-,,+1 

(5.4) 

and (vjlu.) is called an "overlap integral." The 
N X N matrix with these overlap integrals as 
elements: 

Duv == Iduv(j I ~')}, (5.5) 

where 

duy(j I ~') == (Vj I u.) 

is labeled by Vj on rows and u. on columns. Now the 
coefficient 'Y';,y(i(n)li(n» is recognized as the cofactor 

which results when the rows labeled V;(m) and col­
umns labeled Ui(m) are struck from the determinant 
of D uy• This is the useful result first given by 
Lowdin2 for spin orbital wavefunctions. 

Equation (5.4) applies to spin kets as well as 
spin-free kets. Simply consider the orbital lUi) to 
be a spin-orbital, e.g., electron spin orbitals have 
the form Iu+) == lu)la) and Iu-) == lu)Ifj). Then 
I U; lIN}) is a Slater determinant. Such a deter­
minant is not an eigenket of 8 2 unless the space 
orbitals are doubly occupied. That is, I U; lIN}) 
(with spin-orbitals) is an eigenket of 8 2 only if 
lu(N) has the form lu~)lu~)lu~)lu~) .... Regardless 
of this shortcoming, single Slater determinants are 
often used as approximate representations of eigen­
kets. Equation (5.4) may be used without change 
for the density matrices between Slater deter­
minants, but the spin-free density matrices are found 
by contracting on the spin in (5.4). 

Permutational symmetry-adapted spin-free kets 
may be coupled to similarly adapted pure-spin kets 
(analogous to Clebsh-Gordon series for rotational 
symmetry) with the result5

•
10 that 

a IU) 10) = 2: : 2: IU; cxrs) 10; &1"s), (5.6) 
afro. 

where I U) is the spin-free ket, 10) the pure-spin ket 
(e.g., 10) = a(3a(3 ... ) and ~ is related to a by 
[P]& == [pre(P). The nth-order reduced spin-free 
transition density matrix between such kets now 
may be expressed: 

P"[UO I VO] = 2: a I,., 2: 2: P"[U;cxrsl V;a'r's'] 
a,a' f f r,r' .,.' 

X (0; &1"s I 0; ~'r's') 

1 1 2: --; 2:1( 0 I 0; &ss') -:; 
,. f···' f 

X; 2: P"[ U; cxrs I V; cxrs']. . 
Since P"[U; arsl V; ars'] already contains an average 
on the first index r, this becomes 

P"[UO I VO] = 2: : 2: (0 I 0; &ss') 
a f •.• ' 

X P"[U; cxrs I V; cxrs']. (5.7) 

Equation (5.7) expresses the resolution of P"[UO\VO] 
into pure permutation-state components. The 
weights given each component depend on the spin 
bra-kets: 

(0 I 0; &88') = ~I ~ [P]~.,(OI P 10). 
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Density matrices between Slater determinants re­
sult from (5.7) when 

IU) = lu(N) 
and 

10) = a product of orthonormal spin kets (such as 
la)I(:l)la) ... for electrons). 

In this case, (01 p 10) vanishes unless 

p 10) = 10) 

and we find that 

(0 I OJ &ss') = ~ [E8]~." 
N!n 

where E8 is the idempotent 

where p6 is a permutation which leaves 10) invariant 
and n B is the number of such permutations. 

B 

r[UO I VO] = ~! ~ t; [EB]~., 
X r[U jars I V jars']. (5.8) 

One may choose a representation in which [EB] a is 
diagonal with ones at the upper left. This choice 
gives for the nth-order spin-free transition density 
matrix between two Slater determinants [cf. Eq. 
(2.11)] 

B f&9 

r[UO I VO] = ~! ~ ~ r[Uj ars I Vj ars]. (5.9) 

Here r B is the number of ones in the diagonal of 
[EB

]"'. 

When 10) is the spin factor of an electron Slater 
determinant, f&9 = 0 if & < Ina, npl (or a > 
{2", IN-2"l) where na and n~ are the number of la) 
and 1m kets, respectively. Equation (5.9) then con­
tains every permutation quantum number except 
those forbidden by the Pauli principle. By Eq. 
(1.24), this is equivalent to a mixture of spin states 
S = !N, !eN - 1), !eN - 2), ... m or o. If IU) 
is given the special form IUl) IUl) IU2) IU2) ... , one 
finds IUj ars) = 0 if a < {2!NI or {2!(N-ll, 11. 
This is the only single Slater determinant whose 
spin-free density matrix can have pure permutational 
symmetry. 

CORRELATION 

Probability densities of particles relative to some 
fixed center and relative to one another are among 
the quantities which can be computed from first-

and second-order spin-free density matrices. Cor­
relation of particles is often discussedl by comparing 
the probability densities of pairs with the product 
of two single-particle densities. We will find it suf­
ficient to compute the pair densities alone and com­
pare the pair density of one permutation state with 
that of another. As is usual, we confine our attention 
to probability of coincident pairs, but we do not 
find it necessary to resolve the probabilities into 
factors for parallel spin (aa and (3{3) and for antiparal­
leI spin (a{3). We find that the probability for coin­
cidence depends on permutational symmetryj as a 
varies from {I NI to {NI the probability of coinci­
dence increases from zero to a certain maximum. 
This effect may be called permutation correlation 
and the general lowering of density of particles 
relative to one another which results from permuta­
tional symmetry may be called the permutation 
hole. Such correlation provides a spin-free explana­
tion of the Hund rule. 

Let P denote the operator which represents an 
observation of any pair of coincident particles at 
any position. Then p is a two-particle operator given 
by 

P = E Pi;, 
i. i 

(6.1) 

where P;; is the operatorll for coincidence of particles 
i and j. For simplicity we consider correlation in 
kets constructed from orthonormal orbitals. Equa­
tion (4.10) then gives the second-order density 
matrix of a symmetry-adapted ket and hence the 
expectation value of P is 

D;a == Tr2 (Pl2P2[Uj (Jar I Uj uar]) 

= ! E' (u; I (u; I Pl2 lUi) Iu;) 

r ,t[(i j)Ja + 2(N !) f.1 d j i d(U; I (U; I P12 Iu;) lUi)· 

(6.2) 

[If one were to ignore the uncertainty principle, 
particles would be distinguishable (in principle) ex­
cept when they occupied the same position. In this 
case, one could find the probability that a specific 
pair of particles be coincident. For example, we 
might find the probability that particles one and 
two be coincident in a state represented by I Uj asr). 
Now if the representation of the transposition (12) 
is diagonal one has either (12) I Uj asr) = I Uj asr) or 
(12) I Uj asr) = - I Uj asr)(These two cases require 
electron spin functions which are antisymmetric 
and symmetric, respectively.) The probability of 

11 In the Schrodinger representation Pi; is the Dirac delta 
function Il( r i i). 
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coincidence of particles one and two is (U; asrl Pl2 

I U; asr). Since particles 1 and 2 are indistinguishable 
when coincident, one may interchange them in either 
the bra or ket, and if I Uj asr) is antisymmetric 
("parallel" spins) under the interchange, the prob­
ability vanishes. This restricted example of correla­
tion produced by permutational symmetry is called 
the Fermi hole. On this basis, the quantity D;a may 
be considered to be an average Fermi hole for the 
permutation state I U; (Jar)]. 
The operator Pl2 represents an observation of parti­
cles one and two at the same position-hence, they 
may be interchanged and we find 

(u; I (u; I Pl2 Iu;) Iu;) = (U; I (Ui I Pl2 lUi) Iu;) (6.3) 

=: Ri;. 

Equation (6.2) may now be written 

D"a 1 "', (1 + r t[(i j)Ja )R 
2 ="2 t: N! d j i d ii, (6.4) 

or since G D = (: ;) and R.; = R i ., it may also be 
written 

D;a = f.1 (1 + ,! dfG DJd)R.;. (6.5) 

The probability of coincidence of any pair of 
particles depends on the values of R;;, on the per­
mutation quantum number a, and on the vector 
d. There are r independent vectors d, each showing 
its own value of D;a. Representative vectors dare 
those with only one nonzero component: 

d, (~!)' ~I d, ~ (~!)'[l ote. (6.6) 

The average pair density for these r independent 
states is invariant under similarity transformations 
of [(i Dr since it involves only the characters 

jja == 1 '" D",a (6.7) 
2 fa ~ 2 

= (:)(1 + x~/r)R. (6.8) 

Here R is the average of the expressions R. i : 

_ (N)-l 
R == 2 L;R;;. 

." 
(6.9) 

Equation (6.8) gives the average probability of 
coincidence of pairs of particles in permutation states 
a. Yamanouchil2 has given an expression for X~/r 

12 T. Yamanouchi, Phys. Math. Soc. (Japan) 19, 436 
(1937). 

in terms of the partition a = {a\ a2
, }. In case 

a = {2", I N
-

Z
,,} as for electrons one finds 

x~/r = (:rTp2 - peN + 1) + N(N
2 
- 1) 1 (6.10) 

From Yamansuchi's formula, we find for a = {IN} 
and a = {N} that x~/r = -1 and + 1, respectively, 
so that 

jj~IN) = 0 and jj~N) = 2(:)R. 
There is zero probability of coincidence of pairs in 
permutation states a = {IN} and R for each pair in 
states a = {N}. Between these extreme cases, jj~ 
has intermediate values. 

In as much as jj~ indicates the degree of avoidance 
of pairs of particles, it also indicates a rough measure 
of the order of energy levels among permutation 
states. If the particles strongly repel each other (as 
electrons do) then the state a = {IN} tends to have 
the lowest energy and a = {N} the highest. If the 
particles attract each other (as nucleons apparently 
do) the order is reversed. This ordering of energy 
levels by x~/r is the Hund rule for permutational 
symmetry (or multiplicity for electronic systems). 

APPENDIX A: 

DERIVATION OF EQUATION (4.6) 

A left coset of SN relative to Sm is denoted by 
P ,Sm and consists of permutations 

P ,Sm = {(j(~) j~»)(~:~ ~:~') = (j(~) j~;)} , 
where (m)' ranges over all m! permutations of the 
last integers (m). Aside from order, there are ('!) 
choices for the n integers j(n) and each choice of 
j(n) determines j(m) aside from order. The coset is 
generated as (m)' or equivalently j(m), is permuted. 
A permutation of j(n) produces another coset; hence, 
there are ('!) n! = N!/m! cosets and 

"', (n) (m)) SN =.t..J '().() Sm, 
;(n) J n J m 

where the order of integers in j(m) is arbitrary but 
the integers themselves are determined by j(n). 
Hence, in Eq. (4.4), the sum on P may be replaced 
by a sum on i(N): 

P = (i~~) , 
and the sum of PI may be replaced by a sum on j(n): 

p-1 = (j(n) j(m»). 
, (n) (m) 
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TABLE I. Matric basis coefficients [PJ;', for a = {2, I}. 

P I (12) (13) (23) (123) (132) 

[: :j [: -:] [-1/2 v'3/2] [-1/2 - v'3/2] [-1/2 - v'3/2] [-1/2 0/2] 
[PJ" 

0/2 1/2 -0/2 1/2 V3/2 -1/2 -v'3/2 -1/2 

Thus (4.4) becomes 

P"'[U j uar I V j 'Tar] 

-~ E' E' "C t[( (n) (m»)(i(n) i(m»)]" d 
- N! n! HN) i(,,) j(n) j(m) (n) (m) 

X {(i(N))}"{i(n) i(m»)}' Iu(n»(v(n) / (v(m) I u(m» 
(N) (n) (m) 

[here {P}" is used in place of P (u) to denote a per­
mutation on u-orbitals] and when terms are collected, 

P[U j uar I V j 'Tar] 

= E' E' 'Y~v(i(n) I j(n) IUH,,»(VjC,,) I, 
'C,,) jC .. ) 

where 

'Y';,v(i(n) I j(n» 

f" "" t[(i(n) i(m»)]" = NII.£...J "C .().() d(VjCm) I UHm» .n .• Cm) In Jm 

as in (4.6). 

APPENDIX B: EXAMPLES 

In this Appendix we apply the methods of the 
text to the evaluation of spin-free density matrices 
for N = 3 and a = {2, 1) (doublet state of three­
electron systems). We find the first- and second­
order spin-free density matrices for a spin-free eigen­
ket of orthonormal orbitals by application of Eqs. 
(4.9) and (4.10). Let I U) be the orbital product 

IU) == lu(3» 

= lUI) lu2 ) Iua). 

The symmetry-adapted ket I Uj uar) is given by 

/ U j uar) = (u)le;1 / U) + (U)#~2 / U), 

where er~ and er~ are found from Eq. (1.9) and the 
matric basis coefficients of Table 1. 

Normalization of I U; uar) is provided by Eq. (1.23) 
and in our case, the elements of .1 are given by 

.1" = (UI e:.t e;, I U) 

= (u(3) I e:, /u(3» 

= 'I ~ [P]:,(u(3) / P lu(3» 

Hence, I Uj (far) is normalized by dividing by the 
square root of 

(U j (far I U j (far) = dAd = H(f~UI + U~(f2)' 
To normalize I U; (far), we require d to have magni­
tude 2, and procede to evaluate the density matrices 
of IUj (far). From (4.9) and (4.10) we find 

PI[Uj uar I Uj (far] = Ulul)(ull + IU2)(U2/ + IUa)(UaIJ 

and 

P2[Uj (far I Uj uar] 

= Hlul) IU2)(u2 1 (ull + lUI) Iua)(ual (uII 

+ lu2) lul)(ull (u21 + lu2) Iua)(ual (u21 

+ IUa) lUI) IUI)(Ual + IUa) IU2)(u2 1 (ualJ 

+ t(U~UI - (f~(f2) [lUI) lu2)(ull (u2 1 

+ /U2) lul)(u21 (UIIJ + fi( -(f~(fl - v'3 U~(fl 
- v'3 (f~U2 + (f~(f2)[\Ul) IUa)(u11 (ual 

+ IUa) lul)(ual (UIIJ + T"2( -U~UI 

+ v'3 U~UI + v'3 U~U2 + u~(2)[lu2) IUa) 

X (u21 (ual + IUa) IU2)(Ua I (Ua IJ· 
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Solution of Schrodinger Equation Involving Time* 
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The gen~ral solution of the Schrodinger equation involving the time-dependent perturbation iB 
presente~ m a compact a~d manageable form both for periodic and aperiodic perturbations. The 
method mcludes a~ a specIal case the solution ?f the Schrodinger equation involving the time-inde­
pendent perturbatIOn. Formulas ready for practIcal uses are explicitly described. The essential part of 
the procedure iB the determinantal method in the Laplace-transformed space. The solution is appli­
cable to strong perturbations as well as weak perturbations. 

I. INTRODUCTION 

THE time-dependent perturbation theory is the 
basis of calculating the probabilities for various 

processes including the interaction of electromag­
netic field with matter. 

Up to the present time, the most satisfactory 
time-dependent perturbation theory was the method 
of variation of constants (MVe) developed by 
Dirac.! This method is basically the simple power 
expansion in terms of the strength of the applied 
perturbation just as the Rayleigh-8chrodinger per­
turbation theory2 (RS) in the case of the time­
independent perturbation. As in RS, MVe is useful 
only when the perturbation is weak. If the perturba­
tion is strong, we must perform the calculations up 
to very higher-order terms. However, in practice, 
this is almost impossible and the result may diverge. 
The number of terms in each order will increase 
very rapidly even in RS. In all cases, the number 
of terms appearing in MVe is much larger than 
in RS. Also in MVe, we must perform the time 
integration in each order. In short, if we apply 
MVe the calculation will be very laborious with 
the result which may diverge. 

Here the author would call the reader's attention 
to the previous papers by the author,3.4 in which 
a method for solving the time-independent Schr6-
dinger equation was given. The method yields satis­
factory convergence for the strong perturbation as 
well as for the weak perturbation. It is hoped, then, 
that we can establish the time-dependent perturba­
tion theory which is also applicable to the strong 

* This work was supported by the National Science 
Foundation. 

t On leave of absence from Kyoto University. Present 
address: Department of Physics, Tohoku University, Sendai, 

perturbation with a good convergence, because the 
time independent perturbation theory should be 
included, as a special case, in the more general 
time-dependent perturbation theory. Bearing this 
situation in mind, the author will present a new 
time-dependent perturbation theory as the general­
ization of the previous papers.3

•
4 

Here we shall explain the basic idea in the present 
paper. In the case of the periodic perturbation, we 
construct a set of the coupled equations for the 
function exp( -ilwt)'l!(x, t) (w, the characteristic fre­
quency 1, positive and negative integers). In the 
case of the aperiodic perturbations, we construct a 
set of coupled equations for t°'l!(x, t) (8, positive 
integers). To this set of coupled equations, we apply 
the Laplace transform and obtain the coupled equa­
tion in the Laplace-transformed space. Then by 
making the inner product of this set of coupled 
equations and the wavefunctions of the unperturbed 
stationary states, we have the set of coupled equa­
tions, all of whose elements are constants. We solve 
the secular equation obtained from this set of coupled 
equations employing the method described in Ref. 3. 
Once we find the eigenvalues of the secular equa­
tion in the Laplace-transformed space, we can ob­
tain the Laplace-transformed wave function from 
which we get the wave function of the perturbed 
system by simply applying the Laplace inverse 
transform. 

The important aspect of this method is that we 
are solving the set of coupled equations which does 
not contain any operator. All the time, we need only 
to do with numbers. Thus the calculations are very 
easily performed. Besides, we need not perform the 
tedious time integrations in each order, which was 
needed in MVe. The equivalent to the time integra-

Japan. 
! P. A. M. Dirac, Proc. Roy Soc. (London) A112, 661 tion is the Laplace inverse transform in the last 

stage. This is very easily done, once we know poles 
(the eigenvalues of the secular determinantal equa­
tion). 

(1926); A114, 243 (1927). 
2 E. Schrodinger, Ann. Physik 80, 437 (1926). 
IT. Sasakawa, J. Math. Phys. 4, 970 (1963). 
, T. Sasakawa, J. Math. Phys. 5, 379 (1964). 
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In the course of expanding the secular deter­
minantal equation, we employ the Fredholm expan­
sion, whose convergence is guaranteed by the 
Hadamard's theorem. The method of obtaining the 
eigenvalues from the secular equation is described 
in Ref. 3. The methods yield the results which 
converge very rapidly. On this account, see also 
the Appendix of the present paper. 

The wave function thus obtained is most generally 
expressed as 

,T,( t) " I ) " " -iEI"."!/'" fO 
l' X, = "'-' n L..J .L...J e Xn,l'n',l"n" 11.', 

11. l'l" 11.'11.' I 

where f~ denotes the inner product of the initial 
state and the unperturbed stationary state In). 
EZ"n" is the eigenvalue of the secular determinantal 
equation. (The states assigned by these eigenvalues 
are not orthogonal in the configuration space.) EZ"n" 

is real for the periodic perturbation of real fre­
quencies and complex for the aperiodic perturbation. 
Therefore, the spectra are sharp lines for the periodic 
perturbations (Fig. 1), but not for the aperiodic 
perturbations. The explicit form of Xn.Z'n'.Z"n" is 
given by Eq. (2.19) or Eq. (6.19). This function 
is independent of time. In conclusion, the above 
form is the exact and the general solution of the 
time-dependent Schrodinger equation. If we know 
the wave functions of the unperturbed stationary 
states, and accordingly the matrix elements appear­
ing in EZ'n" and Xn.Z'n'.I"n", the general solution 
is ready for use in practical problems. The result 
from MVC is the power expansion of this general 
solution in terms of the strength of the added 
perturbation. 

The readers who are interested only in knowing 
the idea of the present method may read Sec. II 
for periodic potentials and Sec. VI for aperiodic 
potentials. From Sec. II to Sec. V, the method for 
the periodic potentials is described. Section II de­
scribes the procedure leading to the general solution. 
In Sec. III, as a simple example, the time-independ­
ent perturbation is discussed from the view point 
of the present approach. In Sec. IV, the detailed 
formulas for actual calculations for periodic po-

abc abc abc abc 

1,111111 11111111. 111I111I 

~-D--~;" -D ---~ -'to 
w -~---w -----

(a) (b) 
FIG. 1. The energy spectrum in the case of three unper­

turbed states a, b, and c. (a) w» D, (b) w «D. Here D is the 
distance between the perturbed energIes defined by Eq. (4.18). 

tentials are described. In Sec. V, the comparison 
with MVC is made. Here we see that the result 
from MVC is nothing but the power expansion of 
the general solution in terms of the strength of the 
perturbation. 

In Sec. VI, the method for the aperiodic potentials 
is described. The general solution is expressed in 
the same form as for the periodic potentials. One 
difference from the case of the periodic potential 
is that now the eigenvalues are degenerate up to 
the first order. To remove this degeneracy, the 
secular determinantal equation is transformed into 
the dispersion equation described in Sec. VII. If we 
pick up the terms directly concerning the state of 
interest [Eq. (6.14)] from the dispersion equation, 
we can remove the degeneracy with respect to the 
state of interest, by employing the method described 
in Ref. 3. 

Using the value thus obtained as the starting 
value of iteration, we use the iteration formula (6.15) 
to find the eigenvalue. Once we obtain the eigen­
values, the wave function is calculated by the same 
method as described in Sec. II. In the actual cal­
culation of the wavefunction, the formulas given 
in Sec. IV for periodic potentials is used also for 
the aperiodic potentials with slight reinterpretation 
of the matrix elements. 

In Sec. VIII, we treat the time-dependent per­
turbation which is the product of periodic and 
aperiodic potentials. In this case, the solution of 
the Schrodinger equation is expressed as (8.9). Ob­
viously, this form can be absorbed into Eq. (2.18) 
or Eq. (6.18) if we change the meaning of the sub­
indices. The extension to a more general class of 
perturbations, the sum of products of periodic and 
aperiodic potentials, is very easily done. The general 
solution should again be expressed in the form of 
(2.18) if we change the meaning of the sub-indices. 
Finally, in Sec. IX, we conclude this paper. 

In the Appendix, the rapidity of convergence of 
the weak coupling and the strong coupling methods 
described in Ref. 3 is discussed. 

II. METHOD AND GENERAL SOLUTION FOR 
PERIODIC POTENTIALS 

We let H 0 denote the unperturbed Hamiltonian 
of the system and Vex, t) the perturbation which 
acts after the time t = O. 

By the canonical transformation 

'l'(x, t) = exp (-iHot/Ii)1/t(x, t), (2.1) 
the original Schrodinger equation 

iii a'l' ~:' t) = [Ho + Vex, t)]'l'(x, t) (2.2) 
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is transformed into 

'1-. aif; (x, t) 
't,~ at 

= exp (iHotlh) Vex, t) exp (-iHotlh)if;(x, t). (2.3) 

The solution of this equation is formally expressed 
as 

1 11 if; (x , t) = if;(x, 0) + ih 0 exp (iHot'lh) 

X Vex, t') exp (-iHot'lh)if;(x, t') dt', (2.4) 

The simple iteration of this equation taking if;(x, 0) 
as the starting function is MVC. We do not apply 
this iteration method. 

In this section and Secs. III-V, we assume that 
the interaction Vex, t) is periodic. 

00 

vex, t) = L: VI(x) exp (-ilwtlh). (2.5) 
l--co 

Correspondingly, we express Eq. (2.4) as 

exp [-i(Ho + lw)tlh]if;(x, t) 

= exp [-i(Ho + 1w)(tlh)]if;(x, 0) 

1 11 + '1-. L: exp [-i(Ho + 1w)(t - t')lh]Vdx) 
't/~ I' 0 

X exp {-i[Ho + (1 + l')w]t'lh}if;(x, t') dt'. (2.6) 

We define the Laplace transform [multiplied by 
(ih)-l]fz(x, p) by 

f ( ) 1 100 

-pi 
I x, P = ih 0 e 

X exp [-i(Ho + 1w)tlhJVt(x, t) dt. (2.7) 

If we use the Parceval-Borel addition theorem of 
the Laplace transform that 

foOO e-r>1 dt [( u(t - t')v(t') dt' ] 

= foOO e-Ptu(t) dt. fooo e-Ptv(t) dt, (2.8) 

the Laplace transform of Eq. (2.6) becomes 

(ihp - Ho - lw)fl(x, p) 

= if;(x,O) + L: VI·(x)fl+I·(X, p). (2.9) 
I' 

In this equation the time integration no longer ap­
pears. However, the operator is still included, 

namely, H o. Therefore, we further decompose f I (x, p) 
by the complete orthonormal set of the eigenfunc­
tions In) of the unperturbed Hamiltonian Ho, 

Ho In) = En In). (2.10) 

We multiply In) from the left and integrate over 
the coordinate x. (As usual, these processes will 
simply be expressed as (nl.) As the result, we have 
the set of coupled equations 

(ihp - En - 1w)fl ... 

where 

and 

= f~ + L: L: VI· ..... ·fl+I' ... ', (2.11) 
" ,,' 

fl ... = (nl iz(x, p», 
f~ = (nl if;(x, 0», 

(2.12) 

The coupled equations (2.11) does not involve 
any operator: All elements are numbers. Therefore 
we can solve it by the elementary method of coupled 
equations. The number of equations is actually 
infinite. However, provisionally, we cut it at an 
arbitrary finite number 1 = L. Later, we let L ~ IX). 

In the present paper, we assume that the number 
of concerning unperturbed states is finite, say, N. 
(However, this can be easily generalized to the case 
of infinite number of unperturbed states.) We let 
w" denote the first-order energy 

w" = e .. + Vo ... ". (2.13) 

If we write out Eq. (2.11) explicitly, it assumes the 
form of Eq. (2.14) (shown at the top of the following 
page). Therefore, if we express the determinant on 
the left-hand side by D(ihp), the solution fo ... of Eq. 
(2.11) or Eq. (2.14) is expressed as 

L: f~·DI'n'.o,,(ihp) 
fo." = I',,' D(ihp) (2.15) 

where D I ,,, • • 0" is the cofactor of the element such 
that in the column to which this element belongs 
also belongs the element ihp - w,,' and in the row 
to which this element belongs also does the element 
ihp - Wn ' - l'w. The expression for D and D I· .. • .0" 

are given in the form of the Fredholm expansion 
(see, Sec. IV), whose convergence is guaranteed by 
Hadamard's theorem. 

The determinant D(ihp) is factorized into the 
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ihp - Wa + Lw _____ _ - - - - - - - - - - - V2L ,aN 
I I 

I 
I 
I 
I 
I 
I 
I 

I I I 
I I I __ 1 __________________ 1 __________________ I __ 

I I I 
I. I V I 
thp -Wa+W-----VO,aNI-Vl.aa---------- l.aNI 

I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 

- Vo Na----ihp - WN + W:- Vl. Na --------- VI,NN: , I 

I 
I --1----------------- _1 _________________ _ 

I I 
I I 
I I 

1- V-I,aa- ______ - V_1,aN:ihp - Wa- _______ - VO.aN 
I I I I 
I I I I 
I I I I 
I I I I 
I I I I 
I I I I 
I I I I 
I I I I 
I I I I 
I I I I 

- V-1,Na-- ___ -- - V-I,NN
I
- VO,Na- - - - - __ ihp - WN

I - -I __________________ I __________________ I __ 

I I I 
I I I 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

- V-2L ,Na--------- ______ ihp - WN - Lw 

product where 

L N 

D(ihp) = II II (ihp - E ln). (2.16) Xn.l'n'.l"n" 

l--L n-a 

f-La 
I 
I 
I 
I 

f-Ia 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

f-l.N 

fo,o 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

fON 

!L,N 

f~ 
I 
I 
I 
I 

f~ 

f~ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

f~ 

f~ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

t~ 
-
I 
I 
I 
I 

t~ 

TI' (EI""" - E.",,,,,,) 
l"'n"';""l""," 

(2.14) 

(2.19) 
The eigenvalues E I " of the determinantal equation 
D(ihp) = 0 can be calculated by the method of 
the previous paper. (See, Sec. III of Ref. 3 and the 
Appendix of the present paper.) 

The wave function is now given by the sum of 
the Laplace inverse transforms of to, .. multiplied 
by ih In): 

Equation (2.18) is the general solution which we 
wanted to have. The explicit expressions for E I " 

and D.'n',on(E."",,) will be found in Sec. IV. In 
Eq. (2.18), we need no longer perform the time inte­
gration. 

(2.17) 

The path of integration is taken along the imaginary 
axis shifted by an arbitrarily small positive quantity 
E (the Bromwitch integral), and the semicircle of 
infinite radius on the left half of the complex p­
plane. If we use the expressions (2.15) and (2.16), 
the result is 

( ) "" I ) -'B'''.'''/trfo 
if x, t = ~ ~ n e "'X",I,,,',I",,", 

J'l" Aft'A" 

(2.18) 

A similar method is applicable to the more general 
class of periodic potentials 

Vex, t) = L L Vlm(x) exp (-ilwmt/h). (2.20) 
I 

In Secs. VI and X, it will be seen that the solution 
of the Schri:idinger equation takes the form (2.18), 
not only for the periodic potentials but for all kinds 
of time-dependent potentials. 

When we compare the wavefunction (2.18) with 
MVe, we may use the canonical-transformed wave 
function 
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l/t(x, t) = exp [iEat/h] q,(x, t) (2.21) 

(a is the initial unperturbed state). The phase 
factor exp [iEat/h] is not important, however, since 
what we actually need is the probability. 

ill. TIME-INDEPENDENT INTERACTION 

Let us compare the solution (2.18) with the solu­
tion of the Schrodinger equation whose perturbation 
does not include time 

This is the special case that only the term with 
l = 0 appears in Eq. (2.5). Consequently, all terms 
in Eq. (2.18) vanish except for the terms with 
l = l' = l" = O. If we omit unnecessary suffixes, 
Eq. (2.18) is now 

q,°(x, t) = L: In) 
ft.,,'n" 

X exp (-iEn"t/h) f~· Dn'n (En") . 
IT' (En" - En''') 

(3.2) 

,,"';o!!n" 

This result must, of course, be the same as the 

* _ Dn·n(En,,) 
an-n"an"ft' - IT' 

(En" - En"') 
(3.8) 

,,"'¢,..' 

The equivalence of (3.2) and (3.3) is thus established, 
so we have now checked that our wavefunction 
(2.18) includes the wavefunction of the time-in­
dependent interaction. 

The problem of the time-independent interaction 
switched on for a finite time interval is found in 
many text books of quantum mechanics where this 
problem is solved up to the first order. If the number 
of states involved is only two, a and b, and if the 
state was in the state a at the time t = 0, the 
first-order term of the usual method yields the 
transition probability from state a to state b 

(3.9) 

On the other hand, if we use Eq. (3.2), it gives 

P - 4 lVabl
2 

• 2 (E E ) /h .b - (E" _ Eb)2 sm + - - t I 
(3.10) 

where 

result derived by the usual method. We expand E± = !I(w. + Wb) 

q,°(x, t) by the eigenfunctions of the perturbed state, 
which are the solutions of the SchrOdinger equation ± [(w" - Wb)2 + 4 IV ab 12]1} • (3.11) 

(Ho + V(x»1/t .. ,,(x) = En"l/tn"(x) (3.3) 

as 

q,°(x, t) = L: exp (-iEn"t/h) 
n" 

The perturbed eigenfunction is expanded by the 
unperturbed eigenfunctions In) as 

l/tn"(x) = L: In)a"n'" (3.5) 
" 

where 

ann" = (nl 1/tn"(x». (3.6) 

We put (3.5) into Eq. (3.4). The result is 

q,°(x, t) = L: exp (-iE" .. t/h) In) ·an" .. a: .. ,,·fn·· 
",,',.." 

(3.7) 

Equations (15) and (18) in Ref. 4 show that 

Comparison of Eqs. (3.9) and (3.10) shows that 
Eq. (3.9) is valid only when the perturbation is small. 

IV. FORMULAS OF Ern, DOn On (ihp) AND 
Dr•n •• On (ihp) FOR PERIODIC POTENTIALS 

In this section, the general formulas for E, D"", 
and Db" given in Refs. 3 and 4 are applied to obtain 
the explicit formulas for Ern, Do... On (ihp) , and 
D,." •. o..(ihp). 

For convenience, we recall the basic idea of the 
treatments in these references, which was the Fred­
holm expansion of the determinant 

(4.1) 

We expand this determinant in the following way. 
First, we pick up all the diagonal terms and get 
the product IT:-l a,.". Next, if we limit the product 
of diagonal terms to II~~1.2 a,.n, it must be multiplied 
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by the determinant I~., ~"I. For the "second-order" 
terms, we must sum up all such possibilities; 

N N 1 0 

~~a 
"n 

an" I II" an'n'_ o n'1"n" 

This consideration is generalized to obtain 

(4.2) 

0 an" an. 
N N N 

+ EEE a"n 0 a". II'" + an'n' 
»-1 11>11. q>:p n';o!n.po 

a.n a." 0 

Therefore, if we let En denote the energy of the 
unperturbed state and (oJn the first-order energy 

(4.3) 

the secular determinantal equation 

D(E) = det (E - H) = 0 (4.4) 

is transformed into 

0 -Vn" -V ... 
N N N 

+EEE -V"n 0 -V". II'" (E-(oJn') 
,,-I JII>n a>p n'p!inpcz 

- V.n -V." 0 

+ .... (4.5) 

If there is no degeneracy with respect to (oJn, 
Eq. (4.5) is brought into the dispersion formula 

E en = 1 
.. E - (oJn 

(4.6) 

by applying the partial fraction method. In Ref. 3, 
the method for solving (4.6) was given. 

In the transformation coefficient of the wavefunc­
tion, the determinant Daa(E) is needed. This is the 
cofactor of the (a, a) element in D(E) and is equal 
to the determinant D(E), whose a row and a column 
are missing. 

Next, we shall explain the method of expanding 
the determinant Dab, the cofactor of the (a, b) 
element in D. This is the determinant D, whose 

a row and b column are missing, multiplied by the 
factor (- t+ b

; 

all·········· '~lb •••••••••• ·alN 

~ab ••.•...•... ~aN 

aNI' ......•.•. ~Nb' .......... aNN 
(4.7) 

Now let us consider the element aba which is at the 
mirror image of the element a.b with respect to the 
diagonal elements. We rearrange the determinant 
Dab in the form that the element aba comes on the 
left corner in the first row. The result is 

Dab = (_ )"+b-\ _)"+b 

aba abl ab2 

ala all au 

a2a a2l a22 

X 
ab- Ia 

ab+la 

aNa aNN 
(4.8) 

By this rearrangement, the determinant always 
changes its sign from the original arrangement. By 
the same consideration as used in deriving (4.2), 
we can expand (4.8) as 

Dab = - II" annraba + E" la
ba 

n~ab p~ab 

a"a 

aba ab" abo .. j + E"E a"a 0 a". 
_1_+ (4.9) 

p.-ab .>" a""a •• 
a •• a." 0 

Dab(E) is also needed in the transformation co­
efficient of the wavefunction. Further details were 
described in Refs. 3 and 4. 

Now we apply the above general relations to our 
special problem. Complication comes from the fact 
that now the quantities have two suffixes land n. 
The derivation of the formula is made by watching 
Eq. (2.14). In what follows we write out the results. 
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A. Eigenvalues 

Similarly to Ref. 4, we shall define gl' ... ,,', gl'l".nn'n" etc. by 

I 0 VI"""'I 
V-l',n'" 0 

o V1'.nn l VI".n"," 

gI'l" .",,'n" o VO/I-I/),n'»" 

V-l".n"'" V""'-(Z"-Z/),nflnl 0 

o 

gz, l' '1'" ,,,,,'n' 'n'" 
o VO/-I/),n'n" 

V-I".n" n V-(l"-l')""'" o 
V -1 ' " ,n"'n V -(I" '-1') ,n"'n' V -(1' "~-I"~) ,n" 'n" 

etc. 

VIIII. nn'" 

VCII"-II),"'n'" 

o 

H we use these quantities, the Fredholm expansion of the determinant D(ihp) is 
L N 

D(ihp) = II II (ihp - w" - lw) 
l--L n""'G 

L -1+N N N 

L:L:L: L: gl',nn' II" (ihp - W,," - l"w) 

x 

l--L 1'-0 n''''a 
(n'>", if Z'-O) 

(1' 'n") ¢(l,n) (1+ Z' ,n') 

L -1+L -1+L N N N 

L: L: L: L: L: L: gl'I" ,,,,,',, " 
1==-L 1'-0 1"2:,1' n-a n'-a ,,'-a 

(n'>n, if 1'-0) (n">,,'. if 1"-1') 

II'" (,;hp " - 00",,', - l'''w) 
(1'" ,n" ')¢-(l,n). (1+1' .n') (1+ I" tn' ') 

L -1+L -I+L -1+L N N N N 

(4.10) 

L: L: L: L: L: L: L: L: g"l"l"',nn'ft."""" 
Z--L 1'-0 1"2::1' Z'''";;!.Z'' n-a n/-a 

(n'>n. if 1'-0) 
n' '-a 

(n">,,', if 1" -1') 
n"'-a 

(n"'>,,", if 1"'-1") 

x II"" (ihp - W,,"" - l""w) + ... 
(l"" ,n' II ') ¢(l ,n). 0+1' ,n') O+l" ,n") (l+l'" ,11."') 

Therefore, the secular equation 

D(ihp) o 
is transformed into the dispersion equation 

L N 

I~L ?;. (ihp -w" - lw) 
I, 

-I+L 

L: 
I'--I-L l'w 

-I+L -1+L N N 
GZ'l".nn'n" + L: L: L: L: 

I'--I-L l" ~l' n'-a ,,' '-a (Wn - Wn , l' w)(w" - W,," 
(110';00"". if 1'-0) (n">n', if 1"-1') 

-I+L -I+L -I+L N N N 

+ L: L: L: L: L: L: 
I'--I-L I" ~l' l"'~l" n''''a n'I"a n' "-a 

(,,';00"», if 1'-0) (n">n', if l"-") (110"'>,,", if l"'_l") 

gl'l"Z"',nn'n"n'" + 
X (Wn - W,,' - l'w)(w" - W,," - l"w)(w" - W,,'" - l"'w) •... 

(4.11) 

(4.12) 

(4.13) 

- l" w) 

(4.14) 
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Equation (4.14) shows that the 1 dependence of the coefficients G,,, comes from the upper limit of summations. 
However, actually, L should be infinite, so G,,, does not depend on 1. Thus the dispersion equation (4.13) 
must be 

f '£. Gn = 1 
1 __ '" ,.-a 1,lip - w .. - lw (4.15) 

with the coefficient 

GR = 

N N G!'!".n,,'"'' L: L: " + .... 
,,'-a ,,"-a (WII - Wn' - l'w)(w .. - W,," - 1 w) 

(4.16) 
(.'''A, if 1'-0) (n">.' t if l"_l') 

From Eq. (4.15) we see that the eigenvalues 
E for a fixed state n is distributed with equal 
distance, 

E , ... = E,- 1 ." + W. (4.17) 

weak-coupling method, the strong-coupling method, 
or the nearest-neighbor-states method. These meth­
ods give very good convergence. See examples given 
in Ref. 3 and discussions developed in the Appendix 
of the present paper. 

When the eigenvalues Eo" are distributed with 
equal distance D, B. Formula for DOn. 0" (ifip) 

D = Eo." - Eo.,,+l, (4.18) 
In this section we shall calculate Do".o,,(ilip) for 

n = p. 

the energy spectrum will be as shown in Fig. la 
for w» D and as shown in Fig. Ib for w« D. 

To obtain the eigenvalues from Eq. (4.15), we 
may apply the methods discussed in Ref. 3; the 

The determinant Dop.op(ilip) is equal to the de­
terminant D(ilip), but without the row and column 
to which the diagonal element (ilip - wp) belongs. 
Keeping this in mind, we can write out Dop.op(ilip) as 

L N 

Dop.op(ilip) = IT IT (ilip - WII - lw) 
l--L n-a 
(In)" (Op) 

L -I+L N N 

L:L:L: L: gl' .",.' IT" (ilip - W,," - Z" w) 
l--L 1'-0 ft.-a ,,'.a (I".ft")"'O.n)O+Z',II') 

(n'>". i! 1'-0) 

( 
.... P. If 1-0 ) 

n',.p. if l'--l(Z.so) 

L -I+L -!+L N N N 

L: L: L: L: L: L: 
Z--L 1" .0 l";::;l' ft.-a ,,'-a n'l-a 
~------vv _---"-<";;".'";;",>""".:-;I;,,,.f,,;,,I_· -~O), (n' '>,,', if 1" -I ') 

[ 
",",P. If 1-0 J 

II',",P. if I'--I(ISO) 
n""p, if l"--lO.:s;O) 

g"l".nn'n" 

IT'" (ilip - W,,'" - l"'w) 
(I'" ,.' I') ",(I ,n) (Z+ l' ,n') 0+1" ,n"} 

L -I+L -I+L -I+L 

L: L: L: L: 
Z--L 1'-0 1 / 2:,1' Z"'2!l" 

N N N N 

L: L: L: L: 
flo-a ,,'-a n"-a ,,"'_a 

(n'>n. if 1'-0) (n">,,', if l"_!') (n'''>,.'',. if l'''-J'') 
v 

( 
""P. If 1-0 ) "'''P. If I'--I(ISO) 

n"",p, if l"--lOSO) 
n'''fI'p, if l"'--J(ZSO) 

X gl'I"I"'.n"'"''II''' IT"" (ilip - WII"" - l""w) + .... 
(l'" I ,A'" '),.(l,n) (l+I' .n') (l+I" .n" ) (l+I'" ,A' ") 

(4.19) 
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Or alternatively, this determinant is expressed as 
L N 

Dop,op(ihp) = II II (ihp - w" - lvJ) 
Z--L fa-a 
(1,,,,,.(O,p, 

1 
{ 

L -I'+L N N gl",,,'"'' 

X 1 - I'~L I"-~'-L ,,~ "ka ihp - W,,' l'w W,,' - W,," - l"w 
'-------,,, (n"¢n'. if,"'-O) 

( 
n'''po if 1'-0 ) 

,,"';'p, if 1"--1' 

L -I'+L -I'+L N N N 

:E :E :E:E:E :E gl"I'" ,,,',,"a", 
1'--L Z"--l'-L 1"'2:1" n'-a ,,"-a ,,"'-a 
'----------~v,...(-"-"-.. -"-' ,_i_1 _I '_'_-_0'_("_'_"_>_"_"...-" if Z" '-1") 

[ 

,,'",p, if 1'-0 J 
n"pip, if 1"--1' 

,."'"",P, if 1'''--1' 

X [(ihp - W,,' - l'w) (W", - W,," - l"w) (W", - W"", - l"'w)r1 

L -I'+L -I'+L -I'+L N N N N 

:E :E :E :E :E:E :E :E gl"I'''jiv,,,',,''''''',,lv 
l'--L 1/ --I'-L 1/ '>1" Ziv>Z'" n'-a n"-a ,,"'-a niv_a 

\ - - I 

( ,,~:~:':~ I~::~/')["~::~::: :~ I!:::~" J 
n"',,",p: if 1 / '--1' "iT>>>"': if ZiV.Z/" 

"ivJlllp, if ,lv __ l' 

X [(ihp - W,,' - l'w) (W", - W,," - l"w) (W", - W,,'" - l"'w) (W", - W"lv - ZivW)r
1 

- ••• }. 

AB in GI", L should be set as infinite in the final result. 

C. Formula for DI ''''. On (inp) 

(4.20) 

The formula (25) in Ref, 4 is applied to obtain the explicit form of DI',,' ,o .. (ihp). First, we define hl'I" ... ,,' .. ", 

hl'l"'"'' etc., by 

hZ"",n"'A" -I VI', .... , V(I'-Ol'", .. ,," 1 

V"',n"n l 

VII,n,,1 V O '-l"),,,,.,, V (I'-Z/') ,n,,' I' 

hZ/z""",nn/n"n'" = VZ",n/'n l o VO,t-ll'/) ,n",,'" 

V"".n"'n l V(1"'-1 / '),n / '/ n /' o 
V",nn' VO'-I") ,nn" VO'-It"),nn'" VCI'_liT),nn IT 

hz, I' '1 / " ,1"',nn'n',,,',,,,I ... 
VI",,.,"'" 0 V(Z"-I"'),""'R'" VO"-liT) ,n""IT 

VZ"',n"'n' V(l"'-l"),""'n" 0 VO"'_IIT),n",,,IT 

V1IT.n iT", V CZ lT_I")."lT",, VOIT_Z' ") ,n iv,,'" 0 

etc. 
Then we can express D'''',o .. (ihp) as 

D I ,,,, ,o .. (ihp) = _ _ II' (ihp - w;; - lw) 
(1, .. ,"(0, .. ) ,(I' , .. ') 

{ 

I'+L N 

X VI',,, .. , +:E :E 
l"_l'-L ,,"-a 

hZ'l",,.,,',,,, X ihp - W .. " - (l' - l")w 
1 

+ 

(:::=:' ::~ ~:::~') 
l'+L Z'+L N 

:E:E :E 
Z"-l'-L l'''~l'' ,,"-a 

(
""",, for 1"-1') 
11."",,' for 1"-0 

N 

:E h"I"l"'.nn'A""'" 
,,"'-a 

[
"",<"" lor I'''-I''J 
""',",,, for 1'''-1' 
""'",,,, for 1"'-0 

(4.21) 
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X [(ihp - 0010 " - (l' - l")w)r1[(ihp - 0010", - (l' - l"')w)r1 

1'+L l'+L 1'+L N 

+ L L.L L 
Z"-l'-L Z"'~l" 1IV;:::I'" ,.."-0 

(n"~n for 11 '-1') 
n"~n' for 1"-0 

X hZ'I"I" 'Z;T ,1010'10"10' "niv[(ihp - 0010 " - (l' - l")w)(ihp - 0010 ,,, - (l' - l"')w)r1 

X [(ihp - Wn;v - (l' - liV)W)r1 + , .. }. 

Or alternatively, this determinant is expressed as 

D I ,,., ,On = _ _ II' (ihp - Wi; - Zw) 
(/, .. )"(0,10), (I' ,10') 

I'+L 1'+L N N 
hi' 1"1'" .nn'fI.' 'n'" L L L L 

I"-Z'-L Z'''-Z'-L n"-a n'''-a (ihp - 0010 " - (l' - l")w)(wn" 

(""~" for Z" -Z')Y-[n" , "'10" for Z'" -Z" J 

+ 
- Wn '" - (l" - l"')w) 

,,"~n' for 1"-0 n"'~n for 1'''-1' 
n"'~n' for 1"'-0 

I'+L I'+L ,'+L N N N 

+ L L .L L L L 
l"-l'-L l"'-l'-L 1Iv>I'" n"-o ","'-0 nlV_o 
\ . 

V 

(:::~:, ~~~ ~:;:~')( :!:~:, ~~: ~~::~' ) 
(

10"''''10 for Z'''=Z') [ n""'n:" for I"=Z:"J 
,.."';;<!On' for 1"'=0 n";>"'n tV for 1"_llv 

n"'~niv for l"'_liv 

h"I",l"Ziv,nnlnl'n"'niv ] 

X (ihp - 00
10

" - (l' - l")w)(wn" - 0010", - (l" - l"')w)(wn" - W"iT - (l" - li lW) + ... . 
Again L should be taken as infinite in the final result. 

V. PERTURBATION EXPANSION 
(PERIODIC PONTENTIAL) 

The general solution (2.18) with the explicit form­
ulas given in Sec. IV is all that we need. However, 
it may be interesting to compare the general solution 
with the perturbative result derived from MVC. 
In this section, we shall make this comparison up 
to the second-order terms. 

A. General Formulas 

of the present paper), 

E z'", = 0010 , + l'w 

C" n , 

+1- - W"',,-

Therefore, up to the second-order terms, 

(4.22) 

(4.23) 

l"w) . 

(5.2) 

Since the original secular determinantal equation 
D(ihp) = 0 can be transformed into Eq. (4.13), 
the determinant D(ihp) must be factorized as 

II (Ez'", - Wi; - Zw) 

D(ihp) = II (ihp - Wi; - Lw) 
In 

( 

L N C ) 
X 1 - L L. In • 

I--L n=a ~hp - 00" - lw 
(5.1) 

On the other hand, according to the weak-coupling 
approximation given in Ref. 3 (see also the Appendix 

where 

Tnr!l'n' 

(5.3) 

-Z+L N V V L L Z",,,,," -Z",""" 
l"--I-L n"-a Wn - Wn'l - l"W 

(n",.n. if 1"-0) 

(5.4) 
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From (4.20), we have 

Dop.op(Eop) = II (Eop - Wn - 1<,,) 
(I.n)-(O.p) 

X {I - t t Cln(O, p) }, 
I--L ,,-a Eop - w .. - 1w 

(I ... )" (0 .p) 

where 

-I+L N V V 
~ ~ l",n,," -l",n"ft 

l,,=:'-L "ka Wn - 6.171. / - l"", . 
(n"~n. if 1"=0) 

(",':=:: ~: !7,O __ z) 

Then, since 

(5.5) 

(5.6) 

If we use (5.7), we get 

( 'n - E ) Dop,oeCihp) 
t Pl· .. · D(.'t.p) 

i'lfP-"EI 'n' "It; 

lim 

_ 1 V_I'.n'pVI'.p .. ' 
- E I· ... - wpw", - Wp + l'w 

(5.9) 

for (1', n') ~ (0, p). 
Next, from the second-order approximation of 

Eq. (4.23), we have 

DI~.o/EI·"·) = II (E I· .. · - Wn - Iw) 
(I.n)"(O.p)(I.a) 

[ If "£ vl ....... aV(I_I .. ),p .... J. 
X Vl,pa+ Z"-I-L .. -a (Ez .... -w .... -(l-l")w) 

(I" ..... )"(I.p) (O.a) 

C -C(O)= V_I.npVI.p .. 
I.. In, P + lw ' w .. - Wp 

(5.7) Therefore, 

we obtain 

1· ('n - E ) Dop,op(inp) 
1m t p Op D('n) H,_B. p t P 

= 1 + t "£ 1 . V_I."pV I.p" . 
I--L .. -a Eop - (wn + lw) (wn + lw) - Wp 

(I ... ) "(O.p) 

(5.8) 

For (Z', n') ~ (0, p), 

Dop.op(EI·,,·) = __ II (EI· .... - Wn - lw) 
(I,,,),,(o.p) 

II - , ) _ _ (E I ... , - Wn - lw)(EI·,,· - Wn ' - 1 W 
(I ... )"(O.p)(I'.,,·) 

X {1- t "£ CI .. (Op) 
I--L n-a E I·n • - W" - lw 

(1 ... ),,(O.p) (I' .n·) 

CZ· .. ·(Op) } - , . 
E I .... - w .. ' - 1w 

Therefore, up to the second-order terms, 

II (E I •n , - Wn - lw) 
(I.n),,(O.p) (I' .n·) 

Thus, for (l', n') ~ (0, p), 

( 'n E) Dop.o.(ihp) 
t p - I· .. • D(ihp) 

i*1)-tEi '.' 
lim 

1 
E 

[CI'n' - CI· .. ·(Op)]. 
l'n' - Wp 

r ('n - E ) Dza.op(inp) 1 
;*p~.p t p Op D(ihp) Eop - Wv - lw 

[
V If "£ vI· ... ·aV(I_I·),p .. • ] 

X I.pv + I'-I-L .. '-a Eop-w .. ,-(l-l')w 
O· ... ·)"(I.p).(O.a) 

1 
E 1 V Z• pa 

Op - Wa - W 
I+L N 

+ I: I: VI' ... ·v V(I-z·),P .. • 
l'-l-L n'=a 

(I·.n·),,(I.p)(O.a) 

X {[Eop - Wa - lwrl[Wa - w .. ' + l'wr1 

+ [Eop - W .. ' - (l - l')wr1[w .. , - U)a - l'wr1). 
(5.10) 

Similarly, 

1· ('n E) Dla.op(inp) _ 1 
1m 1. p - Za • - =---

;*"....E,a D(thp) Ez~ - Wp 

[V 
I~ ~ VZ· ... ·aV(I-Z').p .. ' ] 

X I,pa + I'~L .. ~ E la - Wn ' - (l- l')w . 
(I' ... ·)"(I.p). (o.v) 

(5.11) 

Finally, for (l', n') ~ (l, 0), (0, p), 

( 'n - E ) Dla.op(inp) 
t p z· .. • D(.np) 

Hr~E"., " 
lim 

1 
(E - )(E _ _ 1 .. ) V(I-I·) ... ,v VI'.P .. ·· 

l'n' Wp l'n' W(f (..W 

(5.12) 

B. Example 

As the simplest example, we shall discuss the case 
of two unperturbed states a and b, presuming that 
before the time t = 0 the system was at a state a; 

(5.13) 
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in (2.18). Also, we assume that the perturbation 
(2.5) has only two components l = ±1, and that 
VI(x) = V_leX) == Vex). Therefore, w" = Ea and 
Wa = Eb' The wavefunction (2.18) of the system 
is now 

'IJ1(x, t) = L Lin) 
11' tan' 

-,EI/"'D (E) 
X lim (E - E I ,,.,) e la.On. (5.14) 

E-E,'.' D(E) 

From (5.8), we have 

lim (E - Eoa) Doa.oa(E) e-,EI/." 

E-E.. D(E) 

= [1 _ 2 I~ad + lVabl2{ 1 1 
W E,,-E.-WEb+W-Ea 

+ II}] -iE •• I/." 

Ea - Eb + W Eb - W - Ea e . 

All other terms of the form 

1~. (E - Eoa) D~'(E\E) exp (-iEt/h) 

vanish. Therefore, the coefficient of the term la) 
X exp (-iEoat/h) in (5.14) is equal to 

1 - lVa
2
al

2 
+ lVabl2 

W 

[{ -1 -I} 
X (Eb - Ea + w)(2w) + (Eb - Ea - w)( -2",) 

-~~~~wl-~+w+~-~-J 
- Ea ~ ~bl)_ W tb - ~a + W + Eb - ~ - W} J. 

(5.15) 

Next, from Eq. (5.9), 

lim (E - E Ha) Doa.oa(E) e-,EI/." 

E-E±,. D(E) 

lVaal
2 

('E /f<) = 2 exp -t Hat n , 
W 

(5.16) 
and 

llIll' (E - E ) Doa.oa(E) -iEI/." 
±lb D(E) e 

£ ..... 8*16 

All other terms of the form 

lim (E - E
I 
.. ) Doa.oa(E) e- ilfll.", 

E_EI. D(E) 

(l, n) ¢ (0, a). 

vanish. 

From Eq, (5.11), we have 

lim (E - E Ha) Dla.oa(E) e-iEI/'" 

E-8±,. D(E) 

= 1w Vaa exp (-iEHa t/ h) , (5.18) 

and 

lim (E - Eua) DD(;iE) e-,81/'" 
B-B±.G 

__ 1_ (lVaal2 + lVab l
2

) (-'E t/f<) 
- (±2w) (±W) Ea _ Eb ± W exp t ±2a n. 

(5.19) 

All other terms of the form 

lim (E - E la) Dla.oa(E) e- iEI /." 

E-E,. D(E) 

vanish. 

From Eq. (5.12), we have 

lim (E - E±la) D±2a.oa(E) e- iEI /* 

E-B±,. DeE) 

lVaa 12 ('E /f<) = - 2 exp -t ±lat fb , 
W 

(5.20) 

which, however, cancels out with (5.16). Also, we 
have 

lim (E - E±lb) D±2a.Oa(E) e- i81/* 

B-E±" DCE) 

lVabl 2 exp (-iEwt/h) 
(Eb - Ea ± W)(Eb - Ea =F W) 

All other terms of the form 

vanish. 

(5.21) 

Collecting all of these results, we obtain the co­
efficient of the wavefunction la) in (5.14) as 

-, .. I/"'{1 Vaa ( '",1/'" -i"'I/*) e -- e -e 
W 

+ lVa;12 (e2i ",I/." _ 2 + e-2;"'I/*) 
2w 
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This is just the result which we obtain by MVC. 
The term which is linearly proportional to the time 
comes from the expansion of exp (-Eoat/h). This 
shows that MVC can be applicable only to the weak 
perturbation. 

Next, we shall calculate the coefficient of the wave­
function Ib) in (5.14). From (5.10), we have 

lim (E - E Ob) D±la,ob(E) e-,El/tr 
~-E.. D(E) 

(5.23) 

lim (E - E Ob) D'D'(E\E) e-,El/tr 
B-B •• 

= {Vba Vaa[ C ~ Ea·~ + Eb - ~a + w· ~J 

+ C ~ Ea· ~W + Eb - !a - w·~) J 

(5.24) 

and 

[ ( 
1 1 1 1) = V V .-+ .-

ba aa Eb - E" =F 2w ±W Eb - Ea =F W =Fw 

(5.25) 

From (5.11), we have 

lim (E - Eoa) Doa,ob(E) e-iBl/tr 
It-B.. D(E) 

[ (
1 1 1 1) - V V --.-+ .-- ba aa Ea - Eb W Wa - Eb -w 

( 
1 1 + VbbVba -----+-

Ea-EbEa-Eb W 

lim (E - E±2a) Dua,ob(E) 
E-E±.. D(E) 

[ 
VbaVaa 

= (Ea - Eb ± 2w)(±w) 

+ Vbb V ba J -;B± .. I/* (5.27) 
(Ea - Eb ± 2w)(Ea - Eb ± W) e . 

Finally, from (5.12) we have 

r (E - E ) Doa,ob(E) -,Bl/tr 
lIll ±la D(E) e 

E-B±lG 

V ba Vaa e-iB±,,'/tr 
(Ea - Eb ± W)(±W) , 

(5.28) 

(E - E ) D±2a,Ob(E) -iBl/tr 
±la D(E) e 

B-E::I:18 
lim 

V ba Vaa e-iB± .. ,/tr 
(Ea - Eb ± w)(=Fw) , 

(5.29) 

lim (E - E ) Doa,ob(E) e-,Bl/tr 
B-B±" ±lb D(E) 

V ba Vbb e-,B±lbl/* (5.30) 
(±W)(Eb - Ea ± W) , 

Vbb V ba e-,B"',b l/* (5.31) 
(±W)(Eb - Ea ± W) , 

Up to second-order terms, all terms which are 
not listed vanish. Collecting equations from (5.23) 
to (5.31), we obtain as the coefficient of the un­
perturbed wave function Ib), 

. { [e"·.-··+,,,)l/* - 1 e-· .. ,/* - Vba 
Eb - Ea + W 

+ e'(··-·o-",)l/* - IJ 
Eb-Ea- W 

+ ~ _ e ____ ----::-_ V V [ ,( •• - •• -2",)1/* - 1 

W Eb-Ea-2w 

+ e" .. -··+2",)I/* - IJ 
Eb- Ea+ 2w 

V V 
[

e,,··- .. -2 .. )I/* - 1 e-;,,'/* - 1 + bb ba + ___ _ 
Eb-Ea-W Eb-Ea-2w W 

e,,··-··)I/* - 1 ei 
.. 
,/* - IJ + ----

Eb-Ea W 

V V [e;(,,-,,)l/* - 1 e-i",'/* - 1 + bb ba + ___ _ 
Eb-Ea+W Eb-Ea W 

e,( .. - .. +2",)l/* - 1 ei .. ,/* - IJ} 
+ Eb - Ell + 2w - W • (5.32) 

(5.26) This is the result which we obtain also from MVC. 
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VI. METHOD AND GENERAL SOLUTION FOR 
APERIODIC POTENTIALS 

In this section, we demonstrate the method of 
treating potentials which are not periodic in time. 
The basic idea in this section is almost the same 
as in Sec. II. The general solution assumes formally 
the same form as that given in Sec. II. 

We assume that the potential is not singular in 
time. Then, the potential may be expressed by 

Vex, t) = f kIf (~~)k VCkJ(x), (6.1) 
k-O • ~fb 

where 

The solution of the SchrOdinger equation (2.2) is 
expressed then as 

'" 1 (1) I/I(x, t) = l/I(x,O) + :E k'f .~ 
k'-O • ~/b 

x { eiH."N{~r V(k'}(x)e-iHol'/ffl/l(x, t) dt'. (6.3) 

Defining the Laplace transform 

( ) 1 (1) 1"' -Pt( t )1: -iHol/ff.I.( t) dt (J" x, P = k! ih 0 e ih e 'I' x, I 

(6.4) 

we obtain from (6.3) 

'" k 1 
+ :E :E ('h H)k r+l k'-O •• 0 ~ p - 0 

(k' + r) V(k'J( ) ( ) X k' X (J"'+r x, P • (6.5) 

Here we have used the relation 

1'" e-p'tk dt { u(t - t')t''''v(t') dt' 

± (k) 1'" e-p'tk-'u(t) dt·l'" e-P1t"'+'v(t) dt, .-0 roo 
(6.6) 

and 

t"e-(p+iHo/fflt dt = n. • 1'" f 

o (p + iHo/hY'+l 
(6.7) 

Equation (6.5) is transformed into a more tractable 

form 

'" ~ (k'J 
- i:..J V (J,,' = 0, (6.8) 

'\:'-1 

and 

(ihp - Ho - V(Ol(X»(Jk+l - (J" 

- f (k' +k~ + I)V(k'J(X)(l"'+k+l = 0, k ~ O. 
k'-l 

Similarly to Eq. (2.10), we define the inner prod­
ucts of the quantities appearing in Eq. (6.8) and 
the unperturbed stationary state In); 

(l" ... = (nl gk), (6.9) 
f~ = (nll/l(x, 0», 

and 

V!!:> = (nl V(k')(X) !n'). 

Equation (6.8) then reads 

(ihp - En - V!~J)go ... - :E V!~~(Jo.,,' 
n,'P!n 

(6.10) 

and 

+ ('n yeo»~ ~ yeo) -(J".fI ~ P - En - "" (Jk+1.fI - i:..J ",,·(JU1.,., 
n'"" 

~ ~ (k' + k + I)V(k'J 
- i:..J £..J k' .... ' (J"'+k+1 ... = 0, 

k'=l n' 

(k ~ 0). 

Equation (6.10) forms a secular equation in which 
the first-order energy, E .. + V!~J, is degenerate with 
respect to n. In practice, we truncate this set of equa­
tions at k (== s - 1) and solve the equations with 
s-fold degenerate energies. The choice of the number 
s should depend on the strength of the added 
perturbation and/or the time after the system comes 
under influence of the perturbation. Numerically, 
we must say that our choice of 8 depends on the 
accuracy of numerical results we want to have. 

We can transform the secular determinantal equa­
tion obtained from Eq. (6.10) into the dispersion 
equation 

C!l) 
+ ~(E - wJ = 1, (6.11) 
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where we have put 

E = ilip and "' .. = En + V~~). (6.12) 

The method for deriving Eq. (6.11) is demon­
strated in Sec. VII. To solve Eq. (6.11), we trans­
form it as 

L t C~i) ; 
.. ' .... i-I (E - ", .. ,) 

• 
(E - "'n)' - L C~i)(E - ", .. ),-i 

i=l 

(E - "',,)' 

(E - Eb~!.8)(E - Ei~~.8) ... (E - E~~1.".8) 
= 

(E - "'''/ 
(6.13) 

where E k ..... (k = 0, 1, .. , ,8 - 1) are the solutions 
of the equation 

(E - "''')" - C~l)(E - "'n)'-I 

_ C!2)(E - "",)'-2 - ... - C~·) = 0. (6.14) 

Therefore the iteration formula is 

(E [m-I] )8 
E(m) _ k.n, .. - Wn 

k ..... - II (E[m-I] _ E~O] ) 
k,n,. J ,n,. 

; .. k 

( 

8 C~i) ) . L L [m-I] i 
• '#n i-l (Ek •n • a - W n , •• ) 

(m ~ 1). (6.15) 

Equation (6.14) may be solved in a manner 
described in Ref. 3, Sec. V, but without any re­
striction with respect to the sign of the coefficients 
C~i). Therefore, the eigenvalues E k •n •8 is generally 
not a real number, but a complex number. 

The solution E k ..... thus obtained depends on 8. 
If in C~i) all terms up to V(8-1) are included, we 
can expect the final result which is at least correct 
up to the terms proportional to to-I. Hereafter we 
omit the subindex 8, with the understanding that 
we have chosen an 8 which yields sufficiently good 
results. 

In the limit of convergence E~~~ ~ Ek •n , the solu­
tion Yo ... of Eq. (6.10) is expressed as 

L L f~' Dk'n' .on(ilip) 
k' n' 

Yo. n = --"------"----=D"""""( i::-lip""7)--- (6.16) 

where 

D(ilip) = II II (ilip - Ekn). (6.17) 
k n 

Therefore the solution of the Schrodinger equation 

with the aperiodic potential (6.1) is given by 

" " I ) -iE'''n'' t/fr./l = £..... £..... n e In'Xn.k'n' .k' 'n" (6.18) 
Ie'k" nn'n" 

with 

Xn,k'n' ,k' 'n" II' (Ek " .. " - E k ,,, .. ,,,) 
k"'n"'#k"n" 

(6.19) 

In the case of the time-independent interaction, 
we set k = k' = k" = kill = 0, and obtain Eq. (3.7). 

Comparing the results obtained in this section 
with those in Sec. II, we see that the general solution 
of the time-dependent Schrodinger equation is ex­
pressed in the form of Eq. (2.18). The difference 
in the periodic and the aperiodic potential is if the 
potential is periodic (aperiodic) in time, the eigen­
value E 1n in Eq. (2.18) is a real (complex) number, so 
the energy spectra for the periodic perturbation 
should be sharp lines as shown in Fig. 1, whereas 
the energy spectrum for aperiodic perturbations 
should have the width. 

Explicit expressions for Dk'n' .On in Eq. (6.16) was 
given in Sec. IV. The matrix elements V I •nn , in 
Sec. IV, must, of course, be reinterpreted by com­
paring Eq. (2.11) with Eq. (6.10) . 

VII. DISPERSION EQUATION OF DEGENERATE 
SYSTEM 

In this section, we demonstrate the method of 
transforming the secular equation of the 8-fold de­
generate system into the dispersion equation (6.11). 
The fundamental idea is based on the general 
method described in Sec. IV. Here we consider the 
case that the first-order energy "'n defined by (4.3) 
is 8-fold degenerate for each unperturbed state n. 
This is the case of Eq. (6.10). 

We denote the element of the secular determi­
nantal equation as a"n,"'n', where a (and a') takes 
on the values 0, 1, ... , 8 - 1. Since we are con­
sidering the case that aOn • On = a ln • ln = ... = a.- 1 .... - 1n, 

we put 

"' .. == a" ... an(a = 0, 1, ... ,8 - 1). (7.1) 

We expand the secular determinantal equation 
in the form (4.5): First comes the product of all 
diagonal elements, next the sum of the products 
of (8N - 2) diagonal elements and two nondiagonal 
elements, and so forth. The result is 
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IJ (E - "".)' + ~ ~ ~~ I -a: ... a.. -a; .. ·~ .. I(E - "".)'-2 Jl' (E - ",,,,)" 

+ :E :E :E :E I 0 -aa ... a'n'I(E - ""y-1(E - ",,,,y-1 II" (E - "'n")' 
.... '> .. a a' -aa' .. '.a.. 0 .. " ...... ' 

o -aan.{Jft -aan,'Y" 

o -a{1 ... ., .. (E - ", .. )"-8 II' (E - ", .. ,), 
.';011" 

-a., ... a. -a., ... ~.. 0 

o -aan.tJn -aan.a'n' 

+ :E :E :E :E:E -a~ ... a" o -a~ ... a'''' (E - "'ny-2(E - ", .. ,),-1 II" (E - ",,,,,), 
" '1'1'>. a fJ>a a ' "";oil,,,,' 

+ :E :E :E:E :E -aa' .. '.a .. o -aa'''',~'''' (E - ", .. ),-l(E - ", .. ,),-2 II" (E - "'a")' 
" "'>,, a a' {J'>a' "","",,,' 

-afJ'n',an -ap'./la'n' 0 

o -aan,a:'n' -aan.«"n" 

+ :E :E :E :E:E:E -aa' .. '.a" 
n fI'>.,..,,">,,' a a' a" 

o -aa/n/,a"fI / 

-aa"n".an -aa"n",a'n' 0 

X (E - "'nY-\E - ", .. ,),-l(E - ",,,,,),-1 II'" (E - ", .. ",)' + ... = O. (7.2) 
n"'~nn',," 

The power of (E - "''')' (E - ", .. ,), etc., should not be negative. For example, the second, the fifth, and the 
sixth terms in (7.2) appear only if 8 ;::: 2, the fourth term appears only if 8 ;::: 3, and so forth. 

Dividing each term by the first term, we obtain 

1 + :E :E :E I 0 -aa .. ··~ .. I(E - ", .. f 2 

" a ~>a -a~ .. ,a.. 0 

+ ~ ,,~ ~ ~ I -aa~" .. a.. -aa~.a' .. ' I[(E - ", .. )(E - ", .. ,)r
1 

o -aa ... ~.. -aa ... ., .. 

o 
-a., ... a.. -a., ... ~.. 0 

o -aan.fJn -aa",a'n t 

+ :E :E :E :E:E -a~ ... a.. 0 -a{1 ... a' .. ' [(E - ", .. )2(E - ", .. ,)r1 

" a/>" a fJ>a. a' 

-aa'n',atl -aa'n'.P" 0 

o 
+ :E :E :E:E :E -aa''''.a.. 0 -aa''''.{J' .. ' [(E - ", .. )(E - ", .. ,)2r1 

n "'>,, a a' {j'>a:' 

-ap'A' ,aft -ap'a' ,a',,' 0 
o -aaA,a"n / 

+ :E :E :E :E:E:E -aa' .. '.a .. o -aa'n',a"n" 
n ft.'>" ,,">n' a a ' a" 

-aa"n",an -aa"n",a'tI' 0 
X [(E - ", .. )(E - ", .. ,)(E - ", .. ,,)r1 + ... = O. (7.3) 
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We decompose the left-hand side of this equation into a partial fraction and obtain the dispersion equation 
of the form 

1. (6.11) 

Up to the fourth order terms, the coefficients are given by 

0 (1) -.. - aa".a' .. ' I( - )-1 
W" '-',,' 

o 

.~ ~ ~{,~ 
0 aa",~" a(lft,a'n' 

a~ ... a .. 0 aPn,a'n t (w .. - W ... )-3 

aa'n'.aft a'l'n' ,pn 0 

0 aan,a'ft' aaadl'n' (~. - ""'.)-,} E aa'n',an 0 aa'n/.IJ'n' 
~'>al 

ap'.',CUI atJ'n'.a'1l' 0 

0 aan,a'tI' aan,a:"n / 

+ E E E E E a'l'n',an 0 aa'n',«"n" [(w .. - w",)(w" - w .. ,,)r1 

.'jlII!n n">,..' a a' a" 

aa"n",an aa"n/,a'tt' 0 

0 aan,{Jn aan.'YR aan,a'n' 

E E E E E a{J ... a" 0 a{J .. ,-y .. a{Jn,a'n' (w .. - W".)-3 -
"'P',, a a' {J>a -y>{J 

a"n, an. a-y",{J" 0 a'Yn,a'n' 

aa'n',an aa'n'.{jn ace'n'.,.." 0 

0 aan,a'n' 

+ E E aa',,'.afl 0 
P'>«' 'Y'>{J' 

afJ'A'.an a{J'n',a'n' o aP /n / ,7 /ft ' 

a'Y'tI',an a'Y'n',a'n' 

0 

+EEEEE2 
,,'pln ex {J>a at {J'>a' 

o a{Jn,a'n' 

o aan,ex"n" 

o aPn,a" n" 

o aa'n',a" n" 

aa"n",an aa/n",fJn. aa"n/,a'a' 0 

0 aan.a'n' aa",fJ'n' aan,a"." 

E aa'.',an 0 aa'n'.fJ'.' aa'n'.«"n" [(W" - W .. ,)2(W" - W .... )r1 

!J'>a' 
afJ'n',an ap'a'.a'n' 0 afJ'n'.a"n" 

aa"n",an aa."n".a'n' aa"ft.".fJ'n' 0 
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o aan,a"n" 

L o aa.'n',a"n" aa'n'.fJ"n" 

{J"> a" 
an"n".an o 
ap' 'n". an afJ' 'n". a'n' afJ"n",a"n" o 

o aan,a"n " aan,a"'n'" 

E E E o aa'n'.a"n" aa'n'.a"'n'" 

"';00',, ,,">,,' n"'>,." 
aa"n". an aa"n".a'n' o aa"n",a"'n'" 

aa"'n"'.an aa"'n"'.a'n' aa"'n"',a"n" o 
x [(W .. - Wn,)(Wn - Wn,,)(Wn Wn",)r1 + ... , 

C~2) EEl 0 
= - " fJ>a a 

{JR. an 

EEE 
a fJ>a 'Y>fJ 

o 
+ E E E E afJn, a .. 

n/~n a ' fJ>a 

+EEEEE 

o 

"'#,, a' fJ>a ')'>fJ 
a'Yn, an 

EEEE E 

o 

"'#,, a fJ>a a' fJ'>a' 
aCt'n'fan 

E E EEEE 

aan,a'n' 

apn, a 'n" (Wn - Wn,)-l 

aan,fJn aan,a'n' 

o 

o apn,a'n' 

o 
o 

n'~n 11.">,,' a a' a" fJ>a 
aa'n',an o 

aan,a"n" 

apn.a"n" 

act'n' ,a",," 

aa"n",an aa"n",{Jn aa"n",a'n' 0 

X [(Wn - wn,)(w .. - w .. ,,)r1 + ... , 
0 aan,(Jn aan''Yni 

afJn, an 0 afJ~'Ynl 
a...,.n, an a'Yn,fJ" 

0 aan,(Jn aa"."),,, aan,a'n' 

E E E E E alin, an 0 afJn,'Yn a{3n,a'n' 
(Wn - wnT

1 + ... 
n'~n a a' fJ>a. 'Y>fJ 

a,),7l,an a'Yn,lin 0 a')'n,a'n' 

a er ,,,' ,an aa'ft.',lln aa'n'.')'" 0 

(7.4) 

(7.5) 

, (7,6) 
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0 aan.~" aan.'Yft aan,6n 

C~4) -LLLL a~n.an 0 a~n.'Yn a~n.an 

a (J>a 'Y>{J 6>'1 
a'Yn,a:n a'Yn.{Jn 0 a'Yn.a .. 

aan,an a6 ... ~ .. aa ... 'Y" 0 

Having obtained the dispersion equation (6.11), 
we remove the degeneracy by solving Eq. (6.14), 
applying the method described in Ref. 3, Sec. V. 
We use the iteration formula (6.15) and then we 
obtain the eigenvalues. 

VllI. MIXED PERTURBATION OF PERIODIC 
AND APERIODIC PARTS 

In this section, we describe the method of cal­
culating the wavefunction for a more general case. 

If the time-dependent perturbation is the product 
oflthe periodic and aperiodic perturbations, we can 
express it by using the notations of Secs. II and 
VI as 

Vex, t) = t L (~)(.$-)ke-il"'/-IrV(k)(X). (8.1) 
k-O I k. ~h 

(The time derivatives are taken to the aperiodic 
part.) The formal solution of the Schrodinger 
equation is 

1/;(x, t) = 1/;(x, 0) 

+ L L (+)(~) l' emol'/-Ir(t'jiht' 
k'-O I' k! ~h ° 

x V(k')(x)e- W ",'/-Ire-mol'/-Ir1/;(xt') dt'. (8.2) 

We define the Laplace transform of the function 

(ljk !)(ljih) ( t/ih)ke -;(Ho+ I.,) 1/-Ir1/;(X, t) 

by OI.k(X, p) 

= G!)(~h) L· e-~I(:tJe-i(H'+I"lI/-Ir1/;(X' t) dt. 

By the similar method as in Secs. II and VI, we 
obtain from Eq. (8.2) a set of coupled equations 

1 
OI.k(X, p) = [ihp _ (Ho + lw)r1 1/;(x, 0) 

k 1 
+ f,: t,: f.; {ihp - [Ho + (l + l')w]}k-r+l 

(k' + r)V(k')( ) () X k' I' X 01+1' .k'+r x, p 

EQUATION INVOLVING TIME 

+ .... 

or 

{ihp - [Ho + (l + l')W]}k+l01k(X, p) 

= {ihp - [Ho + (l + l')W]}k+l 

1 
X [ihp _ (Ho + lw)]k+1 1/;(x, 0) 

k 
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(7.7) 

+ L L L {ihp - [Ho + (l + l')w])' 
k' l' 1'-0 

( k' + r)V(k')( ) () X k' I' X OI+I'.k'+. x, P . 

As in Sec. II, we multiply In) from the left and 
integrate over the coordinate x. Then we obtain the 
set of coupled equations 

{ihp - [En + (l + l')W]}k+l glk ... 

= {ihp - [E .. + (l + l')wllk+l [ihp _ (E
ft

1 + lw)]k+l f,. 

k 

+ L L L L {ihp - [E" + (l + l')w W 
a ' k' Z' 1'=0 

(k' + r)V(k') X k' 1',nn,gZ+l',k'+r,n / 

where 

and 

glk." = (nl glk(X», 

f,. = (nl 1/;(x, 0», 

V (k') (I V(k') ) I ' 
I' ... '" = n I' (x n). 

Eq. (8.5) is alternatively expressed as 

[ihp - (En + lw + V~~~ .. )]glO." 

" " " V(k') -_ 1,,0 - £...J £...J £...J I' ..... ,gl+I' .k',,' 
n' k' It 

(,,'k'I')"( .. OO) 

and 

(8.5) 

(8.6) 

(8.7) 

{ihp - [En + (l + l')w + V~~~ .. llg,.k+l." - gl.k." 

" " " (k' + k + 1) (k') £...J £...J £...J k' VI·.",,·gl+I'.k'+k+l.,,' 
n.' k' I' 

(n'k'I')"(,,OO) 
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_ {inp - [En + (l + z?:] 
- [ilip - (fn + lw)] 

- [ihp - (f~ + lw)Jk+l}rn, (8.8) 

for k > O. 
By the method demonstrated in Secs. IV and 

VII, we can diagonalize the secular equation ob­
tained from Eqs. (8.7) and (8.8). 

Once we find eigenvalues, the wavefunction is 
obtained by the Laplace inverse transform of goo ... 

~ ~ ~ I ) -iE'· •• ··.·'Ii"I'-tO 
£.... L.J £...i n e In'X.,.,l''''n',l''};''rJ,'', 

l'l" Ie'k" 1In'n" 

(8.9) 

with 

X",l'k'1I'.I"k"n" 

(8.10) 

This is the generalized form of Eq. (2.18) or Eq. 
(6.18). However, the expressions (8.9) and (8.10) 
are formally absorbed in Eqs. (2.18) and (2.19) or 
Eqs. (6.18) and (6.19) if we change the meaning 
of sub-indices. 

By Eq. (8.1), we have assumed that the ~im~ 
dependent perturbation is the product of the perIOdIc 
and the aperiodic perturbations. The extension of 
the treatment to more general class, which is ex­
pressed as the sum of such products is very easily 
done. The general solution should again be expressed 
in the form (8.9) with additional sub-indices. 

CONCLUSION 

In conclusion, the general solution of the time­
dependent Schr6dinger equation is always expres­
sible in the form (2.18). We can perform calculations 
with the aid of the formulas described in Sec. IV 
and Sec. VII. 
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APPENDIX: COMMENT TO THE METHOD FOR 
OBTAINING EIGENVALUES 

As shown in Ref. 3 and in Sec. IV of the present 

paper, the original secular determinantal equation 
is transformed into the dispersion equation 

l: c.. = 1. 
.. E -w .. 

(AI) 

One of the methods of solving this equation is the 
weak-coupling method. (See Sec. III in Ref. 3.) The 
iteration formula of this method is 

E lml =w + .. 1-
C,. (m > 1) 

l: [C,,/E lm
-

II 
- W,,] -

(A2) 

with 

If we expand Eq. (A2) and subtract EIll from 
E 121

, we obtain 

El21 = EIII - C,. l: C,., 2 (EIII - w .. ) 
n';oI!in (Wn - Wnl) 

+ higher-order terms. (A3) 

In general, we have 

Elml = Elm-II _ C
n 
l: C,., 2 (Elm-II _ E lm- 21 ) 
n'~n (Wn - WA ,) 

+ higher-order terms. (A4) 

Since the lowest-order term in C,., C,., and EIll - w" 
are of second order, the difference of El21 and EIII 

is the sixth- and higher-order terms. That is, the 
first iteration is correct up to the fifth-order terms. 

In general, the mth iteration of the weak-coupling 
method gives the result which is correct up to the 
(4m + 1)th-order terms. In the usual perturbation 
methods, the mth-order iteration gives the result 
which is correct up to the mth-order terms (see 
Ref. 3). This can be modified if we let the first-order 
energy absorb into the energy denominator. How­
ever, even with this modification, the usual per­
turbation theory gives the result which is correct 
at most up to the (2m + l)th-order terms for the 
mth iteration. The important improvement in the 
weak-coupling method results from the presumption 
that we calculate all coefficients C .. in the dispersion 
equation (AI) before making iterations. 

Another method of solving the dispersion equa­
tion (AI) is the strong-coupling method. (See, also 
Sec. III in Ref. 3.) We discuss it taking the case 
of C .. > 0 and C,.+! > O. 

First, we solve the equation 

Cn + C .. +I = 1 (A5) 
E - w,. E - W,.+I 
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exactly. This means that we diagonalize the original 
secular determinantial equation with respect to the 
two states. The lower solution E_ of this equation 
lies in between w" and W,,+I' We take E_ as the 
starting value of iterations, for which we make use 
of the formula 

(E lm- lI _ )(EI"'-lI _ ) 
= E_ + W" W"+i 

Elm-II - E+ 

X (L: Im-~'" ), m ~ 1 
n'~n.n+l E - Wa , 

(A6) 

with 

In Eq. (A6), 

JOURNAL OF MATHEMATICAL PHYSICS 

E± = !{(w" + W,,+1 + C" + C,,+I) 

± [(w" + W,,+1 + C" + Cn+l)2 

- 4(W"W"+1 + C"Wn+l + C"+lW,,)]i}. (A7) 

In the limit of convergence, Eq. (A6) becomes the 
dispersion equation (AI) because 

(E - E_)(E - E+) = I _ C" 
(E - w,,)(E - W,,+I) E - w" E - W,,+1 

The strong-coupling method gives the result which 
is correct up to (4m + 3)th-order terms after the 
mth iterations, because (1) E_ is correct up to the 
third-order terms, (2) (E_ - w,,) begins from the 
second-order terms, (3) (E_ - w,,+l)/(E_ - E+) 
begins from the zeroth-order terms and c"./(E_-w".) 
begins from the second-order terms. 
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Generalizations of the Virial and Wall Theorems in Classical Statistical Mechanics* 
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A generalized virial theorem which expresses inverse compresst"bility in terms of integrals of virials 
and canonical distribution functions through the four-particle distribution is transformed to the 
grand canonical ensemble and becomes an expression for compressibility in terms of the same integrals 
formed with grand canonical distribution functions. The integrals are of a mixed (virial and fluctuation) 
type. 

While the thermodynamic functions expressed by the same integrals with canonical and grand 
canonical distribution functions are quite different, the two formulas agree in the thermodynamic 
limit because of the different asymptotic behavior of canonical and grand canonical distribution 
functions. We also derived an alternative form of the second virial theorem which expresses compress­
ibility in terms of integrals over virials and grand canonical distribution functions through the three­
particle distribution function only. It is shown that this form and its generalizations to higher deriva­
tives of the density, as well as the hierarchy of fluctuation theorems and the fugacity expansions of 
distribution and correlation functions can all be very simply derived from a set of integro-<iifferential 
equations satisfied by the grand canonical distribution functions. A generalization of the wall theorem 
(P /kT = Pwan) is derived and shown to be equivalent to the generalized virial theorem (canonical form). 

1. INTRODUCTION 

T HERE are equations of several types which 
express thermodynamic functions in terms of 

molecular distribution functions: the virial theorem, 
which expresses pressure in terms of the average 
virial of the force of interaction; the "wall-theorem," 

* The research upon which this paper was based was 
started while the authors were at the Weizmann Institute of 
Science, Rehovoth, Israel, with National Science Foundation 
fellowships. It was continued at Northwestern University, 
and supported there by the Advanced Research Projects 
Agency of the Department of Defense through the North­
western University Materials Research Center. 

which expresses pressure in terms of the density 
at the surface of the container, and the fluctuation 
theorems, which express compressibility and its de­
rivatives as integrals over correlation functions. 
There is an infinite sequence of fluctuation theorems 
and we became interested in the question whether the 
wall theorem and the virial theorem can be extended 
also, to express, for instance, compressibility in terms 
of virials and molecular distribution functions or 
boundary values of the latter, respectively. In the 
present paper, we derive several theorems of this 
type, and show their relations with each other, and 
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exactly. This means that we diagonalize the original 
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with integral equations for the distribution functions. 
In Sec. 2 we introduce the notation and general 

assumptions. In Sec. 3 we state a generalization of 
the virial theorem, which expresses inverse com­
pressibility as an integral over virials and the dis­
tribution functions in the canonical ensemble up 
to the four-point distribution. We then derive the 
corresponding theorem for the grand canonical en­
semble and obtain the thermodynamic limit of this 
theorem. In Sec. 4 we obtain the thermodynamic 
limit of the canonical form and show agreement with 
the thermodynamic limit of the grand canonical 
form. In Sec. 5 we obtain a generalization of the 
virial theorem, which expresses compressibility as an 
integral over the virial and grand canonical dis­
tribution functions up to the three-particle dis­
tribution only, and obtain its limiting form in the 
thermodynamic limit. 

The integrals occurring in these equations are of 
a mixed (virial and fluctuation) type. 

In Sec. 6 we show that the fluctuation theorems, 
and the fugacity expansions of distribution functions 
and correlation functions, and the theorem of Sec. 
5 and its generalizations can all be derived very 
simply from an integro-differential equation satisfied 
by the molecular distribution functions of the grand 
canonical ensemble. In Sec. 7 we derive heuristically 
an asymptotic equation for the correlation of two 
functions of density relative to the probability dis­
tribution of the grand canonical ensemble, and derive 
from it an auxiliary equation needed in Sec. 3. In 
Sec. 8 we derive a generalization of the wall theorem, 
and show its equivalence to the generalization of 
the virial theorem (canonical form) stated in Sec. 3. 

2. NOTATION AND GENERAL ASSUMPTIONS 

We consider systems of N particles without in­
ternal degrees of freedom. Quantum effects are neg­
lected. The particles are contained in a domain V, 
and we use the same symbol for the volume of this 
domain. We want to consider the case of 1, 2, and 
3 dimensions together and write I' for the number 
of dimensions. The position vectors of the particles 
are fl' f2 ... , and the volume elements are d'rl' 
d'r2 .... We write d>nr for II; d'r;, and we frequently 
write only the numbers of the position vectors. 

We write ZN(V) for the Gibbs integral 

ZN(V) = Iv '" Iv e- fJUN d'Nr , (2.1) 

where f3 = l/kT, and 

(2.2) 

is the potential energy of interaction. We use the 
ab brevia tion 

f3P(N, V) = a log ZN(V)/aV. (2.3) 

Additional assumptions concerning V and its in­
crement are made, when necessary to ensure that 
peN, V) represents in the thermodynamic limit the 
outcome of a pressure measurement (and not, for 
instance, the work per volume increment required 
to increase the size of a small cavity in a large volume 
of fluid). We define the molecular distribution func­
tions in the canonical ensemble (OE) by 

p,,(fl ••• f,,; N, V) 

(2.4) 

For the grand canonical ensemble (GOE) we de­
fine the partition function by 

'" N 

Qv(z) = ;; ~! ZN(V) (2.5) 

and we define grand canonical averages by 
'" N 

(F(N». = Qv\z) ~ ~! ZN(V)F(N). (2.6) 

We made a distinction between the GO average 
of the canonical pressure 

(P(N, V». == a log Qv(z)/av, (2.7) 

and the conventional GO pressure 

P(z, V) = (l/V) log Qv(z) , (2.8) 

and use p(z, V) or p for the GO density only. 
We distinguish canonical from GO distribution 

functions in the notation only by replacing N by z 
in the argument, and define 

pirl, ... ,rn ; z, V) = (Pn(rl , '" ,rn ; N, V» •. (2.9) 

We denote by Xn(rl, '" rn; N, V) and 

Xn(rl , ... ,f,,; Z, V), 

the correlation functions formed by the Ursell de­
velopmene from the canonical and grand canonical 
distribution functions. Note that x,,(r1, ••• ,r,,; z, V) 
is not, in general, the grand canonical average of 
Xn(rl, ... fn; N, V). 

3. SECOND VIRIAL THEOREM WITH g. 

We obtained a second virial theorem for the canon­
ical ensemble, in the case of spherically symmetric 

lB. Kahn and G. E. Uhlenbeck, Physica 5, 399 (1938), 
especially p. 403. 
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pair interaction U'j = u(\r. - ri\)' by the scaling 
method,2 and found that it was given implicitely 
by an expression for the fluctuation of the virial 
calculated by Brown.3 The calculation is straight­
forward and one obtains 

a 
a V [ftP(N, V) V] 

= 2jV {~1111 b12 b34(P4(1, 2, 3,4; N, V) 
v 

- P2(1, 2; N, V)p2(3, 4; N, V)] d'r1 d'r2 d'r3 d'r4 

+ 2{3 111 b12 b13Pa(l, 2, 3; N, V) d'r1 d'r2 d'r3 

v 

v 

X pil, 2; N, V) d'rl d'r2}, 

where 

with 

(3.1) 

(3.1') 

(3.1") 

Equation (3.1) can also be derived from the second 
wall theorem (Sec. 8) through Eq. (8.15). 

The thermodynamic limit of Eq. (3.1) must not 
be taken under the integral in the first term. We 
have, therefore, derived the grand canonical form of 
this theorem. 

All terms linear in the distribution functions on 
the right-hand side of Eq. (3.1) can be averaged 
immediately. To take care of the term P2(1, 2; N, V)· 
P2(3,4; N, V) we add and subtract 

1,22v 1111 b12 b34(P2(1, 2; N, V)p2(3, 4; N, V». 
v 

- P2(1, 2;z, V)p2(3, 4;z, V)] 

= V[ «~ -{3P(N, V)Y). - <~ -{3P(N, V)X] 
(3.2) 

on both sides. The right-hand side of Eq. (3.2) is 

2~. S. Green, Proc. Roy. Soc. (London) A189, 103 (1947), 
especIally p. 115. 

3 W. B. Brown, Philo. Trans. Roy. SOC. (London) A2S0, 
221 (1957/8). The explicit form is obtained by substituting, 
into his Eq. (A4) (p. 245), his Eqs. (7.11)-(7.12) (p. 231) and 
Eq. (7.4) (p. 230) with Eqs. (7.18)-(7.20), p. 232. There is a 
factor 1/9 missing on the right-hand side of the last three 
equations, which is our 1/v2 for v = 3. 

~ «N
2
). - (N)=) 

- 2{3[(NP(N, V». - (N).(P(N, V).] 
+ V (({3P(N , V»2). - ({3P(N, V)!] 

a 
= -a I (p(z, V) - 2({3P(N, V».] ogz 

+ V(({3P(N, V»2). - ({3P(N, V»~] (3.3) 

by Eq. (AI), Appendix A. From Eq. (B3) we have 

V<at {3P(N, V). + V [«{3P(N , V»2). 

- ({3P(N, ll»!J = V at ({3P(N, V».. (3.4) 

Using these results one obtains for the GO average 
of Eq. (3.1) 

a 
-a I [p(z, V) - 2({3P(N, V».] ogz 

a + ({3P(N, V». + V aV ({3P(N, V», 

= 2jV {~IIII b12b34(P4(1, 2, 3, 4; z, V) 
v 

- P2(1, 2; z, V)p2(3, 4; z, V)] d'r1 ••• d'r. 

+ 2{3 111 b12b13P3(1, 2, 3;z, V) d'r1 d'r2 d'r3 

v 

v 
(3.5) 

It is generally accepted, as the basis of the use 
of the conventional GO pressure P(z, V), that 

lim ({3P(N, V». = lim {3P(z, V), (3.6) 
v-~ v-~ 

and it is known that the limit on the right-hand 
side exists! Accepting Eq. (3.6) to be true on a. set 
8 of measure m(8) in the z plane, we have, by 
Egoroff's theorem5 

lim -a la ({3P(N, V». = lim a-Ia (jP(z, V) (3.7) 
v ... ", og z v ... ", og Z 

on a subset of 8, the measure of the subset being 
m(8) - 0 with arbitrarily small o. It is known that 
in one-phase regions the limit on the right-hand side 

4 C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952). 
6 E. C. Titchmarch, The Theory of Functions (Oxford 

University Press, New York, 1939), 2nd ed., p. 339. 
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of Eq. (3.7) exists,' and that 

lim -;--1° p(z, V) = -;--ld lim p(z, V). 
v-co u og z u og z V_CD 

the asymptotic behavior of distribution functions 
which were obtained by Lebowitz and Percus7

-
1I

• 

(3.8) Specialized to our case, their results are that 

We show heuristically in Sec. 7 that in one-phase 
regions 

~~ V adv (f3P(N, V». = O. (3.9) 

With the notation 

lim P(z, V) = P (3.10) 

and 

lim p(z, V) = P (3.11) 
V-a> 

we, therefore, have-with the provisos stated 
above-

~-2p+{3P 
fJ logz 

= ~~ 2jV {~ffff bI2 bs4[P4(I, 2, 3, 4; z, V) 
v 

- P2(I, 2; z, V)p2(3, 4; z, V)] d'rl ... d'r, 

+ 2{3 fff bI2b1sPs(l, 2, 3;z, V) d"rl d'r2 d'rs 

v 

- ff [r12 d~2 b12 - (3b~2]p2(I, 2; z, V) d'r1 d'r2}' 
v 

(3.12) 

4. THERMODYNAMIC LIMIT OF THE SECOND 
VIRIAL THEOREM 

We mentioned above that the thermodynamic 
limit of Eq. (3.1) must not be taken under the in­
tegral. If this is done and the result is expanded in 
powers of density, one obtains equations which are 
obviously wrong. We also note that the thermody­
namic functions expressed by the distribution func­
tions are quite different in the canonical and grand 
canonical form, Eq. (3.1) and Eq. (3.5), respectively. 
In the former occurs Vo{3P(N, V)/av which ap­
proaches - po{3P / op, in the latter we have op/ log z = 
pop/o{3P. The corresponding phenomenon in the 
case of the fluctuation theorem has been discussed 
by several authors. 6 

There is, of course, no paradox when the limit is 
carried out properly, which can be done explicitly 
within the range of validity of results concerning 

6 G. E. Uhlenbeek, P. C. Hemmer, and M. Rae, J. Math 
Phys.4, 229 (1963), footnote 11, p. 234, and literature quoted 
there. 

p.(l, 2, 3, 4; N, V) - P2(I, 2; N, V)p2(3, 4; N, V) 

= -; P o~ [p :P P2(I, 2) ] 

X [p :P P2(3, 4)] + o(V-1) (4.1) 

when the pair (1, 2) is far from the pair (3, 4), while 
there is no term of order V-I in the grand canonical 
case. We use the notation p,,(I, .. , , n) for the 
thermodynamic limit of the distribution functions 
(in this section only). 

Within the range of validity of these results of 
Lebowitz and Percus, it is then permissible to take 
the thermodynamic limit on the right-hand side of 
Eqs. (3.5) and (3.12) under the integral. Equation 
(3.1), however, becomes 

_p o{3P + {3P 
op 

= ~2 {~fff bI2b34[P4(I, 2, 3, 4) 

- P2(I, 2)P2(3, 4)] d'r2 d'rs d'r, 

+ 2{3 ff b12b1sPa(I, 2, 3) d'r2 d'rs 

- f [r12 ~:11: - (3b~2]p2(I, 2) d'r2} 

-lOP [ d ( p)]2 
- P fJ{3P P op P - {3 , (4.2) 

where the virial theorem has been used to evaluate 
the correction terms. The integrals now extend over 
all space and the point (1) is arbitrarily fixed. With 

-lOP [ 0 ( p)J2 
P o{3P P op P - f3 

-lOP [ o{3P] , =p - p-p-
o{3P op 

op o{3P 
= p o{3P - 2p + P op' (4.3) 

Eq. (4.2) becomes 

7 J. L. Lebowitz and J. K. Pereus, Phys. Rev. 122, 1675 
(1961). 

8 H. L. Frisch and J. L. Lebowitz, The Equilibrium Theory 
of Classical Fluids (W. A. Benjamin Company, Inc., New 
York, 1964), pp. 1-19, 20. 

g J. L. Lebowitz and J. K. Pereus, J. Math. Phys. 4, 
116 (1963). 
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op 
P o{3P - 2p + {3P 

= tv2 {~ III U12Ua4[pi1, 2, 3,4) 

- P2(1, 2)P2(3, 4)] dPr2 dPra dPr, 

+ 2fJ II U12 U13Pa(1, 2, 3) dPr2 dPra 

- f [r12 ~:l~ - (3U~2Jp2(1, 2) d
Pr2} (4.4) 

in agreement with the result obtained from Eq. 
(3.12) by taking the limit under the integral. 

5. THE SECOND VIRIAL THEOREM WITH 91 

In this section we derive a form of the GC second 
virial theorem which contains distribution functions 
up to Pa only. One expects such a form to exist, since 
integration by parts applied to the compressibility 
theorem will yield a term with V P2, which converts 
to a term with Pa by the use of the Yvon-Born­
Green equation.lO The derivation from the compress­
ibility theorem can be carried through but is some­
what tedious, and we present here a much shorter 
derivation. . 

From the virial theorem and the identity 

Taking the GC average of Eq. (5.2) we thus obtain, 
by writing the first term on the right-hand side of 
Eq. (5.3) in terms of distribution functions 

o 
-;--1 [p(z, V) - (fJP(N, V».] 
(J og z 

- 2[p(z, V) - (fJP(N, V».] 

= 2~V If I u12[Pa(l, 2, 3;z, V) 
v 

- P2(1, 2;z, V)Pl(3;z, V] dPrl dPr2 dPra. (5.4) 

To go to the thermodynamic limit, the arguments 
stated at the end of Sec. 3 apply and we obtain 

op 
P o{3P - 3p + 2{3P 

= ~~ 2~V Ilf U12[Pa(1, 2, 3;z, V) 
v 

- P2(1, 2;z, V)pl(3;z, V)] dPrl dPr2 dPra. (5.5) 

6. SYSTEMATIC APPROACH THROUGH INTEGRO­
DIFFERENTIAL EQUATIONS 

If one averages the normalization equation 

(N - n)Pn(l, 2, ... ,n; N, V) Iv Pa(l, 2, 3; N, V) dPra 

= (N - 2)p2(1, 2; N, V) (5.1) = Iv p"+l(l, '" ,n, n + 1; N, V) d
P
r"+1 (6.1) 

we obtain 

(N - 2)(~ - fJP(N, V») 

= (N - 2) 2~V If u12P2(1, 2; N, V) dPrl dPr
2 

v 

= 2~V Ilf u12Pa(l, 2, 3; N, V) d'rl dPr
2 dPra. (5.2) 

r 

The grand canonical average of the left-hand side 
is by Eq. (AI) given by 

«N - 2)(~ - fJP(N, V»)). 

= (N).<~ - (3P(N, V». 

+ 0 l!g z <~ -fJP(N, V». 

-2<~ -fJP(N, V»; (5.3) 

10 A. Muenster, Statistische Thermodynamik (Springer­
Verlag, Berlin, 1956), p. 255 Eq. (VIII 81). The first term 
on the right-hand side of this equation should be multiplied 
by p(nJ. 

over the GCE one obtains, using Eq. (AI), the 
integro-differential equations 

(0 l!gz - n)p,,(l, ... ,n;z, V) 

= Iv [p"+l(l, '" ,n, n + 1; z, V) 

- p,,(l, ... ,n; z, V)Pl(n + 1; z, V)] dPr,,+l' (6.2) 

If a sequence of symmetric functions p" satisfies 
Eq. (6.2), the Ursell functions x" associated with 
them satisfy the simpler equations 

(0 l~gz - n)x,,(l, ... ,n;z, V) 

= Iv x"+1(l, •.. ,n, n + 1; z, V) dPr,,+1 (6.3) 

and, conversely, Eq. (6.2) follows from Eq. (6.3). 
These two sets of equations were given by Percusll 

and can serve to derive in a unified way fluctuation 

11 J. K. Percus, "The Pair Distribution Function in 
Classical Statistical Mechanics" in Ref. 8, p. II-52 Eqs. 
(4.13), (4.14). 



                                                                                                                                    

746 A. J: F. SIEGERT AND E. MEERON 

theorems, fugacity expansions, and the second virial 
theorem of Sec. 5 and its generalizations. 

The fluctuation theorems12 

{f1 (0 l!g z - j) }p(Z, V) 

== {fl [p(Z, V) O{1P(~, V) - j]}p(Z, V) 

= ~ I ... I X" + 1(1 , ,n,n + l;z, V) dVr,,+l 
v 

(6.4) 

follow from Eq. (6.3) by successive substitution and 
integration. 

The fugacity expansion of x .. (l, '" , n; z, V)13 
is obtained by writing Eq. (6.3) in the form 

o 
<1Z x,,(l, ... ,n; z, V) 

= Iv x .. +l(l, '" ,n;n + l;z, V) d"r"+l (6.5) 

with 

x" = z-"X,,· (6.6) 

From this follows by successive substitution 

x .. (l, ... ,n; z, V) 

= Z"{X..(1, ... ,n; 0, V) + 2: ~l: 
12::1 • 

x I··· I x,,+I(l,'" ,n+ l;O, V)d'r"+l'" ,d'r,,+z} , 
v 

(6.7) 

where, by definition, x .. (1, .. , , n; 0, V) are the 
ordinary Ursell functions. This derivation for finite 
V does not require the use of the thermodynamic 
limit 

N! Z,,_A/(N - h)! ZN ~ Zh (6.8) 

which is used in Ref. 13 to introduce the fugacity, 
and which is known to be hard to prove rigorously. 14 

With 

(6.9) 

12 The fluctuation theorem for n = 2 is the well-known 
compressibility theorem; for n = 3 it is given explicitly in 
Ref. 6, Eq. (34b). The general form is implicit in the equation 
for {}'{JP fBz', Ref. 10, Eq. (VIII 226) with Eq. (VIII 159) . 

• 13 G. E. Uhle~beck a!ld 9-. W. Ford, "The Theory of 
Lmear Graphs WIth ApphcatlOns to the Theory of the Virial 
Development of Gases," Studies in Statistical Mechanics, 
edited by J. de Boer and G. E. Uhlenbeck (North-Holland 
Publishing Company, Amsterdam, 1962), Vol. I, p. 143, 
Eqs. (47)-(49). 

14 M. E. Fisher, J. Chem. Phys. 42, 3856 (1965). 

Eq. (6.2) becomes 

:z Prien) = Iv {p,,+l(n, n + 1) 

- Pn(n)Pl(n + 1) I d'r,,+l, (6.10) 

where we have omitted the variables z and V, and 
written n for the set (rl ... r,,). By iteration of this 
equation one obtains the fugacity expansion of the 
distribution functions,15 again without the use of 
Eq. (6.8). 

For central symmetric pair interaction, the virial 
theorem and Eq. (6.2) yield 

(0 l!g z - 2 ) [p(z, V) - ({1P(N, V».] 

= 2~ V (, l!g z - 2) i b!2P2(1, 2) d'r! d'ra 

= 2~V i b!2!Pa(1, 2, 3) - P2(1, 2)Pl(3) I d'r! dOra 

(6.11) 

in agreement with Eq. (5.4). 
One can also easily obtain a third virial theorem 

from Eqs: (6.2) and (6.11): 

(0 l!g z - 3)(0 l:g z - 2 ) [p(z, V) - ({3P(N, V».] 

= 2~V Ii b12 {P4(1, 2, 3, 4) - Pa(l, 2, 3)PI(4) 

- Pa(l, 2, 4)Pl(3) - P2(1, 2)P2(3, 4) 

(6.12) 

and generalizations to higher order are obtained 
in the same way. As is already suggested by the 
two examples, the functions in the integrand are in 
the general case obtained from the distribution 
functions by a modified Ursell development, the 
modification being that the pair (rl' r2) is formally 
treated as one position vector. 16 

7. CORRELATION OF TWO FUNCTIONS 
OF DENSITY 

In this section we give a heuristic derivation of 
the correlation of two functions of N IV and V 
relative to the probability distribution of the GeE, 
through order V-I. From this we derive Eq. (3.9). 

Equation (A7) in Appendix A can be written in 
the form 

1Ii J. de Boer, Repts. Progr. Phys. 12, 305 (1949); Sec. 7, 
III. The term - W(rh)W(rk1).) should be added on the right­
hand side of the third equation of Eqs. (7.11). 

16 Reference 15, p. 338, Eqs. (7.11). 
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(N'g(~, V). 

= (N). + a l!gZr(g(~, V).. (7.1) 

Suppose now that feN IV, V) is a function which 
permits an expansion 

f(~ , V) = ~ BI(V)(~y, (7.2) 

Then the covariance (f(N IV, V)g(N IV, V». is given 
by 

(f(~' V)g(~, V). 
= t B,(V>[p(Z, V) + ~ a l:g zT(g(~ , V) .. 

(7.3) 

Expanding the brackets on the right through order 
V-I yields 

[ 
1 a JI p(z, V) + V a log z 

X (g(~, V) = pl(g(~, V). 

+ ~ % p'-l-k a l!gZ (/(g(~, V)) + '" 

= /(g(N, V) + 1-1: [kpl -2 ~ 
V • V k-O a log z 

X (g( ~ , V). + P l-1 a l~g z 

X (g(~, v).J + ... 

= /(g(N V) + 1- [tl(l _ l)pl-2 ~ 
V' • V alogz 

X (g(~, V). + lp'-I a l!gz 

X (g(~, v).J + ... , (7.4) 

where p stands for p(z, V). Substituting this into 
Eq. (7.3) and carrying out the sum over l we obtain 

(f(~' V)g(~, V). 

= f[p(z, V), V](g(~ , V). 

+ ~ (~ {a f:g z :;2 f[p(z, V); V]} 

X (g(~, V). + ap(z~ V) (f(~' V). 

X a l:gz (g(~, v)J + .,. . (7.5) 

The first term right-hand side still deviates from 
the product of the averages required for the cor­
relation. We, therefore, use the same equation, with 
g(N IV, V) == 1, to obtain a relation between 
f[p(z, V), V)] and (f(N IV, V»., namely 

(f(~ , V). = f[p(z, V), Vl 

1 ap a2 

+ 2V a log z ap(z, V? f[p(z, V), Vl + .... (7.6) 

Substitution in Eq. (7.5) yields the correlation 
with respect to the GC probability distribution 
through order V-l: 

(t(~, V)g(~, V). -
(t(~, v).(g(~, V). 

V-I ap(z, V) a (t(N V) 
a logz ap(z, V) V' • 

X ap(z~ V) (g(~, V). + '" , (7.7) 

where dots indicate terms of higher order in V-I. 
For feN IV, V) == N IV, these higher terms clearly 

do not appear, and we obtain Eq. (AI) of Appendix 
A. 

In a region of values of N IV, where the series in 
Eq. (7.2) does not converge, but 

with fixed no converges, the above procedure can 
still be applied and yields Eq. (7.7). 

Specially, with feN IV, V) and g(N IV, V) put 
equal to the canonical pressure peN, V) we have the 
fluctuation of the canonical pressure in the GCE 
through order V-I: 

(32 [(P 2(N , V». - (P(N, V»!l 

= V-Ip ~ [~«(3P(N v»J2 + ... a(3p ap , 

= V-1p a:: + .. , . (7.9) 

We have also an exact identity for this, derived 
in Appendix B: With feN, V) specialized to f3P(N, V) 
in Eq. (B3) we have 

V {([f3P(N, V) ]2). - «(3P(N, V»!} 

= V aav(f3P(N, V». - (V aavf3P(N, V» .. (7.10) 
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Now, in one-phase regions, where CE and GCE 
must give the same result for the compressibility 
in the thermodynamic limit, we have 

. < a > a{3p hm V-{3P(N, V) = -P-
v .... o> av • ap (7.11) 

and, from Eq. (7.9) 

~~ V{([{3P(N, V)Y). - ({3P(N, V»!} = P a:: 
(7.12) 

so that 

lim V aav (f3P(N, V». = o. 
v_o> 

(7.13) 

8. WALL THEOREMS 

The derivations in this section are carried through 
for the case of a system contained in a spherical 
volume of radius R. Using polar coordinates we 
then write 

ZN(V)Pn(rl, r2, .. , ,rn ; N, V) 

N! J J e-fJU(r, .. ··.rN) d'r d' = ... +l ••• rN 
(N - n)! n 

v 

N! lR ,-I d 
= (N - n)! 0 r n +1 rn+l 

X J J d d -fJU(r""rN) •.. Wn+l .. , WNe , (8.1) 

where f . " f dW,,+1 .•. dWN indicates the integration 
over angles and is to be omitted for the case v = 1. 
We then obtain, for v ;::: 2, 

a 
oV [ZN(V)p,,(l, ... ,n; N, V)J 

= N! dR (N _ n)R>-l 
(N - n)!dV 

X lR ,-I d lR ,-I d 
o r,,+2 r,,+2'" 0 rN rN 

X f ... f dwn+l •• , dwN e-fJU(r,".rN) 

1 1 d,-1 N! 
= S 8 r,,+1 (N - n - 1)! 

X I. d'r d'r d' e-fJU(r,"'r N ) n+2 n+3· • • TN 
V 

= ZN(V) ~ L d,-lrn+lPn+l(l, •.. ,n,n + l;N, V), 

(8.2) 

where S is the surface of the sphere, and f IJ d"-lr"+l 
the surface integral over the sphere. From this we 
obtain 

a av p,,(l, 2, .,. ,n; N, V) 

+ f3P(N, V)p,,(1, 2, ... ,n; N, V) 

= ~ L d,-lrn+lP,,+l(l, ... ,n, n + 1; N, V). (8.3) 

For a one-dimensional model of particles in the 
interval (0, R) the right-hand side is replaced by 
p,,+l(rl .,. r,,+l; N, V)lr.+,_R' 

To obtain the equation corresponding to Eq. (8.3) 
in the GCE, we use Eq. (B3) with 

feN, V) == p,,(l, ... ,n; N, V). 

This yields 

a av p,,(l, ... , n; z, V) 

+ (f3P(N, V».p,,(l, 2 ... n; z, V) 

(8.4) 

(8.5) 

The known wall theorem 17 is a special case of Eq. 
(8.3): since Po = 1, one has 

(3P(N, V) = ~ L Pl(r; N, V) d,-lr 

= ptCr; N, V)rd (8.6) 

using the spherical symmetry. 
Equation (8.6) is closely related to the virial 

theorem: Converting the right-hand side of Eq. (8.6) 
to a volume integral by means of the identity 

1 ( ~ d,-l 1 1 r d,-l 8 ep rl r = Ii 8 Ii ·rep r 

= ~ Iv (v + r· V)ep(r) d'r 

valid for spherical volume one obtains 

fJP(N, V) 

(8.7) 

- ~ = v ~ Iv rl' VlPl(r1 ; N, V) d'r!. (8.8) 

For spherically symmetric pair interaction this re­
duces to the virial theorem by use of the definition 
of PI or through the Yvon-Born-Green equation. lo 

From the ordinary wall theorem [Eq. (8.6)J one 
derives a second wall theorem which expresses the 

17 J. L. Lebowitz, Phys. Fluids 3,64 (1960), Eq. 12. 



                                                                                                                                    

VI RIAL AND WALL THEOREMS 749 

inverse compressibility in terms of surface integrals. 
Since r moves with the surface when the volume 
decreases, we have 

dVr·V 
d{3P(N, V) = S R PI(r; N, V) 

+ [aplr, V)] dV. (8.9) av r fixed 

Using Eq. (8.3) we then obtain 

a{3p(N, V) 
av 

= {,~r'VpI(r;N, V) - (3P(N, V)PI(r;N, V) 

+ -SI 1 P2(r, r 2 ; N, V) d'-lr2} ' (8.10) 
S reB 

Using Eq. 8.6 and the spherical symmetry we then 
obtain 

V a{3p(N, V) = II . ~ (. N V) d,-l av vS sr VPlr" r 

(8.11) 

with 

X2(rl , r2; N, V) = P2(rl, r2; N, V) 

- PI(rl; N, V)Pl(r2, N, V). (8.12) 

The second wall theorem is closely related to the 
second virial theorem with P4: We write Eq. (8.11) 
in the form 

= v~ i r· V PI(r; N, V) d,-lr 

+ ~ Ii P2(rl , r2; N, V) d,-lrl d,-lr2' (8.13) 

We then use the identity (8.7) to obtain 

V a{3p~~, V) + V [,8P(N , V)Y 

= v~R i (v + r'V)(r,V)Pl(r; N, V) d'r 

+ RYs2 Ii (v + rl,Vl)(V + r2,V2) 

+ ~ Ii plrl' r2; N, V) d'rl d'r2 

+ v ~ Ii (rl ,Vl + r2· V2)plrl , r2; N, V) d'rl d'r2 

+ /V Ii (rl ,Vl)(r2'V)P2(rl , r2; N, V) d'ri d'r2 

= (3P(N, V) - ~ + N(N V- 1) 

+ 2(N - 1{{3P(N, V) - ~J 

+ /V [i (r·V)2pl(r; N, V) d'r 

+ Ii (rl ,Vl)(r2'V2)P2(rl ,r2;N, V) dVr~>] 
(8.14) 

or 

ajaV[V{3p(N, V)] + V[{3P(N, V) - ~T 

= /V {i (r,VYPl(r; N, V) 

+ Ii (rl ,Vl)(r2,V2)P2(rl,r2;N, V) d'rld'r2}' 

(8.15) 

For pair interaction the Yvon-Born-Green equations 
can be used to convert the gradients of the distribu­
tion functions. The calculation is straightforward 
though tedious, and leads for spherically symmetric 
pair interaction to the second virial theorem [Eq. 
(3.1)], when the second term on the left is expressed 
by means of the vi rial theorem. 
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APPENDIX A 

If feN, V) is any function of N and V, its cor­
relation with N in the GeE is given by 

(Nf(N, V». - (N).(f(N, V». 

a = -a 1- (f(N, V».. (AI) _ og z 

To prove this note that by definition of ( ). 
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Q(z, V) (Nf(N , V». 

'" NZN 
= ~ N! ZN(V)f(N, V) 

the correlation between peN, V) and any function 
feN, V) is obtained as follows. 

We have 

a = -!I 1- [Q(z, V) (f(N , V».J 
u ogz 

a 
(A2) a V [Q(z, V) (f(N , V) ).J 

, or 

(Nf(N, V». 

= Q-l(Z, V) -;---I
a 

[Q(z, V)(f(N, V».J 
u ogz 

a 
= (N).(f(N, V». + -!I -1 - (f(N, V» •. 

u og z 
(A3) 

= f ZN, [aZN(V) feN, V) + ZN(V) M(N, V)] 
N-oN. av av 

= ~ ~! ZN(V)[P(N, V)f(N, V) + af(~v V) 1 
(BI) 

Dividing by Q(z, V) and writing out the left-hand 
side one obtains 

This is easily generalized to higher powers of N. a 
We have av (f(N, V». + ({3P(N, V».(f(N, V». 

(Nmf(N, V» 

= Q-l(Z, V) a lam m [Q(z, V) (f(N , V».J. 
og z 

(A4) 

Inserting Q(z, V) Q-l(Z, V) between the factors 
a/a log z one obtains 

(Nmf(N, V» = flm(f(N, V»., (A5) 

where fl is the operator Q-l(Z, V)(a/a log z)Q(z, V). 
Now note that 

fl<t>(z) == Q-l(Z, V) -a I
a 

[Q(z, V)<t>(z)J 
og z 

= [a l~g z + (N). ] <t>(z) , (A6) 

so that we have as generalization of Eq. (AI) 

(Nmf(N, V». 

= (P(N, V)f(N, V». + <af(~v V» .. 

The correlation is thus 

({3P(N, V)f(N, V». - ({3P(N, V».(f(N, V». 

= aa
V 

(f(N, V». - <af(~v V» •. 

(B2) 

(B3) 

We note that both (AI) and (B3) can be applied 
to the correlation between Nand (3P(N, V) and we 
obtain 

a 
-;---1 ({3P(N, V». 
u ogz 

= aaV (N). = aaV (v<~») 
a 

= p(z, V) + V av p(z, V) (B4) 

= [a l~g z + V p(z, V) J(f(N, V» •. (A7) or 

APPENDIXB 

In Appendix A we had found an exact expression 
for the correlation between N and any function of 
N relative to the probability distribution of the 
GCE [Eq. (AI)J. The corresponding theorem for 

a 
-a 1- ({3P(N, V». ogz 

= a{3p(z, V) + V ~ (z V) (B5) 
a log z av p, , 

where P(z, V) is the conventional GC pressure. 
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A purely covariant treatment is made of those solutions of the Einstein field equations which rep­
resent pure gravitational radiation propagating in fluid and electromagnetic media. The analysis 
involves a discussion of the full Bianchi identities in carefully selected tetrad frames. In this way the 
interaction between the gravitational field and the medium is transferred to a coupling between a 
preferred frame for the gravitational field and one for the matter field. The gravitational radiation no 
longer propagates along shear-free null geodesics, as it does in vacuum, and the shear and ray curva­
ture of the propagation vector are shown to depend directly on the properties of the medium. Some 
new solutions of the field equations, representing transverse gravitational waves propagating in an 
electromagnetic field, are exhibited and discussed in some detail. It is shown that no such solutions 
exist, at least in simple cases, for perfect fluids. Finally, the treatment presented here is compared with 
the more usual electromagnetic treatment, and it is shown why the theories require basically different 
approaches. 

1. INTRODUCTION 

A CONSIDERABLE amount has been written 
about the propagation of gravitational radia­

tion in empty space. 1 These investigations rely 
heavily on the study of what are called algebraically 
special gravitational fields, which correspond phys­
ically to the case of "pure" radiation. The principal 
result is the theorem of Goldberg and Sachs (1962): 

A vacuum metric is algebraically special if and only 
if it admits a shear-free null geodesic congruence. 

Although it is possible to considerably relax the 
vacuum conditions2 it is by no means true that the 
theorem holds in general. This paper deals with the 
question; what happens to the Goldberg-Sachs theo­
rem when there are perfect fluids or electromagnetic 
fields present? The answer to this question should 
furnish clues to the following problems: (a) the inter­
action of gravitational fields with matter, (b) the 
generation of gravitational waves in physically real­
istic sources, (c) the establishment of criteria for 
the presence of gravitational radiation in matter, 
(d) a new function theory for nonvacuum gravita­
tional fields. 

The analysis rests upon the decomposition of the 
curvature tensor into the trace-free Weyl tensor 
and a sum of terms arising from the Ricci tensor: 

R abed = C abed + gal.Rdlb + Ralegdlb 

- jRgalegdlb.3 (1.1) 

1 See, for example, F. A. E. Pirani, "Gravitational Radia­
tion", article in Gravitation, an Introduction to Current Re­
search, edited by L. Witten (John Wiley & Sons, Inc., New 
York, 1962). 

2 W. Kundt and A. Thompson, Compt. Rend. Acad. Sci. 
Paris 254, 4257 (1962). 

8 Square brackets denote antisymmetrization, 
A1abl = [1/2!](Aab - Aba). 

Round brackets denote symmetrization. 

On account of the Einstein field equations 

(1.2) 

the Ricci terms in (1.1) can be equated with the 
presence of matter. The Weyl tensor, having all the 
symmetries of a vacuum Riemann tensor, is to be 
thought of as representing the free gravitational field. 
At any point of space-time the Ricci tensor and 
Weyl tensor are completely independent, but in a 
region they are connected through the differential 
Bianchi identities, which can be written in the fol­
lowing form4

: 

Cabed:d = Rela:bl - figelaR.bl' (1.3) 

The remarkable resemblance that (1.3) bears to 
Maxwell's equations 

leads to the suggestion that the Bianchi identities 
represent the interaction between the gravitational 
and matter fields. The right-hand side J abc of (1.3) 
is to be regarded as a matter current; it satisfies a 
"conservation equation" 

Jabe: e = 0, (1.4) 

analogous to the conservation equation of electrody­
namics 

r.a = o. 
The matter current represents that part of the source 
which interacts with the free gravitational field. 
Those parts of the matter which do not contribute 
to J abc are called gravitationally inert; the propagation 
of the free gravitational field is in no way dependent 

4 W. Kundt and M. Triimper, Akad. Wiss. Mainz. No. 12 
(1962). 
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upon them. There is nothing corresponding to this 
in electrodynamics where, by Maxwell's equations, 
the electromagnetic field determines the complete 
charge-current distribution. The difference between 
the two cases can be expressed by saying that photon 
telescopes can be used to explore the universe com­
pletely with regard to its electric charges, but a 
graviton telescope may fail to detect the presence of 
matter in certain states. 

In Sec. 2 the Bianchi identities (1.3) are considered 
when there is a perfect fluid present and the Weyl 
tensor is algebraically special. It is found that the 
gravitational field propagates along a null direction 
whose shear and refraction (as measured by the 
curvature of the rays) is determined completely 
by the dynamical and kinematical properties of the 
fluid. Futhermore the fluid decomposes into separate 
parts which interact independently with the Petrov 
type-N, type-III and type-D components of the 
gravitational field. In Sec. 3 a similar analysis is 
carried out for electromagnetic fields. In this case 
it is found that the shear and refraction of the gravi­
tational field depend on the optical properties of 
the electromagnetic field. 

Some exact solutions with a Petrov type N gravi­
tational wave propagating along shear-free null geo­
desics in a nonnull electromagnetic field are exhibited 
in Sec. 4. In Sec. 5 it is shown that Petrov type N 
solutions cannot exist in a perfect fluid if the fluid 
I:>ressure vanishes. Without the condition p = 0 
the problem remains unsolved, but it is pointed 
out that "almost perfect" fluid solutions of Petrov 
type N may exist. 

In conclusion the physical significance of the 
analysis is discussed, with particular emphasis on 
its relation with electromagnetic theory. 

2. GRAVITATIONAL FIELDS IN PERFECT FLUIDS 

(i) Dynamics and Kinematics of Fluids 

For a perfect fluid the energy-stress tensor takes 
the form 

(2.1) 

where 

The kinematics of the fluid are studied by breaking 
up the covariant derivative of the 4-velocity in the 
following way: 

(2.2) 

where 

8 = ua;a, 

Wab = hlachbldUc;a, 

and 

With respect to a Fermi propagated frame, Wab and 
U ab are respectively the rates of rotation and shear 
of neighbouring particles of the fluid5

; 8 is the rate 
of expansion of the timelike congruence. We define 
shear and rotation scalars u and W by 

From the field equations (1.2), we obtain the 
Ricci tensor 

Rab = -(p + P.)UaUb + !(p - P.)gab' (2.3) 

and the contracted Bianchi identities result in equa­
tions of motion for the fluid, 

Ji. + (p. + p)8 = 0, 

habp,b + (p. + p)ua = O. 

(2.4a) 

(2.4b) 

The full Bianchi identities (1.3) yield, on substituting 
(2.3),' 

- (p. + P)(WabUc - UlaWblc + UlaUblc)' (2.5) 

The right-hand side of this equation is the matter 
current Jab. discussed in Sec. 1. Equations (2.4) 
only involve 8, Ua, (J. and habp.b; we say that these 
quantities constitute the inert part of the fluid since 
they are not connected with the propagation of the 
free gravitational field. Jab. involves essentially the 
shear and rotation of the fluid, and the spatial gradi­
ent of the density; these constitute the gravitationally 
active part of the fluid, the part that can be found by 
observing the propagation of the free gravitational 
field. 

(ll) Algebra of the Weyl Tensor 

In order to study the Weyl tensor it is convenient 
to set up a quasi-orthonormal tetrad of null vectors 
ka, ma, ta, la satisfying 

kama = tala = 1, kaka = mama = tata 

(2.6) 

Introducing three self-dual bivectors 

(2.7) 

6 J. Ehlers, Akad. Wiss. Mainz. No. 11 (1961). 
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we can decompose the Weyl tensor into tetrad com­
ponentsG 

Oabed + iO~bed = 0 1 Vab Ved + 02(VabM ed + Mab V ed) 

+ 03(MabM ed + Uab Ved + VabUed) 

+ OiUabMed + MabUed) + OSUabUed , 

where 

0* - l(_)f 01; abed - 2 g Eabi; cd' 

(2.8) 

(2.8) 

The various terms in (2.8) have the following phys­
ical interpretations7

: the 0 1 term represents a trans­
verse wave component in the ka direction, the O2 

term a longitudinal wave component, and the 0 3 

term a "Coulomb" component. The 0 4 and 0 5 

terms represent longitudinal and transverse com­
ponents in the ma direction. 

(iii) Optics of Null Congruences 

The principal optical properties of a null con­
gruence having ka as tangent can be studied from 
the tetrad components of the complex vector 

(2.9) 

Lb is determined up to a phase e18
, since ta may be 

subjected to transformations of the form 

We shall call La the optical vector of the null con­
gruence; its tetrad components are 

'Y = Lbkb = 'Y(1) + i'Y(2) , 12 = Lbmb , 
(2.10) 

'Y vanishes if and only if ka is geodesic; it measures 
the ray curvature or the departure from geodicity 
in the rays. Consequently we may think of it as 
representing the refraction of the null congruence. 
U is called the shear, (J the expansion, W the twist, and 
12 the angular velocity or rotation of the null con­
gruence. 6 

(iv) Propagation of the Gravitational Field 

Consider now an algebraically special Weyl tensor. 
This means that there exists a null vector ka, such 
that C4 = Cs = 0 in (2.8). The Weyl tensor is of 
Petrov type N if C2 = C3 = 0 for this ka, of Petrov 
type III if C3 = 0, and of Petrov type II or D if 
C3 ~ O. A simple calculation from (2.8) with these 
specializations yields the following relations: 

• R. Sachs, Proc. Roy. Soc. (London) A264, 309 (1961). 
7 P. Szekeres, J. Math. Phys. 6, 1387 (1965). 

In Petrov type N 

uabV"Cabed;d = C1(l''Y - k'u), 

in Petrov type III 

vabOabed;d = 2C2(le'Y - keu), 

and in Petrov type II or D 

vabV"Cabed;d = 3Ca(l''Y - k·u). 

(2.11) 

(2.12) 

(2.13) 

When there is a fluid present with streamlines 
ua, we normalize ka to make 

kaua = -1, 

and defining Sa = habkb (whence sasa = 1, saua = 0) 
we can choose the null vector ma such that 

(2.14) 

Substituting the Bianchi identities (2.5) into Eqs. 
(2.11), (2.12), and (2.13) we find the following ex­
pressions for the shear and refraction of the prin­
cipal null congruence ka (denoted here by Uo and 'Yo 
to distinguish them from the fluid quantities): 

In Petrov type N 

301'Yo = !(~.ata - 3(~ + P)(Wob + UOb)tOS
b
), (2.15) 

3C1Uo = i(~.osa - 3(~ + P)(Wab + uOb)lOtb), 

in Petrov type III 

3Cao = !(~.osa + 3(~ + P)(Wab + UOb)rt), 

3C2Uo = -H~.or + 3(~ + P)(Wob + UObWS
b
), 

in Petrov types II or D 

(2.16) 

3C3'Yo = -~.blb - (~ + p)(3Wabrsb - uablbse), (2.17) 

3C3Uo = (~ + p)Ube~br. 
ka is called the principal null direction of the gravita­
tional field; the field is to be regarded as propagating 
along this direction. Equations (2.15), (2.16), and 
(2.17) show that the shear and refraction of the 
principal null direction of an algebraically special 
gravitational field are determined by the tetrad 
components of the spacelike density gradient, the 
rotation and the shear of the fluid. 

If the Weyl tensor is of Petrov type N we have 
C2 = C3 = 0, and the right-hand sides of equations 
(2.16) and (2.17) must vanish. It follows then from 
(2.15) that4 

(~ + P)Uab = C1uo(3sasb - hab) , (2.18) 

~ + P)Wab = 2s[o(lbICl'Y0 + tb1C1'YO), (2.19) 
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h\p..a = 3(CI'Yolb + CdOtb + O'OSb)' (2.20) 

Hence the optical shear and the refraction are 
directly proportional to the shear and the rotation 
of the fluid: 

v2 !CI'Yo! = (p. + p)w, 

v'3 !CIO'o! = (p. + p)O'. 

(2.21) 

(2.22) 

From (2.22) we see that 0'0 is real if and only if CI 

is real; this means that the principal axes of the 
optical shear coincide with the polarization axes of 
the transverse gravitational field (the axes ta

, r which 
make CI real). Equation (2.18) shows that the fluid 
shear has a principal axis in the ray direction Sa and 
is degenerate in the transverse (ta, 1a) plane. From 
(2.19) and (2.21) it is seen that the refraction of 
the wave is determined by the rotation of the fluid. 
The axis of rotation of the fluid must lie in the trans­
verse plane of the wave; if it coincides with one of 
the polarization directions (CI real and 'Y~l) or 
'Y~2} = 0) then the wave is reflected at right angles 
to it, whereas if it is at 45 0 to the polarization di­
rections the wave is deflected in the direction of the 
rotation axis (Fig. 1). 

For a type-III Weyl tensor the right-hand side 
of Eq. (2.17) must vanish, since Ca = O. Hence we 
have 

3C2O'o = -(p. + P)O'belbse, (2.23) 

and ka is shear-free if and only if sa (the longitudinal 
wave direction according to an observer traveling 
with the fluid) is a principal axis of the fluid shear 
(Fig. 2). Equation (2.16) can be split up into real 
and imaginary parts 

6C2'Y~1l = p..asa - !(p. + P)O'beSbS" , 

(2.24) 

FIG. 1. Propagation of a transverse gravitational wave 
(type N) in a perfect fluid. The central ellipsoid represents 
the shear of the fluid streamlines. The broken lines denote 
graviton paths. They are deflected from the geodesic by a 
vector da which makes an angle t/> = 28 ± iT with the rotation 
axis CJf', where 8 is the angle CJf' makes with one of the polariza­
tion axes of the plane wave. The magnitUde of this deflection 
is proportional to the angular velocity", of the fluid. A circular 
cross section of gravitons is transformed into an ellipse, by 
an amount proportional to the fluid shear <T in the direction 
of wave propagation. 

FIG. 2. Propagation of a longitudinal wave (type III) in 
a perfect fluid. The circle of gravitons is transformed into 
an ellipse, by an amount depending on the angle 8 between 
the principal fluid shear axis and the direction of wave 
propagation 8a• The deflection out of the plane of the polariza­
tion is proportional to cos t/>, the angle between 8a and the 
rotation axis ",a. 

where 

Hence the ray is only left undeflected in a direction 
orthogonal to its longitudinal plane of polarization 
[the (sa, ea ) plane] if the axis of rotation of the fluid 
is orthogonal to the ray direction. The refraction in 
its own plane is determined by the components in 
the ray direction of the density gradient and fluid 
shear. It is unaffected by any rotation the fluid may 
have about 8a as axis. 

Equations (2.15), (2.16), and (2.17) suggest that 
not only can the matter be split up into gravita­
tionally inert and active parts, but the active part 
J abc can be further split up into separate parts inter­
acting with the transverse wave component, the 
longitudinal wave component and the Coulomb part 
of the field. For example, the shear tensor can be 
split up as a sum of three terms: 

and 

From Eqs. (2.18), (2.23), and (2.17) it appears that 
for an algebraically special field with principal null 
vector ka = sa + u a

, the first term interacts with 
the shear of the type-III component, and the last 
with the Coulomb component. This splitting off is 
really the essence of Kundt and Thompson's state­
ment of the Goldberg-Sachs theorem:2 

Any two of the following imply the third: 
(A) Cabed is algebraically special with ka for principaZ 

null vector. 
(B) ka is shear-free and geodesic. 
(C) VabV"Cabed;d = 0 

vabCabed;d = 0 for Petrov type III 
uabV"Cabc/d = 0 for Petrov type N. 
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From Eqs. (2.11-(2.13) it is clear that (A), (B) => 
(C), and (A), (C) => (B). The proof that (B), (C) => 
(A) is less trivial. 

3. INTERACTION OF GRAVITATIONAL AND 
ELECTROMAGNETIC FIELDS 

An electromagnetic field is represented by a skew­
symmetric tensor Fab satisfying Maxwell's equations 

(Fab + iF:b);b = o. (3.1) 

The energy-stress tensor is given by 

Tab = FaiFb i - !gabFijFij = -Rob. (3.2) 

(i) Null Field 

The electromagnetic field is said to be null if 
there exists a null vector such that 

(Fab + iF:b)ka 
= 0, 

from which it follows that the Maxwell tensor can 
be written in the form 

(3.3) 
where the conventions of Sec. 2 are adopted. Max­
well's equations (3.1) now imply that 

ka;bkbr = 0 and ko;blalb = 0, 

ka is shear-free and geodesic. From the field equations 
(3.2) we have 

and the Bianchi identities (1.3) can be written as 

Cab.d;d = R.1a;bl = -tck.k1a;bl + k.;lbkal), (3.4) 

whence 

From the Goldberg-Sachs-Kundt-Thompson theo­
rem quoted at the end of Sec. 2, it follows that the 
gravitational field must be algebraically special with 
ka as principal null direction. This result is what we 
might expect intuitively-the gravitational field as­
sociated with a pure radiation electromagnetic field 
consists of pure gravitational radiation. 

If the Weyl tensor is of Petrov type N, we can 
contract (3.4) with n b and find that 

o = k. ;bl"tb 
= Z = () + 1M. 

Hence the expansion and twist must vanish if the 
Weyl tensor represents a pure transverse gravita­
tional wave. All solutions of the field equations 
representing this situation have been found by 
Kundt.8 

8 W. Kundt, Physik, 163,77 (1961). 

(ii) Non-null Field 

The Maxwell tensor has the form 

Fab + iF:b = A(2Plaqbl + 2f1arbl), (3.5) 
where Pa, qa are the principal null vectors of the 
electromagnetic field. 9 Pa, qQ, Ta, fa form a quasi­
orthonormal null tetrad (we call it the electromag­
netic frame). A is the (complex) electromagnetic 
amplitude or field strength. 

Maxwell's equations (3.1) can now be regarded as 
expressing the gradient of the field amplitude in 
terms of optical parameters of the principal null 
directions: 

!(In AL = _Z(vl qa - z(alpa + n(p)ra + n(a)fa, (3.6) 

where 

z(v) = L~v)rb, z(a) = Lialfb , 

n(vl = Liv) qb, n(al = Lia'pb, 

Lip) , Lia) being the optical vectors pa and qa, 

The field equations (3.2) result in 

Rab = IA 12 (2P(aqb) - !gab). (3.7) 

On substituting into the Bianchi identities we can 
carry out a similar analysis to that for a fluid 
medium. There are two cases to be distinguished: 

(a) The gravitational field is algebraically special 
and its principal null vector ka coincides with one 
of the null vectors Pa or qa of the electromagnetic 
field. The two fields shall be called aligned in this 
case; it has been shown by Kundt and Triimper4 
that ka must be shear-free and geodesic. 

(b) The gravitational and electromagnetic fields 
are nonaligned; that is, ka does not coincide with 
either pa or qa. It is possible to scale these null vectors 
such that 

kapa = -kaqa = -1. 

By a spacelike rotation ra ~ e,era we can achieve 
that 

ka = Pa - qa + ra + fa. 

The null tetrad for the gravitational field can be 
completed by choosing 

ma = H-Pa + qa + ra + fa), 

ta = !(P. + qa + fa - ra). 

This normalization amounts to a coupling of the 

9 J. L. Synge, Relativity, the Special Theory (North­
Holland Publishing Company, Amsterdam, 1956). 
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gravitational and electromagnetic frames, so as best 
to view the interaction. Substituting (3.7) into the 
right-hand side of the Bianchi identities (1.3), and 
using the identities (2.11)-(2.13) and Maxwell's 
equations in the form (3.6), we arrive at the following 
relations: 

For a type N Weyl tensor 

C{'f = -[A [2 (L~p) + L~Q»ma , 
CIU = ! [A [2 (L~P) + L~Q»t" , 

for a type III Weyl tensor 

2C2'Y = [A [2 (L~p) + L~Q»)l" , 

2C2u = ! [A [2 (L~p) + L~Q»ka, 
for a type II or D Weyl tensor 

3C3'Y = 4 [A [2 «L~p) + L~Q»m· 
+ (L~P) - L~Q» r) , 

3Cau = [A[2 (-(L~p) + L~Q»t· 
+ (L~p) - L~Q»ka). 

(3.8) 

(3.9) 

(3.10) 

Hence with this choice of tetrads, the interaction 
between an algebraically special gravitational field 
and a nonaligned electromagnetic field is completely 
determined by the tetrad components in the gravita­
tional frame of the sum and difference of the two 
optical vectors of the electromagnetic field. If the 
W eyl tensor is of Petrov type N then the right-hand 
sides of (3.9) and (3.10) must vanish; if the principal 
null vector k. of the gravitational field is to be shear­
free and geodesic it is clear that the sum of the op­
tical vectors, L!p) + L!Q), must vanish. Exact solu­
tions representing this situation are discussed in the 
next section. 

4. EXACT ELECTROMAGNETIC SOLUTIONS 

(i) Null Solutions 

In the light of the preceding analysis it would be 
interesting to exhibit some exact solutions repre­
senting gravitational waves propagating through 
various media. As a first example there exist the 
metrics of Kundt8 representing a type N gravita­
tional field having u = (J = w = n = 0 (planefronted 
waves with parallel rays), accompanied by a plane 
electromagnetic wave, 

dl = !(dx2 + dy2) - 2 du dr + 2U du2, 

where U = U(x, y, u) satisfied 

The coordinates are those introduced by Robinson 

and TrautmanlO in which Xl = u 
hypersurfaces 

const are null 

The vectors k. = U,a, are tangent to the family 
of null geodesics lying in the hypersurfaces, and 
x2 = r is chosen as an affine parameter along these 
geodesics. The coordinates x3 = x and x· = y 
label the geodesics on each surface U = const. 

(li) Nonaligned Nonnull Solutions 

There also exist solutions of the field equations 
with a nonnull electromagnetic field and which are 
of Petrov type N. To find these solutions we use 
the relations obtained from the Bianchi identities 
in the previous section and put these into the N ew­
man-Penrose formalismll to obtain further simplifica­
tions. Finally we set up Robinson-Trautman co­
ordinates and use the methods of Newman, Tambur­
ino and Unti12

•
13 to obtain the exact solutions. The 

procedure is long and cumbersome, but fairly 
straightforward. The final result is the following 
metric: 

di = ! cos2 ttr(dx2 + dy2) 

- 4 du dr - 2T(2r + K -I sin 2ttr) du dx 

+ 4K -2(2T2 sin2 Kr - 2e2 .. - rK aKj au) du2
, (4.1) 

where 

T = T(U, x) = eU coth (e"x + feu»~, 
K = K(U, x) = g(u)e" sinh (eUx + feu»~, 

g(u) and feu) are arbitrary functions of u. This 
metric is of Petrov type N with principal null 
vector pointing along k. ex: u,. = (1, 0, 0, 0). k. is 
geodesic, shear-free and twist-free, but it will have 
an expansion and a rotation. The Ricci tensor turns 
out to be 

where 

p. = (lKe-", -r(!e-" aKjau + T2e-" tan Kr 

+ TsecKr), e-"'TtanKr + seCKr, 0), 

and 

t = _po + (0, -2rT sec ttr, 2 sec Kr, 0). 

10 1. Robinson and A. Trautman, Phys. Rev. Letters 4, 
431 (1960). 

11 E. Newman and R. Penrose, J. Math. Phys. 3, 566 
(1962). 

12 E. Newman and L. Tamburino, J. Math. Phys. 3, 902 
(1962). 

13 E. Newman, L. Tamburino, and T. Unti, J. Ma.th. Phys. 
4, 915 (1963). 
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p. and t are a pair of null vectors satisfying paqG = l. 
By (3.7) the metric can be considered as repre­

senting a transverse gravitational wave propagating 
along shear-free null geodesics through a nonnull 
electromagnetic field. The principal null vectors of 
this field are p. and q., neither of which are aligned 
with the gravitational wave kG, and the electromag­
netic field strength is A = 2eu

• 

The electromagnetic field has the odd character 
that it is not a wave field (since it is not null-the 
electric and magnetic fields are nowhere equal and 
perpendicular) yet its amplitude propagates with the 
velocity of light. It may be thought of as a "quasi­
wave" field. For a timelike observer the passage of 
the field will appear like an electromagnetic sheet 
whose strength rises (or diminishes) exponentially 
without limit. We may calculate the strength C1 

of the gravitational wave in the frame (kG, mG, ta
, ta

) 

determined from the normalizations of Sec. 3. It is 

= !g(u)eU sinh (eUx + feu»~ tan Kr. 

Thus the arbitrary function g(u) measures the 
strength of the gravitational wave, which is seen 
to be quite independent of the electromagnetic field 
strength A. The function feu) is merely a phase 
function on the wave hypersurfaces u-const, which 
can be set to zero by a coordinate transformation 

It is interesting that C1 has singularities at r 
(n + !)'Ir,,-1. These are real singularities of the 
manifold, and there is no way of avoiding them. 
Another way in which these singularities show up is 
in the expansion of the gravitational propagation 
vector ka = U,a' When there is no electromagnetic 
field we have that 0 = kG;. satisfies 

dO/dr = ~, 

so that 

0= I/r 

and the waves are spherical, emanating from a 
source at r = O. With the electromagnetic field 
present the equation becomes modified to read 

dO/dr = ~ +l, 
so that 

o = "tanKr. 

fold to the region _!'Ir,,-1 < r < !'Ir,,-1 it will be 
incomplete. 

(iii) Aligned Nonnull Solutions 

The metric (4.1) is by no means the most general 
one representing a pure transverse gravitational 
wave in a nonnull electromagnetic field. It is not 
even the most general one with shear-free geodesic 
propagation vector ka' The analysis in the Penrose­
Newman formalism makes it clear that the electro­
magnetic field strength A may be variable over the 
hypersurfaces u = const. However it must be con­
stant along the tangents ka if these are to be shear­
free and geodesic: 

A,aka == aA/ar = O. 

The full integration of the field equations in this 
more general case is considerably more complicated, 
and a closed form for the metric has not been found. 

The metric (4.1) represents the case of a type-N 
wave in a nonaligned electromagnetic field. There 
exist further solutions representing a type-N wave 
in an aligned field. As pointed out in Sec. 3 (ii) (a), 
the principal null vector kG is shear-free and geodesic. 
For Petrov type N it turns out furthermore that 
ka has vanishing expansion, twist and angular mo­
mentum (that is, it is a p.p. wave), and the elec­
tromagnetic field amplitude A is constant. This 
makes the Newman-Penrose field equations fairly 
straightforward to integrate. The result is 

ds2 = !P-2(dx2 + dy2) 

- 2 du dr - P-2(X du dx + Y du dy) 

+ {U - ! IAI2 r2 + !P-2(X2 + y2) I du2 (4.2) 

where P = P(u, x, y) satisfies 

p 2\12 In P = ! IA 12 = const. 

U(x, y, u) satisfies 

\12U = _p2
, 

and 

z = X + iY = feu, z) - 4 aU /az, 

where z = x + iy, \12 == a2/ax2 + a2/ay2, and f 
is an arbitrary analytic function of z. This metric 
is of Petrov type N with propagation vector 
pointing along kG = u,. = (1, 0, 0, 0). The Ricci 
tensor has the form 

(4.3) 

The waves are infinitely divergent at the points where 
r = (n + !)'Ir,,-1. If we choose to restrict the mani- ma = (-1, -11A12 r2 + U, X, Y). 
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kQ and mG are the principal null vectors of the elec­
tromagnetic field. The null vector is neither shear­
free nor geodesic. Completing the tetrad with the 
vectors tG

, lB, where tG = (0,0, P, iP), we find for the 
shear and refraction of m G 

"I = ma;btBmb = -2P au/az. 

In this frame the gravitational field strength CI 

can be calculated; 

-8 a(p2 au/az) _ ap2 _ X ap2 _ Yap2 

az au ax ay 

- P2(IAI2 r + 4 az/az). 

We see that the field strength varies along the geo­
desics of propagation: 

CI.BkB = acI/ar = 2 - p 2 IAI2. 

If the null vector mG has vanishing shear, it is clear 
we cannot use the metric (4.2) since p 2 

= O. This 
situation is represented by the metric 

ds2 = !P-2(dx2 + dy2) - 2 du dr 

+ 2(U - 1lA 12 r2) du2
, (4.4) 

where 
p 2 V 2 lnP2 = ! IAI2, 

V 2 U = O. 

The Ricci tensor is again of the form (4.3) but with 
mB = (-1, -1 IAI2 r2 + u, 0, 0). In this case mG 

is shear-free, but it is still not geodesic. The gravita­
tional field strength is given now by 

CI = -8 a(p2 au/az)/az, 

and is constant along the kB geodesics, aC 1/ ar = O. 

(iv) A Conformally Flat Solution 

The metrics (4.2), (4.3) are all the metrics rep­
resenting a pure transverse gravitational wave prop­
agating through an aligned nonnull electromagnetic 
field. From the metric (4.4) we can obtain an in­
teresting case if we put U = O. mB is now geodesic, 
"I = 0, but also CI = O. This means that the Weyl 
tensor vanishes, and there is no free gravitational 
field at all. That is, the metric 

ds2 = !P-2(dx2 + dy2) - 2 du dv - ! IA 12 r2 du2
, 

where 

V 2 lnP2 = 0 

represents a conformally flat space, with a nonnull 
electromagnetic field present. 

5. EXACT FLUID SOLUTIONS 

The question we now investigate is whether there 
exist any Petrov type N solutions of the field equa­
tions with a perfect fluid. A partial answer has been 
given by Kundt and Trfunper,4 who show that no 
solutions exist if w = 0 (w = angular velocity of 
fluid). By Eq. (2.21) this is seen to be equivalent to 
the statement that no Petrov type N solutions with 
perfect fluids exist in which the waves are prop­
agated along null geodesics ("I = 0). However, the 
case 

p = J1 + A(t), 

where t = const are the hypersurfaces to which the 
u B are orthogonal (they exist on account of the pos­
tulate w = 0), eludes the Kundt-Trfunper analysis. 
They discard this case as unphysical since it is 
usual to have p < iJ1. This is not totally convincing, 
however, since J1 might be almost constant on the 
hypersurfaces t = const, and A (t) chosen in such a 
way as to have p < iJ1 satisfied everywhere. There 
appears to be no straightforward way of eliminating 
this case, and it must remain an open question 
whether there exists solutions of Petrov type N with 
p = J1 + ACt)· 

The more general case w ~ 0 is much harder to 
analyze since the fluid streamlines are no longer 
hypersurface-orthogonal and it is not possible to 
set up suitable Gaussian coordinates. We have man­
aged to deal with the case p = 0, where by (2.4b) the 
streamlines are geodesic, uB = O. The result, proved 
in the Appendix, is the following: 

No solutions of Petrov type N with incoherent matter 
(p = 0) exist. 

While the question of the existence of type N 
solutions is still not decided, we see from the above 
results that such solutions, if they exist, must be of 
a complexity considerably exceeding that of any 
fluid solutions that have been found to date. 

To conclude this discussion, we give a simple 
argument to show that locally there can be a fluid 
present in a Petrov type N metric. Consider a 
conformal transformation of the metric, 

The Ricci tensor transforms as 

flBb = RBb + 2Ua;b - 2uaub + (2ucu
C + U C ,.)gab, 

where 

U a = U,B' 

The Weyl tensor remains invariant 
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so that the Petrov type of the metric is unchanged 
by the conformal transformation. If we consider 
gab to be the metric tensor for a vacuum solution 
Rab = 0, and let u be a solution of the partial dif­
ferential equation 

then 

where 

Using the field equations in the new space 

flab - !1l0ab = - Tab, 

where 

1l = llabOab = 6( 0 - l)e -2", 

we find that 

Tab = -20"ab + (40/3 - 1)e-2"hab 

(5.1) 

+ (3 - 2 0)e-2UUaUb , (5.2) 

where ua = e"ua is a timelike unit vector in the gab 
space, and hab = dab + UaUb. Thus we have generated 
a perfect fluid solution from the vacuum if we can 
find a solution of Eq. (5.1) with O"ab = O. We cannot 
find such a solution if the initial metric is of Petrov 
type N, since the fluid streamlines would be hyper­
surface-orthogonal (w = 0), contradicting the result 
of Kundt and Trumper. However it is clear that at 
any point of the manifold it is possible to find a 
solution having O"ab = 0 at that point. In this way 
we can generate a "local fluid." But as we depart 
from this point we will have O"ab ~ 0, and aniso­
tropies will appear in the energy tensor. It is not 
inconceivable that we might find a solution in which 
0" remains small relative to 0 at least for a sizable 
region of the manifold, and in this region we will 
have an "almost-perfect" fluid. We can obtain an 
upper bound for the size of the region in which Tab 

remains physical. From (5.2) it is seen that the 
density and mean pressure are given by 

It = e-2"(3 - 20), 

P = e-2U(40/3 - 1). 

Hence, if It and p are both to be positive we must 
have 

! S (j <!. 
Furthermore 0 should be much closer to the lower 
value than the higher, else the pressure dominates 

the density. Now we can use the Ricci identities 

Contracting over a and c and using the vacuum 
condition Rab = 0, we find on further contracting 
with u b that 

o == ao/au = _20"2 - 102. 
If initially at u = Uo, 0 = ! + E, we will have 

ao/au < - 1
3
6' 

hence 0 can only remain > ! until a time Ul = 
Uo + 16 E/3, after which the pressure becomes nega­
tive. 

6. RELATION TO ELECTROMAGNETIC THEORY 

The results obtained in this paper for the prop­
agation of gravitational waves in matter have a 
strangely unfamiliar ring when we try to compare 
them with the usual electromagnetic treatment. For 
example, the" refraction" discussed here is nothing 
like the refraction of electromagnetic waves, for 
there is no slowing down of the waves-there is 
merely a deflection from the straightest, the geo­
desic, path-while the other feature of the inter­
action, the shear of the waves, is something never 
discussed in electromagnetic theory. It is not hard 
to see where the difference between the two theories 
lies. We could treat the electromagnetic field in a 
similar way, discussing the Maxwell equations 

Fab _·a 
.b - J , 

and obtaining a departure from geodicity and a 
shear in the electromagnetic wave coupled to the 
current vector l. But this treatment would be 
entirely wrong if applied, say, to light passing 
through a slab of glass. In this case the interesting 
features occur at the atomic scale, where the cur­
rent l becomes extremely complicated. When we 
smooth out all these tiny currents we have l = 0, so 
that the field should propagate as though there was 
no matter present at all, 

Fab
•b = o. 

But at the atomic level there is the creation of a 
large number of oscillating dipole moments which 
produce their own field, out of phase with this 
freely propagating field in just such a way as to 
produce a total transmitted wave traveling with a 
speed less than that of light in vacuum. Feynman14 

14 R. Feynman, Lectures on Physics, Vols. I and II (Addi­
son-Wesley Publishing Company, Inc., Reading, Massachu­
setts, 1963). 
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has recently given a very clear and beautiful treat­
ment of just this problem. 

There are several reasons why such a discussion 
would not be applicable to the gravitational case. 
In the first place general relativity is a continuum 
theory and is only valid at that scale where we can 
regard the matter as smoothed out into a highly 
regular fluid. It is very difficult to see how one could 
treat a system of discrete particles in the theory. 
This feature arises again and again, its most famous 
instance perhaps occurring in cosmology where the 
whole galactic population is smeared out into a 
continuum. Secondly, the principle of equivalence 
demands that all masses respond equally to the 
gravitational field, with the result that no dipole 
moments are created in the matter. It is true that 
.quadrupole moments may occur, but there is still 
another point to bear in mind here. It is only on the 
astronomical scale that matter is held together by 
purely gravitational forces; on the terrestrial scale 
it is the much larger electromagnetic forces that 
are important. A comparable situation in the elec­
tromagnetic theory would be if the atoms were 
held together not by the electric forces but by some 
field which was stronger by a factor of about 1040 

(even the nuclear forces pale into insignificance 
here). In such a case the induced dipole moments 
would be weaker by a corresponding factor, and 
the usual phenomenon of refraction would never 
be observed. Our analysis of refraction would then 
have to follow lines similar to those discussed in this 
paper. 

The above discussion raises some inevitable que­
ries. If large-scale gravitational waves arise, or have 
arisen at a more chaotic epoch of the universe, how 
do these propagate through the galactic system? 
The analysis should now follow the more familiar 
electromagnetic treatment, with induced quadrupole 
moments in the galaxies replacing atomic dipole 
moments. At the other end of the scale, we may ask 
how very short wavelength gravitational radiation 
(of atomic dimensions) would propagate in ordinary 
matter. Again, the electromagnetic treatment should 
be the one to adopt. 
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APPENDIX: PETROV TYPE-N SOLUTIONS 
WITH INCOHERENT MATTER 

Consider a fluid with p = O. From Eqs. (2.4a, b) 
we have 

Jl = -p.O, 

'Ita = O. 

Let us assume w ~ O. If the Weyl tensor is of Petrov 
type N with principal null vector ka = U a + Sa, 

we have from (2.21) that "{ ~ 0 (ka is not geodesic). 
Take r a the unit vector pointing along "( la + -yta, 

and qa the unit vector pointing along i("{la - -yta). 

U a , Sa, ra , and qa form an orthonormal tetrad. From 
Eqs. (2.17) to (2.22) and (2.2) we have 

Ua;b = 2wslarbJ + 3U(SaSb - ihab) + iOhab (A1) 

and 

P.,b = P.(3wrb + V3 USb + flub)' (A2) 

If we put these into the current conservation equa­
tion (1.4) we get 

W = -i",(20 + V3 U) (A3) 

and 

(A4) 

Consider the Ricci identities 

Using (1.1) and the field equations (2.3) this may 
be rewritten in terms of the Weyl tensor 

C\edUa = 2Ub;ldeJ + iP.UldgeJb' (A5) 

Contracting over band c, and a further contraction 
with ud results in the well-known Raychaudhuri 
equation 

o = -ip. + 2",~ - 2u~ - if. (A6) 

Using the fact that C\ed is of Petrov type N, 

(A7) 

results in 

and 

The last equation together with (A4) gives that 

Sd = rd = O. (A9) 
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Using the Weyl tensor symmetry 

Ca[bedl = 0, 

and the fact that /L,a is a gradient in (A2) 

/L, [a:bl = 0, 

we find, using (A7), that 

That is, 

o = Sa:btS
b = ka:btk

b = i('l - 1~/V2 hi. 
Hence ,),(1),),(2) = 0, that is, either ')'(1) or ,),(2) is zero, 
which means that qa and r a coincide with the polari­
zation directions of the transverse wave. This means 
that we can write the Weyl tensor as 

C abcd = 2C(k[ar bl k [cr dl - k[aqblk[cqdl)' 

By (A5), (A6), and (AS) we find 

(AlO) 

Now, 

V2 h'l = ka:brak
b

, 

and by (2.21) it follows that 

Now 

(All) 

From (A5) and (A7) it follows that the last term 
vanishes, while the second term can be written as 

wsa:crar
c 

- 1(0 + 2v3 (j)sa:.rasc. 

If we now differentiate (All) along ua we find using 
(A3), that 

W2Sa:brarc = Iw2(v3 (j - 0) - /Lv3 (j. 

A final differentiation along ua of this equation re­
sults in 

/LW2 = O. 

Hence w = 0 and our theorem is proved, since by 
(A10) this means C = 0 and the Weyl tensor 
vanishes. 
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Asymptotic Correlations of the Hamiltonian Matrix Elements 
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The statistical correlations of the matrix elements of real symmetric Hamiltonians are studied using 
the assumption of representation invariance and the limit of large dimension N. The diagonal-diagonal 
correlation coefficient is expressed in terms of a parameter which gives the ratio of the dispersion of 
off-diagonal element to that of the diagonal element. It is shown that for a certain class of real-sym­
metric Hamiltonian ensembles in the limit N -> <Xl, the diagonal-diagonal correlation coefficient goes 
as >.,N-', where A is some positive constant independent of N and the correlation coefficient of two 
different eigenvalues is the same as the one obtained using the weak assumption of independent 
probabilities. 

I. INTRODUCTION 

THE joint probability distribution for the Gaus­
sian ensemble of real-symmetric Hamiltonian 

matrices was first derived by Porter and Rosenzweig.' 
This derivation is based on the assumptions that (1) 
the matrix elements are distributed independently of 
each other, and (2) the Hamiltonian is statistically 
invariant under linear orthogonal transformations 
of the set of basic functions. The assumption (2) 
is a physical assumption, because this simply means 
that the joint probability distribution should be 
independent of the orientation of the base system of 
axes, but assumption (1) is quite unphysica1.2 It is 
natural to ask if there is some way of avoiding the 
weak assumption that the joint probability dis­
tribution of the Hamiltonian matrix elements is 
made up of independent distributions for the sep­
arate matrix elements. It has been shown recently3 
that the requirement of invariance under arbitrary 
changes of representation and the limit of large 
dimension are sufficient to obtain the same results 
for the distribution of the eigenvector components 
of a random Hamiltonian matrix, as those obtained 
by the requirements of representation invariance 
and the independent distribution. In this paper, we 
shall study the correlations of the Hamiltonian 
matrix elements using the assumption of representa­
tion invariance and the limit of large dimension. 

Let us consider an ensemble of N X N real­
symmetric Hamiltonian matrices with elements H~,. 
These matrices belong to a definite value of the 
total angular momentum and parity and have 
tN(N + 1) different matrix elements which we 
take to be the diagonal plus superdiagonal matrix 
elements. The ensemble of matrices is described by 

, C. E. Porter and N. Rosenzweig, Suomalaisen Tiedeakat. 
Toimituksia Ser. A VI, 44 (1960). 

• F. J. Dyson, J. Math. Phys. 3, 140 (1962). 
3 Nazakat UHah, J. Math. Phys. 6, 1102 (1965). 

glvmg the differential probability with which a 
matrix characterized by certain numerical values of 
the matrix elements H~, occurs. It should be pointed 
out here that we do not know in what representation 
H will be diagonal and therefore a typical member 
of the ensemble will have a large number of nonzero 
off -diagonal elements. The N eigenvalues E),. and 
the eigenvector components ap }. of the random 
Hamiltonian matrix will themselves be random. 
They are related by 

(1) 

The N X N matrix formed from the eigenvector 
components a#),. will be a random orthogonal matrix. 

Weare interested in the ensemble averages of the 
products of the matrix elements given by equation 
(1). Using the representation invariance hypotheses 
this averaging can be done separately over the 
eigenvalues and the eigenvector components.' The 
averages of the products of components of a set of 
orthogonal unit vectors randomly oriented in the 
N-dimensional space are known.4 These known a ver­
ages enable us to predict some of the correlations 
of the Hamiltonian matrix elements and to find 
relations between the correlation coefficients of the 
Hamiltonian matrix elements and those of its eigen­
values. 

II. CORRELATIONS OF HAMILTONIAN MATRIX 
ELEMENTS 

It has been shown earlier4 that for any N, the 
representation invariance hypothesis leads to the 
conclusion that there are no correlations between an 
odd power of the off-diagonal matrix element and 
any power of diagonal or another off-diagonal matrix 
element. In this section we would like to study the 
correlations for large N. But before we discuss the 

4 Nazakat Ullah, Nuc!. Phys. 58, 65 (1964). 
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case for large N, let us first give an expression for 
diagonal-diagonal correlation valid for all N. Using 
expression (1) and the known averages of the eigen­
vector components,4 we can show that the diagonal­
diagonal correlation coefficient is given by 

where 

{3 = [N _ «Tr H)2)Ji 
(Tr H2) 

X [(N - 1) + !(N - 1) (~i~ If)? Jt. 

(2) 

(3) 

The bracket sign ( ) above denotes the ensemble 
average. In writing expression (2) we have taken 
(TrH) = 0, which simply means that the mean 
eigenvalue is taken to be zero. 

The ratio of the dispersion of the off-diagonal 
element to that of the diagonal element can be ex­
pressed in terms of the parameter (3, which depends 
on Nand «Tr H)2)j(Tr H2), as 

(4) 

Using the relation between the diagonal-diagonal 
correlation coefficient and the correlation coefficient 
of two different eigenvalues, the latter correlation 
coefficient is given by 

It is interesting to note that the correlation coef­
ficient given by expression (5) can have both positive 
and negative values depending on the parameter {3. 
The results of the independent distribution imme­
diately follow if we put (32 = l. 

To study the correlation coefficient given by ex­
pression (2) for large values of N, we consider the 
ratio 

(6) 

We shall show that for a certain class of real-sym­
metric Hamiltonian ensembles, 'Y is of the order of 
N-l

• To show this let us denote the joint probability 
density function by PN(Hu , H 12 , ... , H NN). then 

J (Tr H)2
PN(Hll , '" ,HNN) II dH~. 

'Y = ~<. • (7) 

J Tr H 2PN(Hu , .. , , H NN) gi;dH~. 

Let us make an orthogonal transformation on N 
variables H ll , H 22 , ... , HNN 

such that Cu CI2 = ... = CIN = N-l, then 

H(I = N-! Tr H, 

and since C is an orthogonal matrix, therefore 

LH!~ = LH~!, II dH~~ = II dH~~. 
~ ~ ~ ~ 

Expression (7) now becomes 

(8) 

J m~PN(ml' H 12 , ... ,Hfm) II dH~. II dH~~ 
'Y = N ~<. ~ 

J (L H~! + 2 L H!.)PN(H(l, H 12 , ... ,Hfm) II dH~. II dH~~ 
lit 1'<1' J.l<. p. 

We now regard the matrix H as a vector in [L 
!N(N + l)]-dimensional vector spaces and introduce 
the L-dimensional spherical polar coordinates 

H(l = rql, , Hfm = rqN, 

v2 H12 = rqN+l, ... , v2 H N- l .N = rqL, 

then 

J rL+lq~PN(r, ql, ... , qL) dr dfh 
'Y = N , (9) J rL+lPN(r, ql, ... , qL) dr drlL 

where drlL is the L-dimensional differential solid 
6 N. Rosenzweig, Brandeis University Summer Institute 

Lectures in Theoretical Physics, 1962 (W. A. Benjamin, Inc., 
New York, 1963), Vol. 3, p. 91. 

angle. Expression (9) can be written as 

L' F N(Sin e, cos e) cos2 e sinL
-

2 e de 
'Y = N~O~----__________________ ___ 

1" FN(Sin e, cos e) sinL
-

2 e de 
(10) 

where F N(sin e, cos e) is the function obtained by 
integrating over r and all the angular variables 
except e. By a slight change of variable we can ex-
press'Yas 

f t,. F N( -sin a, cos a) sin2 a COSL-2 a da 
- N -,.-'Y - ~~f-t-"---------------------------

F N( -sin a, cos a) COSL-
2 ada 

-,.. (11) 
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We now make the assumption that our probability 
function PN is such that the function FN(a) can be 
expanded in a convergent series around a = O. 
Therefore, most of the contribution to the integrals 
in the numerator and denominator of expression 
(11) will come from a = 0 when L is large and the 
dependence of the ratio 'Y on N will be like N- 1

• 

Expressions (2), (3), (4), and (5) show that for such 
ensembles in the limit of large N, the ratio of dis­
persion of the off-diagonal element to that of diagonal 
element is !, the diagonal-diagonal correlation goes 
as XN-t, where X is some positive constant independ-

JOURNAL OF MATHEMATICAL PHYSICS 

ent of N and the correlation coefficient C E~,Bf is 
given by 

(12) 

The correlation coefficient given by expression (12) 
is the same as the one obtained using the assumption 
of independent probabilities. 
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Unitary Representations of the Lorentz Group on 4-Vector Manifolds* 
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A review is presented of irreducible unitary representations of the (3 + I)-dimensional restricted 
Lorentz group on Insnifolds of time-, light-, and spacelike 4-vectors. In each case a complete set of 
orthonormal (in the sense of the distribution theory) basis functions is available. The completeness 
relation for the nontrivial spacelike case is proved in detail. Expansion formulas, Lorentz-group 
analogs of the Fourier integral theorem, are given. In particular, expansions of plane-wave solutions 
of the Klein-Gordon equation for - co < m2 < co are worked out as an illustrative example. Possible 
physical applications are briefly discussed. 

I. INTRODUCTION 

T HE mathematical theory of representations of 
the (1 + 3)-dimensional (restricted) Lorentz 

group Lo( = L1) has received a considerable amount 
of attention both in physical and mathematical 
literature.1

-
3 The finite-dimensional nonunitary rep­

resentations of this group have long been known and 
utilized in physical applications. The infinite-dimen­
sional unitary representations have also been known 
for some time4

; perhaps surprisingly, they have not 

* This work was sponsored by the National Aeronautics 
and Space Administration under Contract No. NAS7-100. 

1 B. L. van der Waerden, Die grup~entheoretische Methode in 
der Quantentheorie (Springer-Verlag, Berlin, 1932). 

2 M. A. NalInsrk, Linear Representations of the Lorentz 
Group (The Macmillan Company, New York, 1964). 

3 1. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, 
Representations of the Rotation and Lorentz Groups and their 
Applications (The Macmillan Company, New York, 1963). 

• P. A. M. Dirac, Proc. Roy. Soc. (London) AI83, 284 

~
1945); 1. M. Gel'fand and M. A. Narmark, J. Phys. 10, 93 
1946); Barish-Chandra, Proc. Roy. Soc. (London) A189, 372 
1947). 

been very widely applied in physics. 5 All irreducible 
unitary representations of Lo are known and are 
usually explicitly constructed in terms of functions 
defined on complex manifolds.2 For example, the 
so-called principal series representations of Lo are 
constructed on the space of all complex-va1ued 
functions fez), z = x + iy, for which 

JJ~", If(z)1 2 dx dy < ro. 

The complex variable z has no immediate physical 
significance, and this is a distinct disadvantage for 
physical interpretability of these representations. 

In practical applications, one frequently en­
counters situations in which functions of one or 
more 4-vectors transform according to the Lorentz 
group Lo. For example, scalar fields obey the trans-

6 E. M. Lifshitz, J. Phys. 10, 116 (1946); V. L. Ginzburg 
and 1. E. Tamm, JETP 17, 227 (1947); 1. M. Gel'fand and 
A. M. Yaglom, JETP 18, 703 (1948); 1. S. Shapiro, Soviet 
Physics-DokJady 1, 91 (1956); 1. S. Snapiro, Physics Letters 
1, 253 (1962). 
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We now make the assumption that our probability 
function PN is such that the function FN(a) can be 
expanded in a convergent series around a = O. 
Therefore, most of the contribution to the integrals 
in the numerator and denominator of expression 
(11) will come from a = 0 when L is large and the 
dependence of the ratio 'Y on N will be like N- 1

• 

Expressions (2), (3), (4), and (5) show that for such 
ensembles in the limit of large N, the ratio of dis­
persion of the off-diagonal element to that of diagonal 
element is !, the diagonal-diagonal correlation goes 
as XN-t, where X is some positive constant independ-

JOURNAL OF MATHEMATICAL PHYSICS 

ent of N and the correlation coefficient C E~,Bf is 
given by 

(12) 

The correlation coefficient given by expression (12) 
is the same as the one obtained using the assumption 
of independent probabilities. 
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group Lo( = L1) has received a considerable amount 
of attention both in physical and mathematical 
literature.1

-
3 The finite-dimensional nonunitary rep­

resentations of this group have long been known and 
utilized in physical applications. The infinite-dimen­
sional unitary representations have also been known 
for some time4

; perhaps surprisingly, they have not 

* This work was sponsored by the National Aeronautics 
and Space Administration under Contract No. NAS7-100. 

1 B. L. van der Waerden, Die grup~entheoretische Methode in 
der Quantentheorie (Springer-Verlag, Berlin, 1932). 

2 M. A. NalInsrk, Linear Representations of the Lorentz 
Group (The Macmillan Company, New York, 1964). 

3 1. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, 
Representations of the Rotation and Lorentz Groups and their 
Applications (The Macmillan Company, New York, 1963). 

• P. A. M. Dirac, Proc. Roy. Soc. (London) AI83, 284 

~
1945); 1. M. Gel'fand and M. A. Narmark, J. Phys. 10, 93 
1946); Barish-Chandra, Proc. Roy. Soc. (London) A189, 372 
1947). 

been very widely applied in physics. 5 All irreducible 
unitary representations of Lo are known and are 
usually explicitly constructed in terms of functions 
defined on complex manifolds.2 For example, the 
so-called principal series representations of Lo are 
constructed on the space of all complex-va1ued 
functions fez), z = x + iy, for which 

JJ~", If(z)1 2 dx dy < ro. 

The complex variable z has no immediate physical 
significance, and this is a distinct disadvantage for 
physical interpretability of these representations. 

In practical applications, one frequently en­
counters situations in which functions of one or 
more 4-vectors transform according to the Lorentz 
group Lo. For example, scalar fields obey the trans-
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formation law cp(x) ~ cp(Ax); invariant (scattering) 
amplitudes of 4-momenta Pl, P2, ... transform as 
A(Pl, P2, ... ) ~ A(Apl' Ap2, ... ), etc. These various 
quantities do not transform irreducibly under L o• 

One is frequently interested in expanding them in 
terms of functions irreducible under Lo. Thus one 
is faced with the problem of constructing irreducible 
(unitary) representations of the Lorentz group on 
a manifold of a single 4-vector and then with the 
problem of expanding arbitrary reasonably well­
behaved functions defined on this manifold in terms 
of Lorentz-irreducible functions. The case of several 
4-vectors is treated by performing expansions in 
each of the 4-vectors and then using the Clebsch­
Gordan machinery to effect the desired reduction 
into irreducible components under Lo. Most of the 
required Clebsch-Gordan coefficients are available 
in the literature.6 We shall not be concerned with 
the reduction part of the problem in this paper. Our 
goal is to examine the expansions of functions of a 
single 4-vector. We shall restrict our discussion to 
the important special case of spin zero for which 
G, one of the Casimir operators of L o, vanishes. 
Nonzero spin requires extra variables, in addition 
to the 4-vector components, and is therefore beyond 
the scope of this article. 

Our work is based on solutions of a number of 
second-order ordinary differential equations rep­
resenting eigenvalue problems associated with cer­
tain operators constructed from the generators of 
Lo. Not all possible solutions of these equations are 
acceptable: only those which are normalizable to a 
constant or to a deItafunction. Our rather pedestrian 
approach to the expansion problem via differential 
equations has the virtue that all calculations are 
explicit and straightforward; a large body of results 
from the theory of differential equations may be 
utilized which would not be available with the more 
abstract approaches. 

Irreducible unitary representations of the Lorentz 
group on manifolds of timelike 4-vectors have al­
ready been discussed by a number of authors.6

•
7 

Corresponding representations in terms of spacelike 
4-vectors have also been discussed, although not in 
full generality; we believe that some of the results 
on this subject given here are new. The lightlike case 

6 A. Z. Dolginov and 1. N. Toptygin, Zh. Eksperim. i Teor. 
Fiz. 37, 1441 (1959) [English transl.: Soviet Phys.-JETP 
10, 1022 (1960)]; A. Z. Dolginov and A. N. Moskaley, ibid. 
1697 (1959) [English transl.: ibid. 1202 (1960)]; M. A. 
Naimark, Am. Math. Soc. Transl. 36, Series 2, pp. 101-229. 

7 Chou Kuang-Chao and L. G. Zastavenko, Soviet Physics 
JETP 35, 990 (1959); V. S. Popov, Soviet Physics JETP 37, 
794 (1960); N. Ya. Vilenkin and Ya. A. SmorodinskiI, Soviet 
Physics JETP 19, 1209 (1964). 

does not appear to have been treated before. All 
three cases are reviewed here in the interest of com­
pleteness. 

A summary of irreducible unitary representations 
of the restricted Lorentz group is presented in Sec. 
II. Lorentz-group. expansions on manifolds of a 
single 4-vector are discussed in Sec. III for the 
timelike and spacelike cases. Expansions of functions 
of a Iightlike 4-vector are considered in Sec. IV. A 
summary of results is presented in Sec. V, and pos­
sible physical applications are indicated. Finally, 
three appendices are devoted to detailed proofs of 
certain statements made in the text as well as to 
an illustrative example. 

II. THE RESTRICTED LORENTZ GROUP 

The Lie algebra £0 of the restricted Lorentz 
group Lo is spanned by the six (Hermitian) operators 
Mp. = -M.p, p., 1/ = 0, 1, 2, 3, obeying the com­
mutation relations 

where brackets denote antisymmetrizations as, e.g., 
in 

and the nonvanishing diagonal metric tensor com­
ponents are 

i = 1,2,3. 

Irreducible unitary representations of Lo are char­
acterized by the eigenvalues of its two Casimir 
operators F and G, commuting with each M p. and 
given by 

F = -!Mp.M~·, 

G = !M ... M .. •. 

Here M is the dual tensor of M defined by 

{

I if (p.I/PrJ) = even permutation of (0123), 

E~'P~ = -1 if (p.I/PrJ) = odd permutation of (0123), 

o otherwise. 

We denote the eigenvalues of F and G by 

f = 1 + l - k2
, 

g = 2kv. 
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There are the following classes of irreducible unitary 
representations of Lo labeled by k and l's: 

(i) k = 0, v = i; 

(ii) k = 0, v 2:: 0; 

(iii) k = 0, v = ivo, ° < vo < 1; 

(iv) k = 1,2,3, ... ,-00 <v< 00 • , 
(v) k = !, !,~, . , . ,-00 <v< 00 • 

The representation (v) is double-valued; all others 
are single-valued. The representation (i) with j = 
g = 0 is the trivial or identity representation of Lo• 

We shall use the notation 

M = (Ml' M2, Ma) = (M2a , Mal' M 12), 

N = (Nl , N 2, N a) = (MOl' M 02 , Moa). 

The commutation relations for the Mi and Ni are 

where 

[Mi' M;] = iei;kMk, 

[Mi' N;] = iei;kNk, 

[Ni , N;] = -ieijkMk, 

Oille e;;k = f 

The M i span the Lie algebra l3u(2) of the two­
dimensional unimodular group SU(2) homomorphic 
to Ra, the three-dimensional rotation group. 

The operators M2 and Ma form a maximal abelian 
subalgebra of the operator algebra spanned by the 
six M ~., and hence they may be diagonalized simul­
taneously with F and G. Thus one may introduce 
the vectors Ikllj~) defined by the four eigenvalue 
equations 

(F, G, M2, Ma) IkvjJL) 

Here 

= (1 + v2 - k2, 2kv, j(j + 1), JL) IkvjJL). 

j = k + n, n = 0,1,2, 

JL = j, j - 1, ... , -j. 

It is possible to choose a canonical form of the opera­
tors M~. and the vectors IklljJL) for which the fol­
lowing relations are valids

: 

M s IjJL) = JL IiJL), 

(Ml ± iM2) IjJL) = [(j =F JL)(j ± JL + 1)]f IjJL ± 1), 

Ns IjJL) = [(j + 1)2 - JL2]tC~:1 Ij + IJL) 

+ [kvJLjj(j + 1)] IjJL) + (l - JL2)iC~' Ij - IJL), 
----

8 H. Joos, Fortschr. Physik 10, 65 (1962). 

(Nl ± iN2) IjJL) = =F[(j + 1 ± JL)(j + 2 ± JL)]'C~:l 

X Ij + IJL ± I) + kp {[(j =F JL)(j + 1 ± JL)]f jj(j + I)} 

X IjJL ± I) ± [(j =F JL)(j - 1 =F JL)]!C~' Ij - IJL ± I), 

C~' = rl[(l - k2)(l + l)/(4l - 1)]', 

where we have suppressed k, II in the vectors IklljJL)' 
There is an error in J oos' coefficient of IjJL ± 1) 
in the expression for (Nl ± iN2 ) IjJL); he has [j(j + 
l)ri instead of [j(j + l)rl. The vectors IiJL) are 
just <pm.; in Joos's notation and are related to NaI­
mark's2 jZ by the following substitutions: 

Ij + 1JL) ~ -ij;+\ 

IiJL) ~ j;, 
Ii - IJL) ~ ij~-l , 

(k, v, j, JL) ~ (ko, -ie, k, v). 

m. LORENTZ GROUP EXPANSIONS 

We consider in this section the problem of con­
structing irreducible unitary representations of the 
restricted Lorentz group Lo in terms of functions 
of a single 4-vector, x. The solution of this problem 
shall lead us to the desired decomposition of an 
arbitrary reasonably well-behaved function of x into 
a (possibly continuous) sum of functions transform­
ing irreducibly under Lo. 

As mentioned in the Introduction, we restrict 
ourselves to the spinless case (G = 0). This means 
that the generators of £0 may be taken of the form 

M~. = XI~P.), 
where 

[PM X.] = ig~ •. 

Let us immediately choose the representation 

P~ = ia~ = ia/ax~, 

- 00 < x~ < 00, JL = 0, 1,2,3. 

Then 

F = x2a2 - 3x·a - xx:aa 

with xx:aa = x~xva~a •. In addition to F, M2, and 
M 3, we may also diagonalize anyone linear com­
bination of the operators p2, X 2, and p·x + X·P. 
We choose p 2 = _a2

, minus the d'Alembertian. 
Thus 

(P2
, F, M2, Ms)if;mfjix) 

= (m2
, j, j(j + 1), JL)if;",fj,.(x). 
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The operator p2 is extraneous to the Lorentz group 
and bears roughly the same relation to it as the 
radial part of the Laplacian to the three-dimensional 
rotation group. Not too much more will be said about 
p2 in the following. The functions VtmHp(X) are ex­
pected to be concrete realizations of the abstract 
vectors Ikvj,u) of Sec. II, at least for the values of 
k and v satisfying kv = O. 

To get a more explicit form of the above eigen­
value equations, we put9 

with 

We find 

x = (xo, an), 

x = lxi, 
n = (sin e cos cp, sin e sin cp, cos e), 

-00 <xo < 00, 

0::::; x < 00, 

o ::::; e ::::; 7r, 

0::::;cp<27r. 

-it = a/ax =na/ax - x-1nx(nxa/an), 

a/an = (cos e cos cp, cos e sin cp, -sin e) alae 

+ (-sin cp/sin e, cos cp/sin e, 0) a/acp, 

M = -in x a/an, 

N = -in(xo a/ax + x a/axo) - xox-1n xM. 

From these results it follows that 

_p2 = a2/ax~ _ a2/ax2 _ 2x-1 ajax + x-2M2, 

F = -(xo a/ax + x ajaxo)2 
- 2XOX-1(XO a/ax + x a/axo) + (x~ - X2)x-2M2, 

_M2 = a2/ae2 + cot e alae + (sin e)-2 a2/acp\ 

M3 = -i a/acp. 
It is clear that Vtmliix) may be written as 

Vtmliix) = CP~f(XO' x)a;in) , 

where the a's satisfy the eigenvalue equations 

M
2
a;" = j(j + l)a;", (3.1) 

and for integral j are just the familiar spherical 
harmonics10

; 

9 Note that x is used to denote both the 4-vector (xp ) and 
the magnitude of its spatial part, Ixl. The usage should be 
clear from context. 

10 See, e.g., M. E. Rose, Elementary Theory of Angular 
Momentum (John Wiley & Sons, Inc., New York, 1957). 

p (1 - X2)"/2 d;+" 2 . 

P;(x) = 2;" -.+- (x - 1)'. 
J. dx'" 

We note the normalization 

J dna;in)*ai,,,,(n) = ~ii'~pp" 

J dn = 10' de sin e {r dcp. 

The aip satisfy (2.4) with 

M1 ± iM2 = e±i"'(±a/ae + i cot e a/acp). 
Since 

we have 

ai,,(-n) = (-)ia;in). 

The completeness relations read 

f.. () (')* 2j + 1 P ( ') "~;a;,,na;pn = ~ ;n·n , 

n·n' = cos e cos e' + sin esin e' cos (cp - cp'), 
'" L (j + !)P;(n·n') = ~(1 - n·n'). 

;=0 

The solutions P~(cos e) of (3.1) for j = 0, 1,2, "', 
and ,u = j, j - 1, "', - j are unique, bounded, 
differentiable, single-valued, and normalizable on 
the interval 0 ::::; e ::::; 7r. For half-integral j at least 
one of these properties fails to be true. More pre­
cisely, the following situation holds. For j = !, t, ... 
and! ::::; ,u ::::; j the functions Pi"(cos e) are quite 
satisfactory. However, for negative ,u and j > ! 
these functions are not square-integrable with respect 
to the measure d(cos e) and hence must be discarded. 
One may be tempted to use a;" I'V Pii"i (cos e). 
But then a repeated application of M1 - iM2 to 
Pii(cos e) leads to the undesirable functions P~(cos e) 
with v = !, t, '" Nothing new is gained by ad­
mitting Legendre functions of the second kind be­
cause of the identity 

Q~(x) = (- )"+1 ~ g ~ :~: P!"(x). 

The only admissible set of solutions is for j = ! for 
which the two functions (sin e)1 and (sin e)-t cos e 
are normalizable. Thus, except for this single case, 
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half-integral angular momentum solutions of (3.1) 
are pathological and will henceforth be ignored. ll 

The function cp~, satisfies 

(Fj , P~)cp~,(xo, x) = (f, m2)cp~,(xo, x), 

where the subscript j indicates that M2 in F and 
p2 has been replaced by its eigenvalue j(j + 1). To 
separate variables in the above equations, let 

p = xo/x 

(-00 < r~ < 00), 

(-00 < p < 00), 

and assume the decomposition 

cp~,(xo, x) = b:(p)c~(r). (3.2) 

Transforming to the new variables and substituting 
(3.2), we find 

[(1 -i) :;2 + j(j + 1) + 1 ~ p2 JWp) = 0, (3.3) 

(d
2 

3 d f 2) '( ) 0 --+--+-+m c",r = . dl rdr r2 
(3.4) 

We may think of the functions Vt"'fiix) as being 
the transformation coefficients between the vectors 
Ix) (eigenvectors of XI') and Imfjp,): 

Vtmfiix) = (x I mfjp,)· 

Thus, with proper normalizations, we shall require 
that 

J dx(mfjp, I x)(x I m'l'j'p,') 

= 6(m - m') 6(f I 1') 6;;, 61'1" 

and 

J df J dm ~ (x I mfjp,)(mfjp, I x') = 6(x - x'), 
1.1' 

where 

3 

6(x - x') = II 6(xl' - x~), 
1'-0 

Rnd 6(f1f') is either 6kk' or 6(7J - 7"), depending on 
whether f and f' are discrete or continuous; similarly, 
J df stands either for J d7J or Lk' 

The volume element f dx may be decomposed 
into three parts, each invariant under L o: 

11 See, however, the discussion of the rotation group 
representations for an arbitrary complex j given by V. S. 
Popov and E. I. Dolinskil, Soviet Physics JETP 19, 1232 
(1964). 

J dx = J dx 8(x2) 8(xo) 

+ J dx 8(X2)8(-xo) + J dx 8(-x2), 

where 

6(a) = {O a::; 0, 

1 a> O. 

In terms of the variables r2, p, and n, we have 

J dx 6(x2
) 6(xo) 

= lo'" dr2 r2 1'" dp!(/ - 1)-2 J dn, 

J dx 6(x2) 6( -xo) 

(3.5) 

= 1'" dr2 r2 L~l dp Hi - 1)-2 J dn, (3.6) 

J dx 6(-x2
) 

= 10", dr2 r2 L: dp!(/ - 1)-2 J dn. (3.7) 

Our solutions will be appropriately normalized with 
respect to the above measures. 

Let us now proceed to the solution of the eigen­
value equation Fjb} = fb}. It is easily verified that 
two linearly independent solutions of (3.3) are 

(/ - l)lp~(p) and (/ - l)lQ~(p), 

where p~ and Q~ are the associated Legendre func­
tions of the first and second kinds,12 respectively, 
and 

a = (1 - f)l = (e - l)l. 

The Legendre functions are single-valued and 
regular in the complex p-plane cut from - 00 to 1. 
The timelike and spacelike solutions are quite dif­
ferent qualitatively and require individual discus­
sion. We consider the timelike case first. 

Timelike Case 

For a timelike vector x we have x~ - x2 
= r~ > 0 

and / = (XO/X)2 > 1. Thus p falls in either of the 
two open intervals (1, 00) or (- 00, -1). Consider 
functions on (1, 00). Using the volume element (3.5), 
we shall require 

~ 1'" dp (/ - 1)-2bj(p)*b},(p) = 6(f I 1'). (3.8) 

12 All formulas quoted here concerning the Legendre func­
tions are to be found in A. Erdelyi et al., Higher Transcendental 
Functions (McGraw-Hill Book Company, Inc., New York, 
1953), Vol. 1, pp. 120-181. 



                                                                                                                                    

UN I TAR Y REP RES EN TAT ION S 0 F THE LOR E N T Z G R 0 U P 769 

Remembering that g = 2kv = 0 and disregarding 
half-integral representations according to previous 
arguments, we have three separate cases to consider: 

Since 

(i) a = ±k, k = 1,2,3, ... 

(ii) a = ±ill, II > 0; 

(iii) a = ±1I0, 0 < 110 :::; 1. 

P'/(p) '" /, Qa( ) -'-I ,P"'P , 

for p --? co, it follows that for j > 0 only the Q'/ can 
be used. Now 

Q,/(p) '" {(P _ I)-a/2 , 
(p _ I)a/2 , 

Rea> 0, 

Re a < 0, 
(3.9) 

at p f"'o.J 1, so that for the case (i) the solutions are 
unnormalizable, the integrand in (3.8) behaving 
like (p - 1)-I-

k
/2. Thus we are left with cases (ii) 

and (iii) with j = 0, 1, 2, '" . Consider the case 
(li). For j = 1, 2, 3, ... we must use Q;' although 
for j = 0 both Q~' and p~. are admissible. We dis­
miss P~'i by requiring that the j = 0 solution be 
obtainable by means of a lowering operator from 
the j = 1 function. Thus, with a slight change in 
notation, we have 

b!(p) = B!(/ - I)iQ;'(p) (3.10) 

with the normalization constant B! to be determined 
next. Noting 

Q:'(p) ~ e-""I'(j + 1 + ill) 
P-+l + 

{ 
I'(ill) (p - I)-liP} 

X Re I'U + 1 + ill) -2-

we find, using asymptotic integration, that 

~ L" dp C/ - 1) -IQ;'(p)*Q;" (p) 
2 -2'11"P 

7C' e ( ') = 4v sinh 7C'II a II - II 

plus a term proportional to ~(II + II') = 0 (since 
II, II' > 0). Thus we see that the solutions (3.10) 
are normalized to ~(II - II') with 

IB! I = (2/7C')e"'(11 sinh 7C'II)t. 

Using well-known relations between contiguous Le­
gendre functions, one can ascertain that the functions 

hi( \ = .'[I'U + 1 - ill)]' ~ "'( inh )' 
, pj ~ I'(j + 1 + ill) 7C' ells 7C'II 

X C/ - 1)'Q;'(p) (1 < p < co), (3.11) 

multiplied by the ai~(n) behave canonically under 
the action of M and 

N = inC/ - 1) a/ap - pn xM. 

They are thus concrete realizations of the vectors 
Ik = Olljf.L) on the manifold of positive timelike 
4-vectors x(x2 > 0, Xo > 0). 

Taking p in the interval (- co, -1), we obtain 
solutions on the manifold of negative timelike 4-
vectors X(X2 > 0, Xo < 0). Using the fact that 
(/ - l)t = - 1/ - lit for p < - 1 and 

Q:( - p) = _e",i"'Q:(p) (1m p ~ 0), 

we find 

(p < -1), 

for both signs of 1m p. 

The solutions (3.11) can be put into a familiar 
form by setting 

p = coth~ 

and using Whipple's formula 

Q:(z) = eh·~(7C'/2)tl'(I + II + f.L)(i - Itt 

X P=t=;[z(i - 1)-'] (Re z > 0). 

We find 
, 

b!(p) = i'(! sinh t)-t II (l + n2)tp=t:~.(cosh t), 
.. -0 

where either sign of ±ill is valid. Using the integral 
representation 

P:(cosh a) = (2/7C')f(sinh aY[I'(! - l-')r1 

X I'" dv (cosh a - cosh v)-p-i cosh (II + !)v 

valid for Re I-' < !, we have the alternate expression13 

, 
b!(p) = i'27C' -i II (112 + n2)J(j!)-I(sinh tr'-1 

.. -0 

X it dv (cosh t - cosh V)i cos /IV. 

This can also be written as13 

i 

b!(p) = -( -~Y27C'-i II (112 + n2)-f(sinh t)' ..-0 
X d,+1 cos IIt/d(cosh t)'+I. 

As shown by J oos/ the following completeness 
relation holds for the ab-functions: 

18 A. Z. Dolginov and 1. N. Toptygin, reference of Footnote 
6. 
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'" ; 
X,(p) = L: L: ai,.(n)b~(p)ai,.(n')*b~(p')* 

;-0 ,,--I 

= (v/rl)(p2 - 1)-1 sin Iv log [p + (P2 - 1)'] I, 
p = x·x' = x'x'(rV2)-i, (3.12) 

valid for Xc, x~ > O~ and Xc, x~ < 0, hence for p > 1. 
For the mixed case, Xo > 0 and x~ < 0 or Xo < 0 and 
x~ > 0, one has p < - 1 and, as one may easily 
trace through, 

X,(p) = -(v/rr2)(p2 - It' 
X sin {v log [-p - (p2 - I)']}. (3.13) 

The formulas (3.12) and (3.13) may be combined by 
writing 

x.(P) = v[,l(p2 - I)'r1 

X sin {v log [Ipl + (P2 - 1)'] I (P2 > 1) (3.14) 

or 

X,(P) = V7r-
2 sin r/sinh r 

with 

Ipi = cosh r, 

As further shown by Joos, 8 

t> O. 

fa'" dv X,(p) = 2 Ixol r2 o(x - x') (P> 1) 

or, in a manifestly Lorentz-invariant form, 

ia> dv x.(p) = fa'" dr,2 r,2 o(x - x'). 

For p < - 1 the integral vanishes, of course. 
Stated in a different way, we have the following 
decomposition of the four-dimensional delta func­
tion: 

o(X - x') 

= {1r2X2[(X'x'Y - 1]1}-1 O(X2 - x,2)Oex·x' - 1) 

X fa'" dv v sin Iv log (x·x' + [(x·x'Y' - I]i)}. 

(3.15) 

The kernel X.(p) has the "reproducing property" 
expressed by the formula 

J dv o(v2 - I)X.(u·v)X.,(u' ·v) 

= o(v - v')X.(u·u'), (3.16) 

which may be verified by substituting expansions 
(3.12) for the kernels in the integrand or by direct 
integration. 

Let us finally consider the case (iii) with a = 

±vo, 0 < Vo ::; 1. As we have seen, for i > 0 only 
the Q~ functions behave properly at p = 00. How­
ever, (3.9) shows that 

QrO(p) t'J (p - 1)-1'01/2 

at p = 1; hence they must be discarded. The only 
remaining possibility is to use the functions· 
P;'o(p)(j = 0) which behave like (p - 1)'0/2 at 
p = 1: 

1 (- 1)'0/2 
P;'O(p) = -reI + vo) : + 1 . 

A trivial calculation shows that 

~ 1'" dp (/ - I)-lp;'Oep)*p;'O'ep) 

= [2(vo + v~)r(I + vo)r(l + vm-1
• 

Thus these solutions are not orthogonal for dif­
ferent values of Vo. This is not at all surprising since 
they correspond to the so-called complementary 
series of irreducible unitary representations of Lo 
constructed on a Hilbert space with an inner product 
different from that of the Hilbert space appropriate 
to the basic (or principal) series of representations 
with k and v real. We shall not further discuss the 
complementary series of representations in this paper 
since they do not occur in expansion formulas we 
are going to consider. We hope to examine these 
representations on another occasion. 

Next on our agenda is the expansion problem of 
functions of timelike 4-vectors. Let us suppose that 
the function rp(x) is square-integrable on the mani­
fold x2 = r2 > 0, Xo > 0: 

We define its "Lorentz transform" iP.iir2) by 

iP'i~(rZ-Y = J dx (XZ-Y-1 o(x2 - rZ-Y O(xo)rp(x) 

X ail'(n)*b!(p)*; 

the inverse is given by 

rp(x) = fa'" dv tu I'ti iPvi,.(l)ai,.(n)b~(p). 

(3.17) 

(3.18) 

A rigorous proof of these formulas is beyond the 
scope of this work; we may only remark that it 
parallels the proof given by N almark2 of a general 
theorem on the expansion of functions defined on the 
group manifold of the group 8L(2, C) homomorphic 
to the Lorentz group. The analog of the Plancherel 
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theorem14 of the Fourier theory is the formula 

f dx (X2)-1 a(x2 - r2)8(xo) Icp(x)12 

= i'" dv ~ ~t; IcP,;~(r2) 12. 

Spacelike Case 

For a spacelike vector x we have x~ - x2 
= r2 < 0 

and hence / = (XO/X)2 < 1 or -1 < p < 1. The 
normalization to be imposed on our solutions is, 
according to (3.7), 

~ {I dp (/ - 1)-2b}(p)*bj,(p) = o(f 11')· 

Just as in the timelike case considered above, we 
have here three sets of values of a = (1 - t)1I to 
be investigated separately. We start with the case 
(ii) , a = iv, v > O. Let us take the solutions b~(p) 
given by (3.11) for p > 1 and try to continue them 
into the region p < 1. Since b! Cp) is regular in the 
complex p-plane cut from - <Xl to 1, we see that we 
get two different continuations, depending on 
whether we continue along the upper or the lower 
edges of the cut. Thus we shall consider the two 
functions b!Cp + iO) and b~Cp - iO); note that 
b!(p + iO) = b~Cp - iO) for / > 1. On the interval 
(-1, 1) it is advantageous to introduce the Legendre 
functions on the cut, P;'Cp) and Q;'Cp). Making use 
of the formulas 

e"'Q;'(p ± iO) = e"""/2[Q;'(p) =F (i1l"/2)P;'(p)], 

P;'( - p) = (-)i[cosh 1l"JIP;'(p) 

+ (2/i1l") sinh 1l"JIQ~'(p)] 

[(p ± iO)2 - 1]11 = ±i(l _ /)' 

we find 

b!(p ± iO) = ±CB!(p)[e±rv/2p;'(p) 

(0 < p < 1), 

v < 1), 

_ (_ );e""'V/2p;'( _ p)], 

i( ) .;( v )1I[ru + 1 - iv)]I(I 2)11 
CB, p = ~ sinh 1l"JI r(j + 1 + iv) - p • 

Let us define the linear combinations 

b!±(p) = 2-1~:~: :~;)[b!(p + iO) ± b!(p - iO)] 

= 2-IICB!(p)[P;'(p) ± (_)ip;'(_p)]. (3.17) 

It is clear that 

(3.18) 

14 E. C. Titchmarsh, Introduction to the Theory of Fourier 
Integrals (Oxford University Press, London, 1948) 2nd ed. 

A simple computation shows that 

~ {I dp (/ - 1)-2b!±(p)*bi,~(p) 

The result 

o(v_ - ,/). 

~ {I dp (p2 - 1)-2b!±(p)*bi,~(p) = 0 

follows from C3.18). The factor 2-11 in (3.17) is neces­
sary for proper normalization since for the spacelike 
case both p = + 1 and p = - 1 endpoints contribute 
to oCv - v'). 

The kernels 

X~Cp) = ~ 2j 4! 1 Pi(n.n')b~±(p)b~±(p')* 
are evaluated in Appendix A, where it is shown that 

{

=F!X'(P) 

X~(P) = 0 

-!X,Cp) 

p> 1, 

-1 < P < 1, 

P < -1; 

(3.19) 

here X,Cp) is given by (3.14). Note that under 
p ~ -p, we have X~(p) --t ±X~(p), as necessary. 

Let us next consider the case (i) with a = k, k = 
1,2,3, .... It is known that the Legendre functions 
P;(p) form an orthogonal set with respect to the 
weight function (1 _ /) -I: 

{I dp (1 - /)-lp~(p)p~'(p) = akk'(j + k)!jk(j - k)!. 

Thus we have the normalized solutions 

b~(p) = i{ 2k g ~ ~j :J' (1 - /)lIp;(p), 

~ fl dp (/ - 1) -2b~(p)*bt,(p) = Okk" 

We note that 
P;(_p) = (_)i+kp;(p). 

(3.20) 

The phase factor ii has been determined by letting 
iv ~ k in the functions b~±(p) and ignoring an un­
important constant over-all phase factor. The solu­
tions Qtk behave as (1 - p)-k/2, k = 1, 2, 3, ... , 
for p '" 1, and hence they are unnormalizable. 

We compute next the kernel 

() ~ 2j + 1 P ( ')bi( )bi( ')* X k P = f;:t. ~ i n·n k p k P • 

From (3.20) we have 

b~(p)b!(p')* 

= 2k (j - k)! (1 _ 2)11(1 _ '2)lIp~( )P~( ') U + k)! p p, P,P • 
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Using the addition theorem1s 

p{(cos (1) = P;(p)P;(p') 

~ (j - m)! m .. , + 2 ~ (. + )' P ;(p)P {(p) cos mw, 
.. -1 J m. 

cos 01 = pp' + (1 - /)!(1 - p,2)! cos (tJ, 

valid for Ipl, IP'I ~ 1 of interest here, and the orthog­
onality relations 

~ { ~ cos ~ coo flw - 1: 
we obtain 

(j - k)! k() k( ') 
(j + k)! p{ p Pi P 

11" = - lk P;(cos (1) cos ~ 
11' 0 

Thus 

m = n = 0, 

m = n ~ 1, 

m ~n, 

(j ~ k ~ 1). 

X k = k2 (1 - /)1(1 - p,2)1 t (j + !)P;(n·n') 
11' i~ 

x fo" lk P(cos (1) cos~. 

Interchanging the integration and summation and 
extending the latter to run from j = 0 at no extra 
cost (because of the orthogonality of P;(cos (1) to 
cos k(tJ for j < k), we find 

X
k 

= k2 (1 - /)!(1 _ p,2)! 
11' 

x 1" lk o(cos 01 - n·n')Tk(cos (tJ), 

where 

T k ( cos (tJ) = cos lC<JJ 

is the kth Chebichef polynomial of the first kind.16 

Noting that 

(1 - /)!(I - p,2)! o(cos 01 - n·n') 

( 
pp' - n·n' ) 

= 0 cos (tJ + (1 _ /)!(1 _ P'2)1 = o(cos (tJ + p), 

we get 

X k = kTk(-p)8(I - Ipi)/1I'2(I - p~!. (3.21) 

15 A. Erdelyi et al., Higher Transcendental Function8 
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. 2, 
p.244. 

16 Reference of Footnote 15, p. 183. 

This kernel, too, has the reproducing property 

J dv (j(v2 + I)Xk(u·v)Xk,(U' 'v) = (jkk'Xk(u,u'). 

Moreover, it is orthogonal to X~: 

J dv (j(v2 + I)Xk(u·v)X~(u' ·v) = 0; 

this follows from the easily proved orthogonality 
of b! and W'. 

As we show in detail in Appendix B, the complete­
ness relation for spacelike solutions of (3.3) is 

(1 - /) (j(p - p') = ~ 1'" dv v(sinh Wfl [P;·(p)Pii.(p') 

+ P;'( - p)Pjb( _ p')] + ~ k g ~ ~~: P~(p)P~(P') 
for j ~ 1; when j = 0, the last term is omitted. 
MUltiplying this through by 

(-2/x2
) (j(x2 

- x,2)(1 - /)(2j + I)Pi (n·n')/411' 

and summing on j from 0 to co, we find, on inter­
changing j-summation with v-integration and k-sum­
mation in the above, 

(j(x - x') = -(2/x2
) (j(x2 

- x,2)(1 - /)2 

X (j(p - p') 0(1 - n ·n') 

-(I/x2
) (j(x2 - X,2){t Xk(p) 

k-l 

+ 10''' dv[X:(p) + X:(P)]} I (3.22) 

where 

x:(p) + X:(p) = - X.(P) 8( -1 - p) 

and X. is given by (3.14). The formula (3.22) IS 

the spacelike analog of (3.15). 
No continuous normalizable solutions of (3.3) 

can be found for the case (iii) with 01 = ±vo, 0 < 
vo ~ 1, because of the singular behavior of both 
Legendre functions at p = -1. A particular linear 
combinations of the two Legendre functions which 
is nonsingular at p = -1 becomes singular at p = 
+ 1 and vice versa. If one is prepared to accept 
solutions which thelllSelves or their derivatives are 
discontinuous at some interior point of the interval 
(-1, 1), then normalizable solutions may indeed be 
constructed. We shall not consider them. 

The expansion formulas for the spacelike case 
are obvious analogs of those previously given for 
the timelike case, except that now we must include 
both discrete and continuous contributions. 
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As an application of the expansion formulas, we 
consider in Appendix C a decomposition of the 
plane-wave solutions of the Klein-Gordon equation 
(for positive and negative m2

) in terms of the 
Lorentz-irreducible functions discussed above. 

IV. LIGHTLIKE SOLUTIONS 

In the lightlike case we have x~ = X2, and hence 
the "spherical" and the "radial" equations, (3.3) 
and (3.4), are both in terms of the same independent 
variable. Consequently, a novel situation obtains. 
We write 

(-CXl<U<CXl) 

and consider Xl, X2, Xa as independent variables. The 
expressions for M2 and Ma are the same as before 
while those for F and p2 are obtained by setting 
Qo == 0 in the corresponding expressions for the time­
like and spacelike cases given in Sec. III. We find 

p2 = e-2U(a2/au2 + a/au _ M2), 

F = _a2/au2 - 2a/au. 

Diagonalization of F leads to the eigenvalue equa­
tion 

(d2/du2 + 2 d/du + f)b,(u) = 0 

with solutions, for f ,= 1, 

b,(u) = cll'" + c 2l''', (4.1) 

{31.2 = -1 ± (1 - f)'. 

The invariant volume element isl7 

J dx 0(X2) = ~ L: du e
2u J dn. 

The only normalizable class of solutions (4.1) is 
that for f = 1 + l, II > O. One easily verifies that 
the functions 

b"'( ) = (_:',i (-I;".)u _,[r(j + 1 ± ill)]' 
• U '/,/ e 1C' r(j + 1 Till) 

satisfy 

~ L: du e2Ub~(u)* b;.(u) = 0(11 - II'), 

~ L: du e2Ub~(u)*b:,(u) = 0, 

and, multiplied by ai/n), behave canonically under 
Mand 

N = -i(n a/au + a/an). 

17 We omit the factor B(±xo) on the understanding that 
the sign of Xo is fixed, solutions for both signs being the same. 

We also have the completeness relation 

10'" dll [b:(u)b:(u')* + b-;;(u)b-;;(u')*J 

= 2e-2U o(u - u). 

It should be clear that the solutions b~ do not 
satisfy the eigenvalue equation p21/t = m21/t for 
m2 ,= O. If m2 = 0, then p21/t = 0 can be satisfied 
only at the expense of having j = ±ill or j = 
-1 ± ill, of no interest to us. 

From the above we see that lightlike solutions are 
of a rather simple nature, being pure exponentials 
independent of the angular momentum j. It follows 
that various expansion formulas are just those of 
the Fourier integral theory which need not be re­
peated here.14 

V. DISCUSSION 

The theory of decomposing functions defined on 
a manifold according to irreducible representations 
of a given group is known in the mathematical litera­
ture as harmonic analysis.ls A familiar example is 
the theory of Fourier integrals connected with the 
group R of real numbers under addition. Viewed in 
this light, our work might be described as a phys­
icist's version of harmonic analysis associated with 
the Lorentz group Lo. The noncompact nature of 
Lo (or R) is reflected in the occurrence of delta­
function normalizations for the basis functions of 
some of the representations. This fact does not pre­
sent any great difficulty. The non-Abelian character 
of Lo is, on the other hand, the real source of com­
plications because of the appearance of associated 
Legendre functions with complex-valued indices, as 
contrasted with simple exponentials in the case of 
the group R. 

Let us briefly summarize the results of the pre­
ceding sections. We have found that the discrete 
representations of Lo(1I = 0, k = 1, 2, 3, ... ) occur 
only in the spacelike case. The continuous series of 
representations (II > 0, k = 0) occur in all three 
cases. All these representations belong to the princi­
pal series of irreducible unitary representations of 
Lo. N ormalizable continuous solutions belonging to 
the complementary series of representations are 
available in the timelike case only. They are non­
orthogonal with respect to the inner product used 
for the remaining solutions. Moreover, they fail to 
appear in expansion formulas. 

A unified treatment of timelike and spacelike 

18 G. Bachman, Elements of Abstract Harmonic Analysis 
(Academic Press Inc., New York, 1964). 
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solutions is obtained if one uses the parametrization 
x~ - x2 = r2, xo/x = p. Then - ex> < p < ex> , and 
p > 1, - 1 < p < 1, and p < - 1 correspond to the 
positive timelike, spacelike, and negative timelike 
cases, respectively. Positive timelike solutions may 
be continued to the spacelike region along either 
the upper or the lower edges of the cut (-1, 1) in 
the complex p-plane, yielding two sets of solutions 
with different reflection properties under p ~ - p. 

We should point out the well-known fact that the 
noncompact Lorentz group Lo is very closely related 
to the compact group R4 of real rotations in four 
dimensions. Formally, the transition from Lo to 
R4 is accomplished by letting Xo = iX4, X4 real, or, in 
terms of the group generators, (M, N) ~ (M, ~N). 
The solutions of the eigenvalue equation Fif; = !if; 
for the case of R4 may be obtained by simply con­
tinuing the solutions for Lo in the eigenvalue f 
(which now takes on a discrete set of values only). 
Our approach based on differential equations makes 
the connection between R4 and Lo very explicit and 
easily tractable. 

A possible physical application of our formalism 
would be to the treatment of the Bethe-Salpeter 
equation19 dispensing with the sometimes prob­
lematical Wick's rotation20 of momenta to the eu­
clidian region. Another application that comes to 
mind is to scattering amplitudes, in the manner of 
Shapiro.5 Finally, it is known that R4 and Lo are 
the symmetry groups of the nonrelativistic Coulomb 
field for bound and continuum states, respec­
tively.21-24 In view of the close connection between 
the two groups, as just discussed, one sees that yet 
another, and very important, application of the 
Lo-representations would be to the class of problems 
involving the nonrelativistic Coulomb field. 

APPENDIX A 

Our goal in this appendix is to calculate the sums 

3C~(x'x') = ~ 2j t 1 Pi(n.n')b~±(p)b~±(p')* (A1) 

for the spacelike case x2 = X,2 = -1. We recall that 

bi "'( ) 'i( II )![r(j + 1 - ill)]! . 
• p = ~ 2 sinh 111' r(j + 1 + ill) sm (J 

ix [P;'(cos (J) ± (_)ip;'(-cos (J)], 

19 E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 
(1951). 

20 G. C. Wick, Phys. Rev. 96, 1124 (1952). 
21 V. Fock, Z. Physik 98, 145 (1935). 
22 V. Bargmann, Z. Physik 99, 576 (1936). 
23 L. C. Biedenharn, J. Math. Phys. 6, 433 (1965). 
!If L. C. Biedenharn and P. J. Brussaard, Coulomb Excita­

tion (Oxford University Press, New York, 1965). 

where we have put 

p = cos (J, ° < (J < 7r. 

Rather than attempting to sum (A1) directly, we 
consider first the sums 

~ 2j + 1 P ( ')( II )!. (J 
£... ~ i n·n 2'nh sm ,-0 ~ SI 111' 

X [P;'(cos (J) ± (_)ip;'( -cos (JJ). 

Using the representations25 

P~'( (J) = (~)! (sin (J)i. 
, cos r(I') 7r 2" - W 

X i" dl{) (cos l{) - cos (J)~i-i' cos (j + t)l{), 

(_)ip;(-cos (J) = (_)i[p;'(cos (J) cos (j + ill)7r 

where 

- (2/7r)Q;'(cos (J) sin (j + ill)7r] 

(
2)! (sin (J);' i" = - r(I .) dl{)(cosl{) 7r 2"-~1I 0 

- cos (J):H' sin (j + t)l{), 

x> 0, 

x ~ 0, 
x_ = {o 

-x 

x 2:: 0, 

x < 0, 

we have, upon interchanging summation and inte­
gration, 

'" I( 3 . h )-i (sin (J)l+i. x. = 2" 7r SIn 111' ""r7.(1,.....:.'--:-.-:-) 
2" - ~II 

Let 

'" 

X i" dl{) ~ (j + !)Pi(n·n") 

X [(cos l{) - cos (J)~i-i' cos (j + t)l{) 

± (cos l{) - cos (J):H' sin (j + t)l{)]' 

S = L (j + t)Pi(n.n") cos (j + t)l{) 
i-O 

= ~ ~ i: Pi(n'n")[eiil"(ei~<y - e-i'''(e-i,,)i]. 
2~ al{) i-O 

To make the sums meaningful, we let eil" ~ e;(,,+id, 
e-;I" ~ e-i(,,-id, E > 0. Then the two series are of 
the form Li pN, JhJ < 1, for which the following 
formula is valid: 

'" L Pj(cos Ot)hi = (1 - 2h cos Ot + h2)-I. 
i-O 

26 W. Magnus and F. Oberhettinger, Formulas and Theo­
rems for the Functions of Mathematical Physic8 (Chelsea. 
Publishing Company, New York, 1954), pp. 66-67. 
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Thus we find 

s= -i2-! ~ {[cos ('P + iE) - non'T i 
iJ'P 

- [cos ('P - iE) - non'T i }. 

Noting that 

cos ('P ± iE) ~ cos'P T iE sin 'P, sin'P > 0 

(0 < 'P < 11"), 

and using the formulas26 

( ± ')' , + ±i .. , , X ~E = x+ e x_, 

(d/dx)x: = ±Xx:- l
, 

valid for an arbitrary complex A ¢ -1, -2, ... III 
the limit E ---+ O+, we find with A = - t that 

S = -2-f sin 'P(cos 'P - non"):!. 

Similarly, we obtain 
~ 

L (j + t)P;(non") sin (j + t)'P 
,,..0 

Thus 

x: = -(411")-1(2v/sinh 1rV)1 

X (sin 8)IHV[ra - iv)fl 10" dtp sin 'P 

X {(cos'P - cos 8)-:1-"(cos'P - non,,):1 

± (cos'P - cos 8):1-"(cos 'P - non")-:!}. 

The first integral is taken over the values of 'P 

satisfying non" > cos 'P > cos 8, while the second 
over those satisfying cos 8 > cOS'P > non". Making 
the substitutions 

cos'P - cos 8 cOS'P - non" 
t = non" _ cos 8 and t = cos 8 - non" 

in the first and second integrals, respectively, we 
find that both integrals are multiples of the beta 
function B( -t, t - iv).27 More precisely, the result 
is 

x~(~) = (2v) 1 [411" r( -iv) (sinh 1rV)1rl 

X (~:l-" ± ~:l-i'), 

~ = (cos 8 - non")/sin 8 

= sinh r - non" cosh r. 

(A2) 

(A3) 
211. M. Gel'fand and G. E. Shilov, Generalized Functions 

(Academic Press Inc., New York, 1964), Vol. 1. 
27 Strictly speaking, the integrals do not exist because the 

factors (cos rp - non")± -I are nonintegrable at the singularity. 
This apparent difficulty may be eliminated by writing 
c(···)±-t/iJ(cos rp) = -iJ(···)±-t/iJ(non") and then inte­
grating over rp. 

It is easy to show that x~ may be calculated by 
the formula 

x; = J dn" x~(sinh r - non" cosh r) 

X x~(sinh r' - n' on" cosh r')*. (A4) 

Substituting (A2) into (A4), we find 

x; = (211rV(I ++ + L_ ± I +_ ± L+), 

where 

I a " = J dn"~:l-i'i;rl+", a, {J = ±. 

Now 

= 10'" da a -iF o( aT? )(±i;!;'r l 

= (2nTI l'" da a -'V ICI[(a ± iE)~' T i;fl 

- i;-l[(a ± iE)!;' T i;fl} . 

Thus we are called upon to compute the integrals 

J ±(z) = J dn"[I;(z!;' ± m-l
, 

where z = a ± iE, ---+ 0+. The expressions for the 
X ~ in terms of the J ± are 

x; = (2'II'rV(211"~TI l'" da a-i. {J _(a - iE) 

- J _(a + iE) ± [J +(a + iE) - J +(a - iE)]}. 

From (A3) we find 

J ±(z) = (m cosh rr l J dn" (u - non"r l 

X (u' - mon"r l, 

m = z cosh r'n' ± cosh tn, 
u = tanh r, 

u' = (z sinh r' ± sinh r')/m, 

m = m/m. 

(A5) 

(A6) 

The integral (A5) is well-known and is given by28 

J dn" (u - non,,)-l(u' - mon"rl 

211" 1 uu' - m on + K 

= -; oguu' - mon - K' 

K2 = (uu' - monl - (1 - u2)(1 - U,2), 

mon = (z cosh r'non' ± cosh r)/m. 
----

28 M. L. Goldberger in Relations de dispersion et particule8 
elementaires, ed. by C. de Witt (John Wiley & Sons, Inc., 
New York, 1960), p. 62. 



                                                                                                                                    

776 JONAS STASYS ZMUIDZIN AS 

Using (A6), we find 

(uu' - m·n)m = (1 + pz)/cosh r, 
lm2 = Z2(p2 - 1)/cosh2 r, 

p = sinh r sinh r' - cosh r cosh r'n·n' == x·x'. 
Thus 

Let us consider the case p > 1. Writing p = cosh p, 

p> 0, we have 

.) 211" 1 - (a ± ie)eP 

J +(a ± u, p = ( .) inh log . 
a ± 'te S p 1 - (a ± ie)e-P 

Using 

(a ± ie)-l = Pia T i1l"o(a), 

log (a ± ie) = log lal ± i1l"B( -a), 

we obtain 

J+(a + ie, p) - J+(a - ie, p) 

= _ ~1I"2i !!. [B(a - e- P) - B(a - ~)]. 
sinh p a 

In a similar manner, we find 

J_(a + ie, p) - J_(a - ie, p) = ° 
and, performing a trivial integration, 

"'(p v sin vp v 
X, ) = T211"2 sinh p = T211"2(p2 _ l)t 

X sin Iv log [p + (p2 - l)i]} (p > 1). 

Let us put, for fixed j, 

p=tanhr (-<Xl <r<<Xl), 

b}(p) = sech rx.(r), 

X=f-1. 

Then (3.3) reads 

where 

L = -d2/dr
2 + q(r), 

qW = -j(j + 1) sech2 r· 

(Bl) 

Solutions of (Bl) are linear combinations of 
P~(tanh r) and Q~(tanh r) or, equivalently, of 
P~(tanh r) and P~( - tanh r), where 

a = (_X)i. 

Let B(r, X) and cp(r, X) be two solutions of (Bl) 
satisfying the boundary conditions 

B'(O, X) = cp(O, X) = 0, 

B(O, X) = -cp'(O, X) = 1. 

The first pair of boundary conditions is satisfied by 

B(r, X) = A[P~(tanh r) + P~( -tanh r)], 

cp(r, X) = B[P~(tanh r) - P~( -tanh r)]. 
(B2) 

Imposition of the second pair of conditions yields 

A = 1/2P~(0), 

B = -1/2P;'(0), 

For the case p < -1, we write p = - cosh p, p > 0, where 
and find' 

P;'(O) = [dP~(x)/dx]~_o. 

X~(p) = v sin vp v 
- 211"2 sinh p = 211"2(p2 - I)! 

X sin Iv log [-p + (p2 - l)i]} (p < -1). 

Finally, it is easy to check that X~(p) = ° for Ipl < 1. 

APPENDIXB 

In this appendix we derive an expansion formula 
for functions of a spacelike 4-vector argument. It 
is sufficient to treat only a part of the problem, 
namely, that associated with the eigenvalue equa­
tion F1/; = f1/;. We shall use the theory, notation, and 
results for second-order ordinary differential opera­
tors as discussed by Titchmarsh.29 

IV E. C. Titchmarsh, Eigenfunction Expansion8 (Oxford 
University Press, London, 1962), Part I, 2nd ed. 

It is clear that B is symmetric and cp antisymmetric in 
tanh r and hence r. Thus we may restrict our at­
tention to the half-interval (0, <Xl) in r. Next, we 
must construct a solution of (Bl) which is square­
integrable on (0, <Xl). Suppose 

1/;(r, X) = B(r, X) - m(X)cp(r, X) 

is this solution (there is only one because we are 
dealing with the limit point case, as general theorems 
of Ref. 29 show). Using (B2), we have 

1/; = (A - mB)P~(p) + (A + mB)P~( - p). 

Since P~( -p) fails to be square-integrable a.t p = 
+ 1 for integral values of j of sole interest to us, we 
must set its coefficient equal to zero; thus 
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m(X) = -A/B = P:'(O)/P~(O) 

2 t 7l" -,(:.::....1 --'.+_a--,-) = an-
2 

X re1 + !j + !a)r(l + !j - !a). 
r(! + !1 + !a)r(! + !j - !a) 

The Legendre function P~(tanh r) is square-inte­
grable on (0, ro) provided Re a < 0; we henceforth 
assume that this condition holds. The expansion 
theorem takes the form 

fW= 2~J-: du(X) OCr, X) L: dr' OW, X)f(n 

+ 21'11" L: dT(X) f/J(r, X) L: dr' f/JW, A)f(r') 

for every f E L2( - ro, ro); here 

u(X) = -lim 1). du 1m [m(u + io)fl, 
8-0+ 0 

T(X) = +lim 1). du 1m m(u + iO). 
8-0+ 0 

In other words, 

ocr - n = 2~ L: du(X) OCr, A)OW, A) 

+ ;'11" L: dT(X) f/J(r, A)f/J(r', A). 

It remains to compute the spectral functions u and T. 

With the help of r-function identities we obtain 

. II; j+a-2n 
m(X) = (J + a) . + + 1 _ 2 . 

.. -1 Jan 

Decomposing this expression into partial fractions, 
we find 

m(X) = (j + a) 

X {1 _ t 2n(2j .- 2n + 1)(2n - 1)-1 a; .. } , 
.. -I J + a + 1 - 2n 

ala = (2n)! (2j - 2n) !/[2in! (j - n)!r. 

To calculate 1m m, we must specify the proper branch 
of a as a function of A. Let us take a cut in the com­
plex A-plane running from 0 to + ro and put 

a = (eirX)t. 

Then, setting 

X = Ixi e·6
, o < 0 < 2'11", 

we have 

and 

Re a = -ixi l sin 0/2 < 0 

for 0 < 0 < 2'11", as required for square-integrability 
of P~. Letting further 

A = u + io, 
we find 

-ro<u<ro, 

{
iUI - 0' u> 0 

a = _( -u)l ~ io' ,u < O. 

Thus for u < 0 we have 

1m (j + Ci + 1 - 2n)-1 

0> 0, 

(0' > 0) 

= -'II"o(j + 1 - 2n - (-u)f) 

and 
i 

1m m(u + iO) = 'II" L: 2n(2j - 2n + 1) 
.. -I 

X ai"o« -u)t - j - 1 + 2n}. 

In a similar manner, we find 
i 

1m [m(u + iO)r l = -'II" L: ai .. o« -u)l - i + 2n}. 
,,-0 

For u > 0, only the tangent function in (B3) con­
tributes to 1m m: 

1m m(u + iO) = 2!r(1 + i/2 + iVu/2)!2 
r(! + j/2 + i Vu/2) 

X 2 
i even, 

{

tanh'll"wt 

coth"'II"!ui i odd, 

1m [m(u + iO)f1 = - [1m m(u + iO)fI. 

A somewhat lengthy but straightforward computa­
tion now yields the result 

oCr - n = ~ ED dv v(sinh 7I"Vr l [P~P(p)Pi'P(p') 

+ PIP( )P-'P( ')] + ~ k (j - k)! pk( )pk( ') 
I - P i - P f=:. (j + k)! ; PiP • 

APPENDIXC 

As an illustration of the theory given in Sec. III, 
we shall expand the exponential function exp 
(-ip·x) in terms of the eigenfunctions of the opera­
tors F and p2 for the timelike and spacelike cases. 
These expansions are four-dimensional analogs of 
the well-known expansion 

., 
exp (ip·x) = L: (2l + 1WMpx)PI~·i). (01) 

1-0 
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The role of ir(Px) is played by the solutions of the 
"radial equation" (3.4); in place of Pr(p·i) we have 
the various kernels 3C discussed in Sec. III. 

The point we wish to emphasize is that (C1) pro­
vides a decomposition of exp (ip·x) into a sum of 
functions with arguments invariant under rotations 
(namely, Ipllxl and p.i). In the same manner, the 
anticipated expansions of exp (-ip·x) will provide a 
decomposition of the exponential into a sum and/or 
integral of functions of (±p2 X2 )! and P'x, i.e., a 
separation of exp (-ip·x) into radial and spherical 
parts, each invariant under Lorentz transformations. 
There are several ways of obtaining the desired 
expansions. We shall use the method of direct inte­
gration which, although not the shortest, is perhaps 
more illuminating, especially in the spacelike case. 

We start with the timelike case. The function 
exp (-ip·x) is square-integrable on the manifold 
mr! = Ix: x2 = r2 > 0, Xu > 0) provided 1m Po < 0, 
which we assume. Thus, according to (3.16), for 
X E mr! we have 

-iP'z J d ' ~( ') -ip'z' e = xux-xe 

cp: = (2mprt1 i~ d! sin ,,!I exp [-iemr 

X cosh (! - et)] - exp [ -iemr cosh (! + E!')]}. 

Letting! 1= eS' = 1] in appropriate exponentials, we 
have30 

cp: = ±sin.JI~' f'" d1] cos "1] exp [-i(±m)r cosh 1]] 
mpr _'" 

_~ ±r,/2H(2,ll( ) sin JI~' 
mr e i. mr sinh~' 

for E = ±1. (C3) 

Here H!!,2l are Hankel functions of the first and 
second kinds of order iJl. Noting that p'x = 
Emr cosh ~', the expansion formula (C2) takes the 
manifestly invariant form 

e- ip •z = _[A(U2 - 1)lr1 1'" dJl Jle±lUH!!,ll(A) 

with 

X sin [II log (lui + (u2 
- I)')] 

(x2, Xo, p2 > o,po ~ 0, 1m Po < 0) 

= 1'" d" "cp" 

where 

(C2) A = (p2x2)1 = mr > 0, 

u = p·x = P·X/A. 

<fl. = J dx' ~(X'2 - r2) 

X {1rV[(x·x,)2 - 1]i)-10(x'X' - 1) 

X sin IJI log [x·x' + «X'X,)2 _l)l])e- iP 'z'. 

Since x is positive timelike, we may choose a co­
ordinate system in which x = (r, 0), r > 0. Letting 
x~ = r cosh~, ~ > 0, we find 

<fl. = (211"2)-1 1'" d~sinh ~sinJl~e-iPoroo.hi 
X J dn' exp (ip·n'rsinh ~). 

We may extend the integration on ~ to - CD pro­
vided we halve the result. The angular integration 
is trivial; we get 

<fl. = (2mprt1 i~ d~sinJl!e-iPoroo.hi 

p = Ipl· 

Suppose p is timelike. Then we take po = em cosh S', 
p = m sinh S', e = ±1, m > 0, !' > ° and find 

Using (3.14), we may write this as 

(C4) 

(C5) 

Clearly, (R; satisfies (3.4); it should also be pointed 
out that (R; is essentially the Fourier sine transform 
of (u2 

- 1)1e- iP
'%. 

Next, suppose p is spacelike. Letting m ~ - iEm, 
S' ~ S' + ti1l" amounts to po = em cosh ~' ~ Po = 
Em sinh !', p = m sinh ~' ~ p = m cosh !'. With 
these substitutions, (C3) becomes 

"', = .( )-1 K ( ) sin JI(~' + ti1l") 
T' -l, 1I"mr i, mr cosh ~' , 

Ke.(z) = tme1ira H~ll(iz). 

Again, one has the manifestly invariant expansion 

e- iP 'z = (1I"[u2 + l]i)-l 1'" d" "Ki.(A) 

X {e"'/2([u2 + l]i - U)i' - e-i "'([u2 + 1]' + u)i'l 

(x\ Xo, -p~ > 0), 

30 Reference of Footnote 25, p. 26. 
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where now A = (_p2
X

2 )t. To assure the convergence 
of the above integral the variable r' = (u2 + 1)1 + 
u = [(u2 + 1)' - urI must be given a small negative 
imaginary part. 

Expansions on the manifold:m:! = {x: x2 = r2 > 
0, Xo < O} are just complex conjugates of the cor­
responding expansions on :m:l given above; this 
follows from 

We consider next expansions of the exponential 
function on the manifold :m:_ = {x: x2 = r2 < OJ. 
Using (3.22), we get 

-iP'z J d ' ~( ') -ip'z' e = xux-xe 

with 

cp~l) = f dx' ~(X'2 - r2) 

x 0(-1 - x'x')[nV«x'x'l - I)lrl 

X sin {v log [[x'x'l + «X'X,)2 _I)']}e- ip
•
z
', 

cp!2l _ f dx' ~(X'2 - r2) 0(1 - Ix' x' I) 

X [1T2r2(1 - (x·x,)2)'r I Tk ( _x·x')e-iz>.z'. 

We compute cp~2l first. It is convenient to introduce a 
change of variables of integration appropriate to the 
spacelike case. Just as in the timelike case one inte­
grates over the three-dimensional rotation group, 
the little group3I of timelike vectors with volume 
element dn, so now one may integrate over the little 
group of spacelike vectors, which is the three-dimen­
sional Lorentz group. Let us compute its volume 
element. Choosing x = (0, 0, 0, 1), we may, in view 
of the restriction Ix' x'l < 1, introduce the following 
parametrization for x': 

where 

x~ = sin a sinh (3, 

xi = sin a cosh (3 cos ", 

x£ = sin a cosh (3 sin", 

x~ = cos a, 

o < a < 1T, 

-CD < (3 < CD, 

o ::s; " < 21T. 
aI E. Wigner, Ann. Math. 40, 149 (1939). 

The volume element dx' is found to be 

dx' = !X,2 dX,2 sin2 a da cosh (3 d(3 d". 

Thus 

cp!2l = '2 da sin a cos ka 1 1r 

1T 0 

f'" 12" X d(3 cosh (3 d" e-iz>'z'. 
-'" 0 

Suppose p is spacelike. Then we write 

p = ([ _p2]1 sinh r, [_p2]t cosh rn), 
n = (sin 0 cos cp, sin 0 sin cp, cos 0) 

and find 

(C6) 

p'x' = (p2r2)'[sinh r sin a sinh (3 - cosh r sin Osina 

X cosh (3 cos (" - cp) - cosh r cos 0 cos a]. 

The integration over" in (C6) may immediately be 
done: 

a = (p2r2) I cosh r sin Osin a cosh (3 == b cosh (3. 

Next, we do the integral over (332: 

i: d(3 cosh (3e- i
• oillb fJ Jo(b cosh (3) 

= 2 L'" dt cos Icl tJO(b[t
2 + 1]') 

cos (b2 
_ c2)t 

= 2 W _ c2)1 O(b - lcD, 

c = (PV)t sinh r sin a. (C7) 

The result so far is 

cpi2l = 2(1TA[I - u2]1)-I Lr 

da cos kae-')'u coo a 

X cos (A [1 - u2
], sin a) 0(1 - u2

), 

u = p·x. 
Setting u = cos w, 0 < W < 1T, combining the ex­
ponential with the second cosine function in the 
integrand, we get 

cpi2l = (1TA[I - u2]t)-10(I - u2
) L" da cos ka 

We may extend the a-integration to 21T provided we 
divide the result by two. The legitimacy of this 

82 Reference of Footnote 25, p. 33. 
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operation becomes obvious when we remark that 
by letting a range from 0 to 271", we are integrating 
twice over :TIL subject to the restriction !:e.:e'! < 1. 
Letting a ± w = a', we finally find 

<p!2l = 2(>-[1 - U2]i)-ITk(U) ( -tY Jk(>-) 8(1 - luI) 
(:l, x2 < 0). 

Using the identities 
'" ei• Binql = L: einqlJn(Z) , 

n-- co 

J -n(z) = (- )nJn(Z) , 

it is easy to verify that 

'" '" L: k<p~2l = L: <Rk(A)Xk(U) = e- ihu (u2 < 1), 
k-l k-l 

(08) 

If p2 > 0, then <p!2l = O. This follows from the 
vanishing of the step function in (07): 

8(b - leI) = 8(sinh r sin 8 - cosh r) = 0 

with the substitutions cosh r ~ sinh r to change 
from spacelike to timelike p. 

Oonsidering <p~1l next, we may carry out the re-
quired integrations by taking 

with 

:e~ = sinh a cosh p, 

:e: = sinh a sinh p cos 'Y, 

:e~ = sinh a sinh {f sin 'Y , 

:e~ = cosh a 

-co<a<co, 
O<p<co, 
0~'Y<271". 

The calculations are straightforward, and so we 
only state the results: 

= {-<R ~([p2x2]I)X.(fi .:e) p2 > 0, -1 ± p.:e > 0; 

-<R~([ _p2x2]I)X~(fi·:e) p2 < O. 

Here 

<R~(A) = >--IK i ,(A), (09) 

X~(u) = p(-n-[u2 + l]i)-I[et .-v([u2 + 1]t - u)" 

_ e-!H([u2 + l]t + U)i']. (010) 

Summarizing, we have the following expansions 
of the exponential function: 

1'" dp<R~([P2x2]!)x,(p·:e)8(-I±p·:e), pI, X2>0; 

1'" dp <R~([ _p2X2]t)X~(p·:e), p2 < 0, x2 > 0; 

-1'" dp <R~([ _p2X2]t)X~(p·:e), p2 > 0, Xl < 0; 

- 10'" dp <R ~([P2 X2]t) X,(p .:e) 8( -1 ± p.:e) 

'" - L: <Rk([P2X2]i) xk(fi·:e) 8(1 - Ip·:e I), p', Xl < 0; 
k-l 

(011) 

here <R~, X,, <R~, X~, <Rk , X k are respectively given by 
(05), (3.14), (09), (010), (08), and (3.21). The 
integrands are assumed to incorporate small im­
aginary parts of appropriate arguments necessary 
for the absolute convergence of the integrals. The 
expansions (011) clearly are symmetric in p and x, 
as they should be, except for the minus signs in the 
last two expansions. These minus signs may be 
understood by noting that for spacelike X the radial 
part of the volume element reads 

We see that discrete representations of Lo con­
tribute only when both p and x are spacelike and 
then only for -1 < p.:e < 1. In all cases the radial 
parts of the expansions satisfy (01). 

It should be pointed out that (011) has been given 
by Joos8 for the case p2, x

2, Xo > O. 
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